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Synthesizing motions for legged characters in arbitrary environments is a
long-standing problem that has recently received a lot of attention from the
computer graphics community. We tackle this problem with a procedural
approach that is generic, fully automatic and independent from motion
capture data. The main contribution of this paper is a point-mass-model-
based method to synthesize Center Of Mass trajectories. These trajectories
are then used to generate the whole-body motion of the character.

The use of a point mass model results in physically inconsistent motions
and joint limit violations when mapped back to a full- body motion. We
mitigate these issues through the use of a novel formulation of the kine-
matic constraints which allows us to generate a quasi-static Center Of Mass
trajectory, in a way that is both user-friendly and computationally efficient.
We also show that the quasi-static constraint can be relaxed to generate
motions usable for computer animation, at the cost of a moderate violation
of the dynamic constraints.

Our method was integrated in our open-source contact planner and tested
with different scenarios - some never addressed before- featuring legged
characters performing non-gaited motions in cluttered environments. The
computational efficiency of our trajectory generation algorithm (under one
ms to compute one second of trajectory) enables us to synthesize motions in
a few seconds, one order of magnitude faster than state-of-the-art methods.
Although our method is empirically able to synthesize collision-free motions,
the formal handling of environmental constraints is not part of the proposed
method, and left for future work.
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1 INTRODUCTION
The automatic synthesis of complex motions for legged characters is
an open problem, actively researched by both the computer graphics
and the robotics communities. One challenge is to provide charac-
ters with enough autonomy of motion so as to facilitate character
animation tasks, or to animate non-player characters in games. Ide-
ally, a method to synthesize believable motions would only require
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Fig. 1. Multi contact motions synthesized by our method.

simple high level inputs (e.g., initial and final positions), and not
tedious manual editing from an animator. It would also generalize
well to large sets of legged characters (with any number of legs), and
would not require the gathering of large motion capture datasets for
each character. It would not be restricted to flat ground or annotated
environments. Finally, it would be computationally efficient, close
to real time. This would allow for online motion generation appli-
cations, and not let animators wait for too long before obtaining a
result. In this paper, we consider the problem of computing a physi-
cally plausible motion between two positions for a legged character
in an arbitrary environment. We demonstrate significant progress
with respect to all the objectives listed above: generalization over
various characters, physical accuracy and plausibility, environment
variety and complexity, computational performance.

This problem has received significant attention over the past
decade. As a result, the synthesis of walking or running motions in
open environments (flat ground, few obstacles) is now commonly
and efficiently addressed by existing methods [Kajita et al. 2003; Yin
et al. 2007]. In this context, where the contact phases are cyclic, the
kinematic constraints of the avatar can be easily expressed [Perrin
et al. 2012]. Furthermore the dynamics of the avatar can be accu-
rately approximated by assuming that the ground is always flat.
Multi contact locomotion is the general case that we consider, where
all these simplifying assumptions no longer hold. Examples of multi
contact motions include climbing, walking on highly uneven terrain
or climbing stairs using a handrail. The issue of finding when, where
and with which effector to create a contact leads to a high dimen-
sional combinatorial problem. Additionally, the dynamics of the
system is more complex, and the kinematic constraints are harder to
express. Finally, motions occur in the proximity of obstacles which
makes the collision avoidance non trivial. As a result, motion synthe-
sis is hard to generalize because small changes in the environment
affect significantly the solution space.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: July 2018.

https://doi.org/0000001.0000001_2
https://doi.org/0000001.0000001_2


1:2 • Steve Tonneau, Pierre Fernbach, Andrea Del Prete, Julien Pettré, and Nicolas Mansard

A common approach is to reduce the dimension of the problem
by considering a point mass model (3 degrees of freedom) rather
than the complete avatar (60 degrees of freedom), and then focus
on planning a trajectory for the center of mass (COM), with sig-
nificant success. However, this approximation often leads to joint
limit violations once the whole-body motion is computed. More-
over, the angular momentum generated by the character bodies
is unknown when computing the COM trajectory, so there is no
guarantee that the resulting motion will be dynamically consistent.
Furthermore, finding a trajectory is usually formulated as a non-
convex optimization problem, computationally expensive, with no
guarantee of convergence.
In this paper we propose a different approach to provide gua-

rantees of kinematic and dynamic feasibility. Rather than relying
on a simplified model, we first consider a conservative but exact
formulation of the dynamics, later relaxed while preserving the
kinematic constraints of the motion. Our approach is agnostic to
the character morphology, allowing us to consider a large range of
complex environments.
Our method is described by two steps. In a first step we restrict

ourselves to quasi-static locomotion, where the robot moves at low
velocity. In this context the point mass model dynamics is accurate
because the angular momentum is negligible. The linear momentum
is not, because it is required to verify that it is possible to generate
the forces compensating the gravity interaction. By considering
a new approximate formulation of the kinematic constraints, we
show that finding a trajectory connecting two contact phases boils
down to finding a single point that uniquely defines such a solution,
and which can be computed efficiently. In a second step we show
that we can relax the quasi-static constraint to generate smoother
trajectories while preserving the kinematic constraints, in a flexible
way that can be parametrized by the user. Thanks to this property,
our method is robust to failures and always proposes a solution,
assuming one exists.
Our main contribution is thus a fully automatic and procedural

method to compute a kinematically feasible, quasi-static COM tra-
jectory in multi contact situations, for arbitrary creatures, envi-
ronments and scenarios. This is achieved thanks to two technical
contributions:

(1) a new formulation of the kinematic constraints for the point
mass model;

(2) a one-step algorithm to compute a feasible trajectory, the
fastest to our knowledge.

Additionally, we demonstrate that our method can be integrated
with an open-source contact planner to generate whole-body mo-
tions in a large variety of scenarios.

1.1 Situation of the contribution with respect to the
authors’ previous work

In this work, to present our results we use a previously published
contact planner [Tonneau et al. 2015, 2018]. This contact planner
generates a sequence of discrete key postures in contact. Themethod
proposed in this paper is concerned with the interpolation of the
sequence into a continuous motion. The combinatorial aspect in the
choice of contacts is handled by the planner, and thus not discussed

in this paper. The planner is considered as a black box that generates
the contact sequence, and the paper focuses on the generation of a
trajectory for the Center Of Mass of the robot. Section 7 presents the
global architecture of the framework (including the planner), and
includes the planning timings in our performance reports. However
the reader is referred to [Tonneau et al. 2018] for details on the
planner, which is notmandatory to implement themethod. Typically,
the contact sequence could be provided by a user or another contact
planning technique. In all other sections, the contributions described
are thus novel.

2 STATE OF THE ART
The synthesis of multi contact locomotion is a subject of rising inter-
est for both the robotics and computer graphics communities, which
follows many years of research on gaited locomotion. It remains
largely open due to the difficulty of handling arbitrary environ-
mental constraints in a high-dimensional space. Both procedural
and data-driven approaches currently converge towards simplified
models for handling the complex dynamics of legged characters.
We believe that improving these models is the key to synthesizing
more realistic motions.

To account for the variety of approaches and the complexity of the
topic, this state of the art considers the problem in its entirety, before
focusing on the particular topic of our concern, the fast generation
of dynamically consistent centroidal trajectories.

2.1 Procedural approaches to multi contact locomotion
After years of research, efficient simplifying models have been pro-
posed to synthesize walking or running motions on the fly, such as
the linear inverted pendulum model [Kajita et al. 2003] which led to
the introduction of the capture point [Pratt et al. 2006]. Some of them
are able to handle terrain deformations [Englsberger et al. 2015]. A
large part of the state of the art has investigated the generation of
more varied gaited motions. To achieve such results, they progres-
sively introduced machine learning methods within physics-based
controllers, to extend their range of applications while obtaining
more robust controllers [Coros et al. 2009; de Lasa et al. 2010; Peng
et al. 2016, 2017]. Our approach differs because we do not assume
a gait, or a determined behavior that must be followed at best, but
rather try to achieve motion generation in cases where the “correct”
behavior to follow is unknown (for instance in constrained envi-
ronments). As a consequence, our results are more generic but less
impressive than these methods.
Whole-body dynamic solvers have also been proposed to syn-

thesize non-gaited, highly dynamic motions [Al Borno et al. 2012].
Similarly, reactive multi contact controllers follow local control
policies using a small planning horizon that results in myopic be-
haviors [Hämäläinen et al. 2015; Jain et al. 2009]. Recent work try
to generalize these controllers by using them within new sampling
based algorithms [Al Borno et al. 2017]. Recently [Naderi et al. 2017]
also proposed to combine these approaches with a global planner,
thus reintroducing a combinatorial issue, which may be difficult
to scale beyond climbing scenarios with discrete sets of grasping
locations. These works, in the continuity of seminal ones from [Bretl
et al. 2004] and [Escande et al. 2013], illustrate the main issue of
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Method
Kinematic
model

contact
model

Dynamic
model

computation
times (≈ 10 contacts) avatars application

[Tonneau et al. 2015]
(planning)

+ Ours (trajectory)
Approximated 6D Quasi-static

point mass
seconds (planning)
ms (COM trajectory) Any

Any, including
highly constrained

partial collision handling

[Carpentier et al. 2016]
[Herzog et al. 2015] Approximated 6D Dynamic

point mass
seconds

(COM trajectory) Any Any
no collision handling

[Mordatch et al. 2012] No joint limits 6D Quasi-static
point mass

Minutes
(planning

+ COM trajectory)
Any Any

no collision handling

[Kang and Lee 2017] Approximated
(Learned)

effector
slipping

Quasi-static point
mass, only valid
on flat terrain

Several seconds
to Minutes
(planning

+ Whole-body motion)

Humanoid Climbing
partial collision handling

[Naderi et al. 2017] Exact 3D Exact
Minutes
(planning

+ Whole-body motion)
Any

Climbing, discretized
contact locations

full collision handling

Table 1. Comparison of the main methods in the literature for the complete issue of both planning and generating a multi contact whole-body motion.

multi-contact locomotion, which consists in finding the acceptable
trade-off between a complete approach subject to combinatorial
explosion on one hand, and an efficient method subject to local min-
ima on the other hand. Our choice is the decomposition between
the contact planning and the trajectory generation problems, with
a contact planning approach that remains linear with respect to the
complexity of the environment. While the cost for this efficiency is
the introduction of approximations which can lead to failures, its
empirical interest is demonstrated and discusssed in [Tonneau et al.
2018].

In this paper, we focus on an integration of the presented method
within our contact planner, but our contribution is compatible with
other approaches, such as [Naderi et al. 2017]. In such a case, the
global planner would call our method rather than the proposed local
policy, to obtain faster yet approximated results. In any case, the
inputs of the method remain the same: a discretized sequence of
contacts, used to solve a local trajectory optimization problem.

[Mordatch et al. 2012] and [Deits and Tedrake 2014] also compute
simultaneously the trajectory of the avatar and the contact locations,
through the formulation of a nonconvex optimization problem. In-
terestingly, they obtained better computation times thanks to the
use of a simplifying point mass model to reduce the dimension of
the problem. Some approaches that decouple contact planning and
trajectory optimization also rely on simplified models, during both
the contact planning sequence [Grey et al. 2017; Tonneau et al. 2015]
and the trajectory generation [Carpentier et al. 2016; Herzog et al.
2015]. However, the trajectory generation methods use non-linear
resolution methods that are not guaranteed to converge. More im-
portantly, although they demonstrate interactive computation times
(a few hundred milliseconds to compute), they are not fast enough

to consider real time applications. Our objective is to go below the
millisecond of computation.

2.2 Data driven approaches and the arrival of learning
methods

In parallel to procedural approaches, data driven methods are able to
synthesize complex movements by connecting motion clips within
a graph structure [Kovar et al. 2002; Lau and Kuffner 2006], before
performing motion deformation to adapt the motion to a new en-
vironment [Choi et al. 2003; Ho et al. 2010; Witkin and Popovic
1995], even for large deformations [Han et al. 2016; Tonneau et al.
2016]. However, these methods only apply to motions that present
the same contact pattern as those used in the provided data, and
thus similar environments. As for physics based approaches [Peng
et al. 2017], the introduction of deep learning techniques holds the
promise of a breakthrough towards the generality of data driven
approaches [Holden et al. 2017]. The first learning paper to directly
address multi contact locomotion was by [Kang and Lee 2017], but
remains limited to a single type of morphology (a human).

2.3 Simplified models for efficient motion generation
The recent successes in multi contact locomotion share the common
idea of simplifying the dynamics of the character, which results
in a faster solution of the problem. [Kang and Lee 2017] check
whether the COM of the robot lies above the convex hull of the
contact points to determine whether the robot is in equilibrium.
However, this condition is neither necessary nor sufficient in the
multi contact case, and is only valid to verify static equilibrium
(i.e. when the acceleration of the COM is null) for coplanar contact
points [Del Prete et al. 2016; Guo et al. 2015]. But, even with an
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accurate formulation of the dynamics [Qiu et al. 2011], using the
point mass model results in a loss of information on the angular
momentum generated by the limbs, which can make the character
lose equilibrium.
The other important piece of information that is lost with the

point mass model is the expression of the kinematic limits: since
these methods do not consider the joint positions, it is impossible
to guarantee that the resulting motion be collision free or even
kinematically feasible. [Kang and Lee 2017] tackle this issue by
using learning techniques to approximate the set of kinematically
feasible configurations when selecting the contact location. Then
they use motion deformation to generate the whole-body trajectory.
However, the resulting motion can still result in collisions with the
environments.

2.4 Situation of our contribution
As of today the point mass model appears as the pragmatic approach
to solve multi contact planning problems with reasonable compu-
tation times, but it cannot handle kinematic constraints. Moreover,
the dynamics of the system remains nonconvex, and the most ef-
ficient methods proposed by [Carpentier et al. 2016; Herzog et al.
2015] require several hundreds of milliseconds to generate a feasible
trajectory, with no guarantee of convergence or collision avoidance.
Our work proposes contributions regarding both issues by in-

troducing kinematic constraints to the point mass model, and by
proposing a fast solution to compute a valid COM trajectory. We
choose to integrate our method in an open-source multi contact
planning framework to demonstrate its interest. Table 1 situates our
approach with respect to the main existing ones. With our approach
contact slipping and end effector penetration is prevented through
the use of a 6D constraint for the contacts. The use of the point mass
model combined with our planner presented in [Tonneau et al. 2015]
results in a faster and more versatile solver, although restricted to
the quasi-static case.

3 OVERVIEW: TRANSITION POINTS IN MULTI
CONTACT LOCOMOTION

In this Section we describe the key idea of our approach, and the
different steps of our method. We advise the reader to watch the se-
cond video attached to this paper, which provides a complementary
overview of the approach.

3.1 Locomotion as the discrete issue of computing
transition points

While locomotion is a continuous phenomenon, any legged motion
can be described by a discrete set of contact phases, for which a
constant number of contacts are active. Each contact is described
by its 6D location, and the contact surface friction coefficient. Each
contact phase differs from the previous one by exactly one contact
addition or removal. Key instants of the motion are transitions,
where the motion discretely switches from one phase to the other.
The transition is subject to specific constraints allowing to safely
remove a contact without falling, or add a new one without violating
joint limits.

Contact phase 1 Contact phase 2 Contact phase 3

A{j } : Static equilibrium constraints at phase j
K {1} : Kinematic constraints at phase 1
C{j } = A{j } ∩ K {j }

T {j, j+1} = C{j } ∩ C{j+1} : transition set
feasible COM path

a.1) a.2)

b)

Fig. 2. Method overview. Each colored polytope corresponds to a set con-
straint on the COM of the character at a specific phase of the motion.

The key idea of this paper is that in order to synthesize a
plausiblemotion, we only need to compute a position for the
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COM of the character at each transition instant. This allows
us to compute a trajectory for the COM of the character extremely
rapidly. Our problem is thus the following: given a set of contact
phases as inputs, how should we generate a COM trajectory that
will result in a plausible whole-body motion?

We illustrate our approach using Figure 2. In the first row, we
can see an example of input to our method. A sequence of three
contact phases is considered. This sequence describes a motion
where the character moves forward using its right foot. In phase
one both feet and the right arm of the character are in contact; in
phase two the right foot is lifted; in phase 3 the right foot is in
contact at a new location. Our method takes as inputs the contact
locations at each phase, and the COM position of the character at the
beginning (purple sphere), and possibly the end. Given these inputs,
our method outputs a trajectory for the COM of the character, later
used to generate a whole-body motion.

3.2 Transition constraints for contact phases
To define what a transition point is, we determine how the contact
locations uniquely constrain the position of the COM at each phase.
These constraints are formulated as 3D objects (polytopes) shown
in the second row of Figure 2. Each color refers to a different kind of
constraint, yellow for equilibrium (Section 4.1), green for kinematic
(Section 4.2) constraints: any COM position included in a polytope
respects the constraints associated to it. Since the constraints are
independent, the set of COM positions that respects all these con-
straints is simply the intersection of the green and yellow polytopes,
shown in purple in the third row of Figure 2.
The transition instant between two contact phases is further

constrained, because at this precise moment the constraints of both
contact phases must be respected. The feasible transition set for the
COM is thus obtained by intersecting the purple polytopes of both
contact phases. This results in the blue polytopes in the fourth row
of Figure 2. Any COM position included in the blue polytope is thus
a candidate transition point (Section 5).

3.3 Computing a feasible COM trajectory from transition
points

From a given COM position in contact phase 1, to reach contact
phase 2 we simply need to select a transition point in the associated
blue polytope (thus belonging to both phases 1 and 2), and consider
the straight line between these points (Figure 2 - a.1)). We choose
to deal only with convex objects, therefore in Section 5.2 we show
that the straight line corresponds to a feasible trajectory (under the
right time parametrization). We can then apply the same procedure
to reach phase 3 from the new position, and from there a desired
final position (Figure 2 - a.2)).
The resulting trajectory, while feasible, is subject to restrictive

equilibrium constraints, which constrain the character to move
slowly, while the Center Of Mass follows an unnatural and sharp
polyline. To obtain a more dynamic trajectory, we approximate the
exact polyline with a smooth Bezier curve. The design of the curve
exploits the convexity properties of a Bezier curves, in such a way
that the kinematic constraints are preserved. However, the price

Fig. 3. Orthographic view of effector positions in contact at different heights
(in red: 2 feet and one hand). In general, the convex hull (transparent grey)
of the contact points is not equivalent to the admissible region for COM
positions allowing for static equilibrium (yellow).

to pay for the smoothness is a small violation of the dynamic con-
straints. We subjectively believe that this tradeoff is advantageous
regarding the quality of the results we obtain. In Section 6, we dis-
cuss the relaxation of such constraints and the generation of the
Bezier curve to generate more dynamic motions (Figure 2 - b)).

4 FORMULATION OF THE TRANSITION PROBLEM
In this Section, we formulate a set of dynamic (Section 4.1) and
kinematic (Section 4.2) linear constraints that define the transition
problem in the quasi-static case. We use them in the following
Sections to define our contributions.

4.1 Equilibrium constraints
We use a standard approach to formulate the equilibrium constraints.
In the remainder of this paper, we say that a COM position or tra-
jectory is equilibrium feasible if it respects the laws of centroidal
dynamics given the active contact constraints. Several approaches
verify equilibrium feasibility by simply verifying that the COM lies
above the convex hull of the contact points projected on the ground
(z = 0, where z is the height with respect to the ground). This model
is valid for coplanar, almost flat contacts, and only in the quasi-static
case. It does not hold in the general case [Del Prete et al. 2016]. For
instance when the contacts are non-coplanar, Figure 3 illustrates
that the set of admissible 2D COM positions such that the robot can
be in static equilibrium has a different shape. The general formula-
tion, for a given configuration with nc + 1 contacts, is derived from
the Newton-Euler equations [Qiu et al. 2011]:

H(µ0 . . . µnc , p0 . . . pnc )w ≤ h(µ0 . . . µnc , p0 . . . pnc )

w =

[
m(c̈ − g)

mc × (c̈ − g) + L̇

] (1)

where :
• c, ċ, c̈ ∈ R3 are the COM position, velocity and acceleration;
• m ∈ R is the mass of the avatar;
• µi ∈ R, 0 ≤ i ≤ nc is the friction coefficient at the i-th contact
point (we use linearized friction cones with 4 generating rays
in our experiments);
• g =

[
0 0 −9.81

]T
is the gravity vector;

• L̇ ∈ R3 is the rate of change of angular momentum (at c).
• pi ∈ R3, 0 ≤ i ≤ nc is the position of the i-th contact point.
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• H and h are respectively a matrix and a vector uniquely de-
fined by the pi and µi [Del Prete et al. 2016].

All terms are expressed in the world reference frame.
For the moment, we will focus on the quasi-static case, where

the acceleration and angular momentum are negligible. Thus w is
simplified to:

w =
[
−mg

mg × c

]

This allows us to rewrite (1) as a function of c:

mH[:,3:6]ĝ︸      ︷︷      ︸
A

c ≤ h +mH[:,0:3]g︸           ︷︷           ︸
a

(2)

where ĝ is the skew symmetric matrix of g. For each phase j, there
exists a convex quasi-static polytope A {j } : {c,A{j }c ≤ a{j } }, inde-
pendent of z, illustrated by the yellow projections in Figure 2.

4.2 Kinematic constraints approximation
Given a set of 6D contact constraints, as well as the collision volumes
and joint limits of the avatar, we want to express the space of feasible
3D COM positions kinematically feasible. We approximate this
space with a polytope formulation, computed offline as follows.
For a given effector frame ri , we sample offline an arbitrary large
number of whole-body configurations (e.g. 106). For those that are
collision free, we store the resulting COM position expressed in the
frame ri . We then compute the convex hull Ki encompassing all
these points. This convex hull is a polytope, expressed as a set of
linear inequalities:

ri c ∈ Ki ⇔ riKi ri c ≤ ri ki (3)
with all variables expressed in the effector frame.

Finally, the constraints applying to a set of nc active contacts
are computed under the hypothesis of variable independence. This
allows us to write

W c feasible⇔ ∀i = 0 . . .nc ,W KiW c ≤ W ki
with all variables being expressed in the world frameW . This is
equivalent to stacking all the constraints that define a polytope
K =

⋂nc
i=0Ki :

W c feasible⇔ W KW c ≤ W k (4)

In the remainder of this paper we omit the W superscript and
assume all variables are expressed in world coordinates. For each
phase j, we can thus define a convex kinematic feasibility polytope
K {j } : {c,K{j }c ≤ k{j } }, illustrated by the green polytope for phase
1 in Figure 2.

The key to the efficiency of our method is to maintain the con-
straints applying to the COM convex. While the quasi-static con-
straints are exact, Eq. (4) is subject to two approximations. They are
discussed in details in Section 8.2, but are described here so that
the reader bears them in mind in the remainder of the paper. First,
the convex hull of Eq. (3) does not guarantee that all the points
belonging to the hull are actually feasible, because of the joint limit
constraints.
Then, the second approximation comes from the variable in-

dependence hypothesis. Let us assume that there exists a whole

x{1}

x{1,2}

x{2}
C {2}C {1}

Fig. 4. 2D illustration of the transition feasibility problem. Given x{1} and
x{2} , find a transition point x{1,2} in the blue polytope (if it exists). The purple
polygons are the admissible COM positions for contact phases 1 and 2.

body-configuration such that a contact constraint for the left foot
is satisfied, of COM position c. Similarly, let us assume that there
exists a whole body-configuration such that a contact constraint
for the right foot is satisfied, of COM position c as well. The hy-
pothesis of variable independence states that there exists a whole
body-configuration of COM position c, which satisfies both contact
constraints. This is false in general, and problematic in practice.
While these approximations can be handled in practice, the the-

oretical limitations of our work lie here. In the remainder of the
paper, each time we will mention kinematically feasibility, we
will refer to the Eq. (4), rather than the original problem.

4.3 Definition of the transition problem
We consider two consecutive contact phases in a motion, which
differ either by a contact creation or a contact removal (Figure 2
- first row). We develop the latter case (Figure 2 - phases 1 and
2), while the first one can be straightforwardly mirrored from the
following reasoning. A state x = (c, ċ, c̈) describes a COM position,
velocity and acceleration for an avatar. For notation efficiency, we
denote x{j } = (c{j }, ċ{j }, c̈{j } ) a state x that satisfies the constraints
of contact phase j. We consider the issue of finding a kinematically
and equilibrium feasible COM trajectory allowing to go from a state
compatible with the first phase to a state compatible with the second
phase, named x{1} and x{2} .

5 CONTRIBUTION 1: SOLVING THE TRANSITION
PROBLEM IN THE QUASI-STATIC CASE

5.1 Finding a transition point
For the moment, because we are in the quasi-static case, we assume
ċ = c̈ = 0 for all states. In this case, the problem is schematically
illustrated in Figure 4.
For a quasi-static solution to exist, a necessary condition is the

existence of a transition state x{1,2} such that the constraints of both
phases are respected at c{1,2} . In Figure 2 (fourth row) as in Figure 4,
this is equivalent to proving that the blue polytope T {j, j+1} is not
empty.

We observe that the kinematic constraints of phase 1 are included
in the kinematic constraints of phase 2, while the equilibrium con-
straints of phase 2 are included in those of phase 1. Thus, we only
need c{1,2} to be kinematically feasible regarding the constraints of
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x{1} s x{2}

x{1,2}

C {2}C {1}

Fig. 5. There is no solution to this transition problem. However we can
select the transition point so as to minimize the violation of the quasi-static
constraint, while the kinematic constraint is always satisfied.

the first phase, and equilibrium feasible regarding the constraints
of the second phase.
Finding a valid c{1,2} can thus be computed by solving the fol-

lowing Linear Program (LP):

find c{1,2} ∈ R3

s. t. A{2}c{1,2} ≤ a{2}

K{1}c{1,2} ≤ k{1}
(5)

Solving (5) is enough to prove whether a solution exists. However,
in our experiments we prefer the following Quadratic Program (QP)
formulation:

find
[
c{1,2}

s

]
∈ R4

minimize ∥c{1,2} − c{1} ∥ +w ∥s∥

s. t. A{2}c{1,2} − 1s ≤ a{2}

K{1}c{1,2} ≤ k{1}

(6)

where w ∈ R+ is a user defined weighting variable, and 1 is a
vector of size a{2} filled with ones. The introduction of the slack
variable s guarantees that the method will always return a solution,
guaranteed to be kinematically feasible, even if no static solution
exists (in which case s ≥ 0, see Figure 5). This is interesting for
computer graphics applications, because it makes it possible to
always present a result (with a minimal violation of the constraints
if required), rather than simply failing. Using a largew (we set it to
1000) guarantees a static solution will be chosen if it exists.

The introduction of a quadratic cost function allows us to select a
transition point as close as possible to c{1} , resulting in shorter COM
trajectories, which we subjectively found more plausible. In Sec-
tion 7.3 we discuss how we can obtain varied results by modifying
this cost function.

5.2 Generating a COM trajectory
Considering two states x{1} = (c{1}, 0, 0) and x{2} = (c{2}, 0, 0),
as well as a feasible transition state x{1,2} = (c{1,2}, 0, 0), we now
make the critical observation that the polyline c{1}c{1,2}c{2} is
bothkinematically and equilibrium feasible (Figure 2 - a and 4).
The proof is straightforward.

Both c{1} and c{1,2} respect the constraints of phase 1. The set
of constraints of phase 1 is a convex polytope. By convexity, any
point in the segment c{1}c{1,2} respects the constraints of phase 1.
Therefore, c{1}c{1,2} is kinematically and equilibrium feasible. □

The same reasoning applies to c{1,2} and c{2} , thus the polyline
c{1}c{1,2}c{2} is both kinematically and equilibrium feasible. This
means that, in the quasi-static case, with a simple call to a low
dimensional QP, we are able to compute a feasible trajectory.
We stress the fact that this trajectory does not provide a time

parametrization, because of its quasi-static nature: as long as the
acceleration remains negligible, the motion is feasible. Formally, if
s(t ), t ∈ [0, 1] is a constant-velocity time parametrization of the
polyline, ∃ϵ (t ) such that the trajectory c(t ) = s(ϵ (t )) is equilibrium
(and kinematically) feasible. For c(t ) to be feasible, ϵ (t ) must be such
that each transition point of the polyline is reached with a velocity
of 0. We say that s(t ) is ϵ feasible.

6 CONTRIBUTION 2: RELAXING THE QUASI-STATIC
CASE (2PAC)

The quasi-static solution computes COM trajectories that are poly-
lines, alternating between straight lines and sharp turns at the tran-
sition points. This results in unnatural looking motions, although
physically accurate. Our objective is now to slightly relax the quasi-
static constraint to obtain more subjectively appealing trajectories.
We propose to use Bezier curves, because they can approximate
arbitrarily well any smooth trajectory, and present a relevant prop-
erty: any point in a Bezier curve belongs to the convex hull
of its control points. The transition points will be used as control
points for the curve.

6.1 A remainder on Bezier curves for trajectory generation

We define a COM trajectory connecting two states x{1} and x{l } ,
(where l > 1) as a Bezier curve c(t ) of degree n ≥ 5:

c(t ) =
n∑

k=0
Bnk (t )Pk (7)

where the Bnk are the Bernstein polynomials and the Pk are control
points. All the curves that we use comprise at least 6 control points
to ensure that the following constraints are verified:
• P0 = c{1} and Pn = c{l } guarantee that the trajectory starts
and ends at the desired locations;
• P1 = ċ{1}/n + P0 and Pn−1 = Pn − ċ{l }/n guarantee that the
trajectory initial and final velocities are respected;
• P2 = c̈{1}/(n(n − 1)) + 2P1 − P0 and
Pn−2 = c̈{l }/(n(n − 1)) + 2Pn−1 − Pn guarantee that the tra-
jectory initial and final accelerations are respected.

We could simplify these equations since the velocities and ac-
celeration are 0, but we use this general formulation because this
constraint will be removed in Section 6.4.1.

6.2 Using one or two transition points as control points.
In this first case, we relax the quasi-static constraint to generate
smooth trajectories, while we guarantee to preserve kinematic feasi-
bility. We consider an additional control point to our nominal Bezier
curve:
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x{1} x{1,2}

x{2,3} x{3}

C {3}C {2}C {1}

Fig. 6. A polyline COM trajectory is approximated with a smooth Bezier
curve, where the transition points become attractors points, used as control
points of the Bezier curve. The curve lies in the convex hull of the control
points.

c(t ) =
∑

k ∈{0,1,2,4,5,6}
B6k (t )Pk + B

6
3 (t )c

{1,2} (8)

This curve uses a transition point as a control point that “at-
tracts” the trajectory towards it, and as such, is an approximation
of the polyline c{1}c{1,2}c{2} . In the remainder, we make a semantic
distinction between a transition point and an attractor point: a
transition point is a point reached by a polyline COM trajectory
(Figure 4). An attractor point is a transition point used as a control
point of a Bezier curve describing a COM trajectory. It is thus never
reached by definition (Figure 6).
The advantage of using Bezier curves is that we can guarantee

that the curve (8) is kinematically feasible everywhere.
The demonstration is straightforward: Let us assume that a con-

tact is removed from phase 1 to phase 2, as in Figure 2 (a mirror
reasoning applies for the contact added between phases 2 and 3).
In this case, all the control points of c(t ) belong to the kinematic
polytope K 2. By definition of a Bezier curve, c(t ) is entirely in-
cluded in K 2, and thus respects the kinematic constraints of phase
2. Moreover, a portion of c(t ) is kinematically feasible for phase 1
(because at least c{1} respects this constraint). Therefore, there ex-
ists a contact transition time that makes c(t ) kinematically feasible,
under the assumption that our approximated kinematic constraints
are exact.□
With the same reasoning, it is possible to generate a smoother

Bezier curve with the same guarantees for three consecutive phases,
if and only if a contact is removed in phase 1, and another is added
in phase 3:

c(t ) =
∑

k ∈{0,1,2,5,6,7}
B7k (t )Pi + B

7
3 (t )c

{1,2} + B74 (t )c
{2,3} (9)

6.3 Usingm transition points as control points.
To generate even smoother trajectories, we can consider using at-
tractor points form + 1 consecutive phases:

c(t ) = Bm0 (t )c{1} +
m−1∑
i=1

Bmi (t )c{i,i+1} + Bmm (t )c{m } (10)

In this general case we lose all theoretical guarantees of feasibil-
ity. However, we can iteratively construct a curve that ultimately
converges to a feasible trajectory.

Let s(t ), t ∈ [0, 1] be a ϵ feasible parametrization of the polyline
c{1}c{1,2} . . . c{m−1,m }c{m } . The curve

c(t ) =
n∑

k=0
s

(
k

n

)
Bnk (t ) (11)

converges towards s(t ) as n increases, according to the Weierstrass
Approximation Theorem [Weierstrass 1885].

It is thus possible to generate a curve of arbitrary degree n, and
increase n until the required constraints are satisfied, with the guar-
antee to converge towards the original feasible solution. The attrac-
tor points thus drive the COM trajectory towards the quasi-static
solution, without exactly reaching it.

6.4 The 2 Points Attractors for COM trajectories method
(2PAC)

After presenting the theory behind our method, we propose a con-
crete implementation, which is the one we used to generate our
results. In summary, we use a maximum number of 2 attractor points
for generating Bezier curves to ensure kinematic feasibility, and we
use a sliding window to connect consecutive curves, so as to avoid
stopping along the motion.

Generating a COM trajectory over a window of 2 (respectively 3)
contact phases results in a Bezier curve comprising 1 (respectively 2)
attractor point(s), with the guarantee that the computed trajectory
is always kinematically feasible. Considering simultaneously more
than 3 contact phases requires to introduce an iterative approach to
progressively introduce new attractor points until a feasible trajec-
tory is obtained. However, as more contact phases are considered,
the resulting trajectory becomes smoother. Because we ultimately
target real time applications, we choose a maximum window size of
3 contact phases for trajectory generation.

6.4.1 Using a sliding window to generate a smooth trajectory over
many contact phases. Each trajectory c(t ) is created such that the
terminal velocity ċ(1) is null. This results in the character stopping
completely after each contact creation, a limitation shared with
other methods such as [Naderi et al. 2017].

However in our case, we can easily remove this constraint thanks
to the connectivity property of Bezier curves, using a slidingwindow.
Let us consider again the example from Figure 2, extended with a
fourth contact phase where the hand contact is removed. We thus
look for a COM trajectory connecting a state x{1} to a state x{4} ,
given {x{j }, j = 1 . . . 4}. In this case we use the following scheme:
• Compute a trajectory c1 (t ) for phases 1 to 3 that connects
x{1} to x{3} ;
• Choose u ∈ [0, 1] such that c1 (u) ∈ K {3} and ċ1 (u) , 0, and
define x{3}∗ = (c1 (u), ċ1 (u), c̈1 (u));
• Compute a trajectory c2 (t ) for phases 3 to 4 that connects
x{3}∗ to x{4} ;
• The concatenation of the curves is a kinematically feasible
Bezier curve, by construction of the state x{3}∗ .

We can iteratively repeat this process for arbitrary long contact
sequences: generate a kinematically feasible trajectory for the first 2
or 3 contact phases; select a point in the trajectory that respects the
kinematic constraints of the last contact phase reached; generate
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x{1}
x{2} C {2}C {1}

Fig. 7. With 2PAC, the quasi-static constraints can be violated on a small
portion of the COM trajectory (red part of the curve). The kinematic con-
straints are always respected.

from this point a kinematically feasible trajectory for the 2 or 3 next
contact phases, and concatenate it with the previous one; repeat
until the last contact phase is reached.

6.4.2 Dynamic validation and time parametrization of the tra-
jectory. The trajectory obtained with 2-PAC is guaranteed to be
kinematically feasible. But what about the quasi-static constraints ?
Because the transition points are never reached, there is no guaran-
tee that the COM trajectory intersects the transition set. In Figure 7,
the red part of the trajectory violates the quasi-static constraint.
This happens because the kinematic constraints impose to break a
contact too soon, or to create the contact too late. We empirically
quantify this violation in Section 8.2.
Finally, the Bezier curves are defined on a normalized interval

[0, 1]. It is thus necessary to find a time parametrization of the tra-
jectory. To respect the quasi-static constraint, we should compute
an accurate parametrization s (t ) (or just choose an arbitrary large
total duration). Here again, we prefer a trade-off between dynamic
accuracy and subjective quality of the resulting motion. We empir-
ically compute s (t ) by scaling the time t by a weighted distance
between the start and goal whole-body configurations. In Section 8.2,
we comment on the validity of this approach and show that the
dynamics is respected along most of the generated trajectories.

7 APPLICATION: GENERATION OF MULTI CONTACT
MOTIONS

To be able to compute the COM trajectories, our method requires
as input a list of states x{j } . Thus, to demonstrate our method, we
integrate it within a framework for multi contact locomotion.
Figure 8 illustrates the work flow.

7.1 Work flow description
To generate the states, we use an open source procedural contact-
planner [Tonneau et al. 2015]. Given a desired start and goal COM
positions, the contact planner is able to compute a discrete sequence
of whole-body contact configurations that describe the motion, such
that at most one contact is broken and another contact is added
between two consecutive configurations.
We consider two uses cases for the planner:

desired start / goal
COM positions

Contact Planner

Sequence of whole-body
contact configurations

Our method
(2PAC)

COM trajectory

Whole body
motion generator

Final motion

Fig. 8. Workflow of our overall system. The rounded rectangles are the
inputs and outputs of the framework. The unbounded text refer to internal
inputs / outputs used by the three main blocks (sharp rectangles). The whole
body motion generator considers as inputs the COM trajectory, but also
the initial and goal whole body configurations of the character.

• case 1: one contact planning. In this interactive context we
are only interested in computing the next step. The goal con-
figuration is unknown. A random process (or a user) selects a
direction of locomotion, and a target contact phase reachable
from the current phase in that direction. The planner then
generates a collision free, whole-body configuration in static
equilibrium that meets the constraints;
• case 2: contact sequence planning. The planner computes
a sequence of contact phases and configurations allowing to
reach a user defined goal configuration.

In the first case, the environment (or another character) geometry
can be discretely updated between each step, while in the second
case the contact sequence is planned on a static environment. In
both cases, our method then generates a COM trajectory, used by a
dedicated motion generator to synthesize the final motion.

7.2 Whole body motion generation
To generate a whole-body motion given a user defined time parame-
trization of the COM trajectory and contact constraints, we use a
generalized inverse kinematics solver. The method first computes
a whole-body motion that follows the given COM trajectory and
satisfies the contact constraints [Baerlocher and Boulic 2004].
However, because our formulation does not take into account

these environmental constraints, it is possible that a computed COM
trajectory defines an unfeasible problem (ie there does not exist a
whole-body motion which is both collision free and satisfies the
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COM constraints). Our planner provides empirical guarantees that
a solution exists, and thus we use a local adaptation scheme to try
to compensate for these collisions. However we stress the fact that
this local adaptation is not guaranteed to converge. The accurate
handling of collision constraints with centroidal approaches remains
an open problem that we do not claim to solve in this paper.
We consider two types of collisions. If a limb is in collision, a

constraint-based RRT planner is used on the joints of the limb to
look for a collision free motion for the limb, while preserving the
contact and COM constraints. This solver is a feature of our motion
planner, and its details can be found in [Mirabel et al. 2016].
Otherwise, if the root is in collision at an instant t , with a pen-

etration greater than a user defined value (we use 5cm in our ex-
periments), we assume that the computed COM trajectory is not
feasible (If the penetration is lesser than the threshold, we assume
that moving the free limbs is sufficient to avoid the collision). In
such cases, we replace the transition point cclose that is the closest
to the first collision point in the trajectory. To do so we consider the
first obstacle in collision with the root, and its surface normal ns .
ns gives a repulsion direction. A new transition point cnew is com-
puted as cnew = cclose + αns , where α is given by the penetration
distance between the root and the obstacle. The transition points
locations are updated iteratively until either a collision free solution
for the root is found, or a computed cnew no longer respects its
phase constraints.
In both cases, we use a user-defined time out value after which

the best motion found is returned. It thus appears that when the
root is in collision with the environment, our collision avoidance
algorithm is not complete, because the approach is local. However,
in our experiments this rarely occurred, because the contact planner
guarantees that the segment connecting the root poses of two suc-
cessive key postures is collision free. However, we cannot guarantee
that a collision free solution be found if it exists. This is a limitation
shared with all existing multi contact approaches, although our
experiments demonstrate that our method is able to handle severely
cluttered cases.

7.3 Scenarios
The companion video 1 shows the versatility of our method, in
the variety of situations it addresses. We use four characters: two
humanoids (including the HRP-2 robot), a quadruped, and a six-
limbed creature (Figure 1).
Our main scenario is interactive and matches the first use case.

The humanoid and the quadruped play a variant of a game of Twister
(http://cpc.cx/k5j): at each turn, an effector is selected to either create
a contact or break it (Figure 1 - Left). The contact planner computes
a state that satisfies the new constraint, and our method computes
the motion to reach the state, by taking into account the bodies of
the other character. If no such solution is found, a new effector is
randomly selected. This scenario illustrates the ability of our method
to compute motions in close interaction while avoiding collisions.
Another scenario shows a humanoid avatar sitting or standing

on a chair, in two cluttered environments (Figure 1 - Middle). The
scenario demonstrates the strong advantage of combining a contact
planner with our method: variations of the same motion can be
obtained automatically and almost instantly to adapt to new scenes,

in a way different from classical motion editing approaches, because
the contact phases differ between the different iterations.

In a third scenario a creature with six limbs, or a humanoid, climbs
along a set of cubic obstacles (Figure 1 - Right). The same scenario
is addressed for both creatures without requiring specific heuristics,
tuning, or discretization of the environment.

We also demonstrate more dynamic motions in simpler environ-
ments, with the humanoid character crossing a set of uneven stairs,
or the quadruped climbing a steep hill. These scenarios demonstrate
the ability of our planner to handle such cases, although less generic
physics-based methods are able to generate more appealing results
in those specific cases.

User parametrization of the motion. Our approach leaves room for
artistic authoring of the motions, as demonstrated in our remaining
scenarios.
To achieve this, one option is to manually select relevant tran-

sition / attractor points. This is demonstrated in a scenario where
3 different motions are obtained between the same two contacts
phases. The variation is obtained through the manual displacement
of the transition points by a user along the z axis. Since they attract
the COM trajectory towards them, the transition points are an in-
tuitive tool to control the trajectory. The 3D representation of the
admissible positions for a transition point allows the user to easily
determine where to put such points.
Another option is to set up user-defined cost functions that will

be used to automatically compute the trajectories. To illustrate the
versatility of our method, we designed simple cost functions that
resulted in the “silly walks” (http://cpc.cx/lYM) we present with
the humanoid robot HRP-2 in two different setups. We obtain a
“tired” motion by minimizing the distance traveled at each step, or
a “groovy” motion by maximizing the lateral variation during the
motion. We also constrain the COM to be as far to the right side
of the robot as possible, or as close as possible to the ground, to
generate more “cartoonesque” motions. The advantage of such cost
functions is that they do not require to manually define new control
points on new environments, as illustrated in the first companion
video.

8 EVALUATION OF THE METHOD
In this section we provide and analyze some numbers, first regard-
ing the computational performance of the method, then regarding
the errors introduced in our formulation by the linearization (ap-
proximation) of the kinematic constraints, and finally, regarding the
physics violations that may occur upon using 2PAC.

8.1 Time performance
We present the times measured upon computation of a COM trajec-
tory for an avatar, which is the main contribution of the paper. For
convenience, we also provide the indicative times used to generate
the results demonstrated in the companion video, but we refer the
reader to [Tonneau et al. 2018] for an extensive analysis of the plan-
ner (times and success rates). The performance is measured with
an Intel Xeon CPU E5-1630 v3 at 3.70GHz, with a single threaded
python implementation.
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number of
active contacts

Constraint computation
time (ms)

1 0.157
2 2.11
3 5.14
4 14.0
5 33.7
6 68.19

Table 2. Average computation time for the dynamic constraints of a contact
phase, where each contact is described by four contact points.

8.1.1 Computation time of the COM trajectory. The only signif-
icant component of the time spent in the trajectory generation is
the computation of the transition points (in the case of 2PAC, the
generation of a Bezier curve is neglectable). This time is decomposed
between the time required to compute the dynamic constraints of
a given problem (the kinematic constraints are computed offline),
and the time to solve QP (6). Table 2 presents the average compu-
tation time for the constraints, depending on the number of active
contacts.

The time to solve the QP, thus finding a transition point between
two phases, averages to 0.2 ms, independently from the number of
active contacts at each phase. Therefore, in a nominal use of 2PAC
for a quadruped, at most 150 ms are required to compute a COM
trajectory having 10 contact phases. This time is at least one order
of magnitude faster than any existing method (Table 1).

A more computationally efficient yet equivalent problem. The com-
putation time required to compute the dynamic inequality con-
straints of Equation (2) increases cubicly according to Table 2. To
further alleviate the computational burden, it is possible to use an
equivalent and straightforward formulation of the dynamic con-
straints of Eq. (2). This formulation does not express the constraints
with linear inequalities, but rather as the following equality con-
straint, given by [Del Prete et al. 2016]:

[
I3 . . . I3
p̂0 . . . p̂nc

]
V︸                  ︷︷                  ︸

G

β,=

[
03×3
mĝ

]

︸ ︷︷ ︸
D

c +
[
−mg
0

]

︸ ︷︷ ︸
d

(12)

where:

• x̂ ∈ R3×3 is the cross-product matrix associated to x;
• V ∈ R3nc×4nc is the matrix containing the diagonally stacked
generating rays of the friction cone of each contact point;
• β ∈ R4nc is a positive vector variable.

Eq. (12) and Eq.(2) are strictly equivalent as they define the same
static equilibrium constraints. So far we used the latter because the
linear constraints are more intuitive to handle in our framework,
but if the 3D visualization of the constraints is not required, using
(12) is faster. We can thus define a QP strictly equivalent to (6):

find


c{1,2}

β
s


∈ R4nc+4

minimize ∥c{1,2} − c{1} ∥ +w ∥s∥

s. t. G{2}β = D{2}c + d{2}

β + 1s ≥ 0

K{1}c{1,2} ≤ k{1}

(13)

Under this new formulation, the only relevant time is now the
resolution of the QP itself, because the constraints are computed
straightforwardly. Solving this QP requires less than 1 ms in the
worst case (6 contacts in our tests), which reduces the computational
time to less than 10 ms for a sequence of 10 contacts phases. We
can thus conclude that the method is compatible with real time
applications.

Computation time for the complete framework. Regarding Figure 8,
the other time consuming operations are the computation of an
input contact sequence, and the generation of the whole-body mo-
tion from the COM trajectory. In all the scenarios presented, the
planning time for the contact sequence is less than a second in the
worst case. We refer the reader to [Tonneau et al. 2018] for a detailed
analysis on the impact of the complexity of the scene with respect
to the planning time.
The actual generation of the whole-body motion is strongly de-

pendent on the complexity of the environment, from the standing
up / sitting down scenarios (100ms for one second of animation on
average, including planning) to the twister scenario (2s for one sec-
ond on average). The total time to generate a motion comprising 10
contact creations thus never exceeds a few seconds, with an average
time of about one second.

8.1.2 Comparison with the state of the art.

Computation time of the COM trajectory. Regarding the time to
compute the COM trajectory, our method compares favorably to
the fastest existing approaches [Carpentier et al. 2016; Herzog et al.
2015], which take on average several hundreds of milliseconds with-
out guarantee of convergence, making them unsuited for a robust
real time graphical application, contrary to our approach.

Computation time for the complete framework. Comparing our
results with other approaches is not trivial, because the inputs and
outputs differ between each method. For instance [Mordatch et al.
2012] compute a COM trajectory simultaneously with the contact
locations, but the inverse kinematics is generated afterwards and
does not consider collisions and joint limits; [Naderi et al. 2017]
address the complete problem, but consider an unordered set of
contact points as inputs; our planner computes a discretized set of
contacts postures used as inputs. For these reasons and because
detailed computation times are not always available, we cannot pro-
vide an extensive comparison of the performance of the methods.
Still, we can compare the order of magnitudes of the computation
times obtained with respect to the literature. Table 1 suggests that
our framework performs better, or at least not worse, with respect
to the literature, while we address severely cluttered scenarios that
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scenario Success rate
chairs 100 %

silly walks 100 %
stairs 97 %

steep slope 85 %
twister 82 %

climbing (no quasi-static) 56 %
Table 3. Validation of the dynamics for COM trajectories generated with
2PAC

have not been demonstrated by the other methods. This comparison
shows that 2PAC can be integrated with existing animation frame-
works to obtain a complete solution faster than existing approaches.

8.2 Accuracy of the method
Dynamic accuracy. Our equilibrium constraint is exact in the

quasi-static case, and a feasible solution will always be found if
it exists. In this nominal case, the generated trajectories are thus
always physically accurate.

With 2PAC, this is not the case anymore, since the dynamic con-
straints are relaxed. In the first companion video, we included some
examples where such violation occurs. To evaluate the accuracy of
the trajectories, we used the following protocol. For each scenario
we consider, we discretize the obtained COM trajectories, and at
each discretization point, we use equation (1) to verify the dynamic
validity. This allows us to compute the ratio of dynamically consis-
tent trajectories, summarized in Table 3. As we can see, the more
dynamic the motion becomes, the less accurate 2PAC is. However,
the ratio of validated points is high, except for the climbing scenario.
In this scenario, there is no quasi-static solution that would allow
the character to climb the wall. As excepted in such case, 2PAC finds
a solution where the parameter s of QP (6) is not zero, which indi-
cates a violation. This is also the case for the steep slope scenario,
as well as for the some transitions in the twister scenario.

Kinematic accuracy. A limitation of our approach lies in the hy-
pothesis of independence, used to compute the kinematic feasibility
polytope as the intersection of the kinematic constraints associated
with each active contact. As a result the kinematic constraint is
not exact, but only approximated. In this paragraph we show that
the hypothesis is strongly invalidated in the general case when the
number of contacts increase, but that it remains efficient in realistic
scenarios.

To test the validity of the hypothesis in the general case, we con-
sidered the humanoid, which is the most kinematically constrained
character. We then counted over a large set of scenarios, the number
of false positives resulting from the hypothesis of independence.
In other words, we determined the percentage of times where no
whole-body configuration existed that allowed to satisfy the contact
constraints while positioning the COM at a given location. We used
the following protocol.

We randomly sampled 1000 contact configurations from the test
environments used in our experiments, equally distributed between
1, 2, 3 and 4 active contacts. For each set of contacts, we randomly

number of
active contacts Success rate

1 96.5 %
2 72.5 %
3 38.6 %
4 6.3 %

Table 4. Validation of the kinematic constraint for the humanoid character,
depending on the number of contacts active, with an uniform sampling.

sampled 1000 COM positions included in the kinematic constraints
polytope. We then tried to generate as many whole-body postures
satisfying the contact constraints while reaching the sampled COM,
and evaluated the success rate of this operation (by accounting for
internal collisions and joint limits violations). Table 4 summarizes
the results.

As expected, the number of false positives increases significantly
with the number of contacts, and rather dramatically after 3 con-
tacts, highlighting the fact that the independence hypothesis is false.
However, these numbers are not representative of the kinematic
accuracy of our method. Indeed, as opposed to this protocol, with
2PAC the kinematic constraints polytope is not uniformly spanned:
the computed COM trajectories follow a path connecting two kine-
matically valid and relatively close configurations, which satisfy
a quasi-static constraint that constrains the COM to lie above the
contacts.

To verify the validity of the hypothesis in our scenarios, we mea-
sured the kinematic feasibility validation as follows. We randomly
generated 1000 feasible transition problems, over the scenes used in
our scenarios. For each problem, we computed a transition point,
and verified whether we were able to generate a whole-body mo-
tion along the complete COM trajectory. If anywhere along the
trajectory, the inverse kinematics failed, we counted the scenario
as a failure. Conversely, if the whole trajectory was successfully
extended as a whole body motion, we counted the scenario as a suc-
cess. We performed the analysis in two different contexts: one when
the kinematic constraints were active, and the other one where no
kinematic constraints were used. Table 5 summarizes the results.
We observe that in our scenarios the kinematic constraints increase
significantly the success rate, despite being less and less accurate
as the number of active contacts grow. If we consider the same
protocol for all creatures used in our demonstrations, the success
rate averages to 93 %. This higher number is explained by the fact
that the humanoid is the most constrained kinematically. In our
method, when a false positive is encountered, we treat the issue
as if there was a collision between the root of the character and
the environment, that is we translate the position of the transition
point, in the direction towards the center of the polytope.

8.3 Failure cases
There are cases where our approachwill not be able to find a solution
within a reasonable time limit. The method will fail because it won’t
be able to provide a collision free whole-body motion, or because
it won’t be able to provide a motion that satisfies the kinematic
constraints of the character. Whether the given problem is feasible
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number of
active contacts

Success rate
(no constraint)

Succes rate
(with kinematic
constraints)

2 77 % 97 %
3 67 % 88 %
4 42 % 73 %

Table 5. Validation of the kinematic constraint for the humanoid character
on the scenarios we consider. First column indicates the success rate without
the constraint, second column indicates the success rate with the kinematic
constraints taken into account.

or not in such cases is impossible to know. In our experiments,
the main problem comes from the collisions with the environment,
which impose non-convex constraints that are only locally handled
by our method.
From a practical point of view, one option is to relax these con-

straints to allow small penetrations or joint limit violations [Kang
and Lee 2017; Mordatch et al. 2012].

9 DISCUSSION AND FUTURE WORK
In this paper we presented 2PAC, a method for computing COM
trajectories for legged characters in multi contact situations, com-
bined with an existing contact planning approach. This method
provides a fully automated framework for synthesizing multi con-
tact movements for arbitrary legged characters and environments,
as demonstrated by our results. In this Section we discuss the im-
mediate implications of our method, as well as the perspectives it
opens in terms of physics-based computer animation.

A procedural approach allowing for artistic control
As of today, few physics-based methods are used for character ani-
mation in the industry, for two main reasons (in our opinion). Firstly,
these methods are often complex and hard to integrate within ex-
isting frameworks, and sometimes computationally expensive. Sec-
ondly, they do not provide flexibility to the artist, who often loses
control of the animation. 2PAC is fast and simple to integrate within
existing animation systems. Indeed, although we demonstrate a
fully automatic approach, it could straightforwardly be used in co-
ordination with motion capture based or artist edited animation
systems. In such a case the whole-body generator would solve a
constrained optimization problem to limit the deformation of the
reference motion, for instance as in [Tonneau et al. 2016].

More importantly, 2PAC also provides flexibility. Firstly because
editing the results is easy through the manipulation of the transition
points. The 3D representation of the constraints offers an easy way
for the artist to select the transition points and time parametrization,
to obtain a subjectively better motion. Secondly, because we control
the COM rather than the whole-body pose, the user can easily
specify additional pose constraints on the motion. In such cases
where trial and error is required, the rapidity of our method is a
strong asset. The efficiency of our method thus makes it interesting
for both online and offline motion synthesis applications.

A step towards accurate centroidal approaches
As all existing methods using the point mass model, our method
approximates the constraints that govern the whole-body motion of
a character. Compared to these approaches our results demonstrate
that 2PAC better approximates these constraints, while obtaining
better computation times. Regarding the equilibrium of the charac-
ter, we have shown that first restricting the motion to a quasi-static
case before relaxing it already allows us to address a large vari-
ety of problems. One exciting direction of improvement is to use
the computed trajectories to warm start existing optimal control
solvers [Carpentier et al. 2016; Herzog et al. 2015], with the hope
that they would converge much faster to a dynamically accurate
solution.
Regarding the improvement of our kinematic constraints, using

learning approaches such as [Carpentier et al. 2017; Kang and Lee
2017] is a promising direction for future work, although it would
require to learn the dependencies between the different limbs of the
character. Another interesting option to improve the quality of the
results would be to account for the torque limits of the characters
at the centroidal level, using recent contributions from the robotics
field [Orsolino et al. 2018].

A new approach for computing COM trajectories
The computation of a COM (or a whole-body) trajectory is usu-
ally treated as a nonconvex optimization problem by procedural
approaches. Handling the discontinuities induced by the contact
phases in this continuous formulation in particular is one of the bot-
tlenecks of the problem. Our take is completely different from this
classic approach, in the sense that our formulation of the problem is
discrete, since we only focus on transitions. Our work suggests that a
quasi-static legged motion can be entirely defined by characterizing
these discrete transition instants. Currently, our approach suffers
from the quasi-static constraint, which prevents the synthesis of
subjectively appealing, truly dynamic motions. We are currently
focusing on removing this limitation, with encouraging preliminary
results to appear in [Fernbach et al. 2018]. Additionaly, we believe
that the convexity properties of Bezier curves may provide a way to
address the trajectory generation problem in a continuous fashion,
which could benefit to any approach, including those using non
linear solvers. In particular we are excited about testing such for-
mulation within the recent framework proposed by [Winkler et al.
2018]. Still, our objective remains to get rid of the non-linearity of
the centroidal dynamics in the general case, and we believe that
better characterizing the constraints active at the transition phases
could result in a generalization of our approach to arbitrary legged
locomotion. We hope to inspire more research in this direction.

10 SOURCE CODE OF OUR METHOD
The source code of 2-PAC is to be released as part of a C++ library
with python bindings, under a BSD-2 license, available at
https://gitlab.com/stonneau/bezier_COM_traj.
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