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Abstract9

This paper proposes an effective approach to detect and segment moving
objects from two time-consecutive stereo frames, which leverages the uncer-
tainties in camera motion estimation and in disparity computation. First,
the relative camera motion and its uncertainty are computed by tracking
and matching sparse features in four images. Then, the motion likelihood
at each pixel is estimated by taking into account the ego-motion uncertainty
and disparity in computation procedure. Finally, the motion likelihood, color
and depth cues are combined in the graph-cut framework for moving object
segmentation. The efficiency of the proposed method is evaluated on the
KITTI benchmarking datasets, and our experiments show that the proposed
approach is robust against both global (camera motion) and local (optical
flow) noise. Moreover, the approach is dense as it applies to all pixels in an
image, and even partially occluded moving objects can be detected success-
fully. Without dedicated tracking strategy, our approach achieves high recall
and comparable precision on the KITTI benchmarking sequences.

Keywords: Moving Object Detection, Ego-Motion Uncertainty, Motion10

Segmentation11

1. Introduction12

Over the past decades, many researchers from different fields such as13

robotics, automotive engineering and signal processing have been devoting14

themselves to the development of intelligent vehicle systems. Making the15
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vehicles to automatically perceive and understand their 3D environment is a16

challenging and important task. Due to the improvement of the sensor tech-17

nologies, processing techniques and researchers’ contributions, several Ad-18

vanced Driver Assistance Systems (ADASs) have been developed for various19

purposes such as forward collision warning systems, parking assist systems,20

blind spot detection systems and adaptive cruise control systems. Currently,21

some popular Vision-based Simultaneous Localization and Mapping (VS-22

LAM) and Structure-from-Motion (SfM) [1] systems have also been applied23

in ADASs or autonomous vehicle, such as the recent popular ORB-SLAM24

[2].25

However, most of these systems assume a static environment, and thus26

have faced some difficulties in inner urban areas where dynamic objects are27

frequently encountered. Usually, moving objects are considered as outliers28

and RANSAC strategy is applied to get rid of them efficiently. However,29

this strategy will fail when the moving objects are the dominant part of the30

image. Thus, efficiently and effectively detecting moving objects turns out31

to be a crucial issue for the accuracy of such systems.32

In this article, we focus on the specific problem of moving object de-33

tection. We propose a detection and segmentation system based on two34

time-consecutive stereo images. The key idea is to detect the moving pixels35

by compensating the image changes caused by the global camera motion.36

The uncertainty of the camera motion is also considered to obtain reliable37

detection results. Furthermore, color and depth information is also employed38

to remove some false detection.39

1.1. Related Works40

Moving object detection has been investigated for many years. Back-41

ground subtraction is a commonly used approach for tackling this problem42

in videos obtained from a static camera: then, regions of interest can eas-43

ily be detected [3]. Adaptive Gaussian Mixture Models are well known for44

modelling the background by recursively updating the Gaussian parameters45

and simultaneously setting the appropriate number of components for each46

pixel [4]. However, background subtraction cannot be applied to handle the47

problem when the camera also moves. Due to the camera motion, both the48

camera and objects motions are coupled in the apparent 2D motion field.49

The epipolar constraint is classically used for motion detection between two50
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views [5]. However, it fails in a degenerate case 1. Other constraints, such as51

the flow vector bound constraint [6, 7] have been used together with epipolar52

constraint to detect the degenerate motion.53

An alternative to detecting moving objects using the fundamental matrix54

is 2D planar homography [8, 9]. Homography is used as a global image motion55

model that makes it possible to compensate the camera motion between two56

consecutive frames. Pixels which are consistent with the homography matrix57

are recognized as the static planar background, while these inconsistent ones58

may belong to moving objects or to static 3D structure with large depth59

variance (parallax pixels). In order to remove the parallax pixels, additional60

geometric constraints [8] or clustering strategies [9] may be used.61

Compared to monocular vision, stereo vision system (SVS) provides depth62

or disparity information using images provided by the left and right cameras.63

Dense or sparse depth/disparity maps computed by global [10] or semi-global64

[11] matching approaches can be used to build 3D information on the envi-65

ronment. Theoretically, by obtaining the 3D information, any kind of motion66

can be detected, even the case of degenerate motion mentioned above. In67

[12], 3D point clouds are reconstructed from linear stereo vision systems first68

and then objects are detected based on a spectral clustering technique from69

the 3D points. Common used methods for Moving Object Detection (MOD)70

in stereo rig can be divided into sparse feature based [13, 14] and dense scene71

flow-based approaches [15, 16, 17].72

Sparse feature-based approaches fail when few features are detected on73

the moving objects. Then, dense flow-based methods can be used instead.74

In [15], a prediction of the optical flow between two consecutive frames is75

calculated based on a function of the current scene depth and ego-motion.76

From the difference between the predicted and measured flow fields, large77

non-zero regions are classified as potential moving objects. Although this78

motion detection scheme provides dense results, the system may be prone79

to producing a large number of misdetections due to the noise involved in80

the perception task. Other improved approaches have been developed [18]81

and [16] to limit misdetections, by considering the uncertainties on the 3D82

scene flow [18] or on the 2D real optical flow [16]. However, such approaches83

roughly model the uncertainty of the ego-motion obtained from other sensors84

1The 3D point moves along the epipolar plane formed by the two camera centers and
the point itself, whereas its 2D projections move along the epipolar lines.
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(GPS or IMU). In fact, the camera ego-motion has a global influence on the85

predicted optical flow; therefore, its uncertainty should be well considered to86

improve detection accuracy.87

1.2. Structure and Contributions of This Paper88

In this paper, we aim at detecting the foreground moving object from89

two consecutive stereo image pairs. An object is considered as moving if its90

location in the absolute world coordinate frame changes between two consec-91

utive frames. This article is an extension of previously-published conference92

papers [19, 20] with a new review of the relevant state-of-the-art, new theo-93

retical developments and extended experimental results. In [19], we proposed94

a framework to detect moving objects using the Residual Image Motion Flow95

(RIMF). In order to improve detection performance, we refined this frame-96

work in [20] by considering the uncertainty during the RIMF computation97

procedure. Both of these works have never been published together; and98

the aim of this paper is to show the global scope of vision-based perception99

systems that have been proposed for moving objects detection in intelligent100

vehicles applications.101

The main additional contributions of the present paper are the following:102

first, we propose a dense moving object detection and segmentation system by103

using two consecutive stereo frames, which effectiveness is demonstrated on104

the public KITTI dataset. Unlike in [21] where moving objects are detected105

by tracking based on sparse features, we compute the dense optical flow in106

every image pixel. This makes it possible to detect small and partly-occluded107

moving objects. Next, compared to [20], we add color together with depth108

information into the graph-cuts framework to improve object segmentation.109

Then, the 3D density map is used to generate bounding boxes: this strat-110

egy proves to be effective to avoid redundancy detection, such as shadow.111

Finally, we evaluate our proposed moving object segmentation algorithm at112

the pixel level on the KITTI dataset. At the same time, we also test it at113

the bounding box level on different real traffic sequences with ground truth.114

Its effectiveness is demonstrated with respect to related works [15].115

This paper is organized as follows: First, Section 2 gives an overview of116

our proposed moving object detection system. Next, moving pixel detection117

and motion segmentation are introduced in details in Sections 3 and 4 re-118

spectively. Then, we evaluate our proposed system on different KITTI image119

sequences. The experimental results and analysis are presented in Section 5.120

Finally, the paper ends with a short conclusion and future works.121
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2. Problem Setup122

As mentioned above, using the epipolar geometry from a monocular cam-123

era does not make it possible to detect moving objects when their motion is124

degenerate. In order to overcome this issue, a stereo system may be employed.125

The binocular images are recorded by a vehicle-mounted stereo system. We126

assume that the system is calibrated; thus, a simple rectification [22] can be127

used to align the left and right images. We denote b as the calibrated base-128

line for the stereo head. Additionally, the left and right rectified images have129

identical focal length f and principal point coordinates as p0 = (u0, v0)T .130

Given two time-consecutive stereo images from time t−1 and t, as shown131

in Fig. 1, the origin of the world system is assumed to be coincident with132

the left camera’s local coordinate system at time t− 1. The Z-axis coincides133

with the left camera optical axis and points forwards, the X-axis points to134

the right and the Y -axis points downwards. All the coordinate systems are135

right handed. The main difficulty of moving object detection is caused by the
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Figure 1: Coordinate frames of the considered stereo-vision system

136

existence of multiple relative motions – the vehicles’ motion and the other137

objects’ independent motions. The position of a pixel extracted from a static138

background point is pt−1 = (ut−1, vt−1, 1)T in the previous frame t − 1, and139

its image position pt = (ut, vt, 1)T in frame t can be predicted by [5, Chapter140

9, page 250]:141

pt = KRK−1pt−1 +
Ktr

Zt−1

, (1)

5



where K is the camera’s intrinsic parameter matrix, R, tr are the relative142

camera rotation and translation (the pose), and Zt−1 stands for the depth of143

the 3D point X in frame at t− 1.144

In order to detect the moving objects in the image, a straightforward145

idea is to compensate the camera motion by Eq. (1) first. Then the residual146

image, calculated as the difference between the current and previous ones147

compensated in motion, highlights both the pixels belonging to moving ob-148

jects and the pixels related to motion error estimation. For the sake of clarity,149

we first define three different flow-based expressions:150

• the Global Image Motion Flow (GIMF) represents the predicted image151

changes caused by the camera motion only, that can be calculated using152

Eq. (1).153

• The Measured Optical Flow (MOF) represents the real dense optical154

flow estimated using image processing techniques [23].155

• The Residual Image Motion Flow (RIMF) is used to measure the dif-156

ference between MOF and GIMF.157

The RIMF can be used to distinguish between pixels related to moving158

and non-moving objects. In order to calculate the RIMF, the MOF and159

GIMF should be computed first. Remark that computing the latter requires160

both information on the camera motion (ego-motion) and on the depth value161

of the pixels. This paper does not address the issues of computing the dense162

optical flow [23] and disparity map [24]: we simply use the results from state-163

of-the-art methods. More precisely, we exploit the approach proposed in [25]164

in order to compute the dense optical flow and dense disparity map. We165

then use them directly as inputs of our system. The whole system can be166

summarized by the following three steps:167

1. Moving pixel detection. In this step, the moving pixels are detected168

by compensating the image changes caused by camera motion. In or-169

der to improve the detection results, the camera motion uncertainty is170

considered.171

2. Moving object segmentation. After the moving pixel detection, a172

graph-cut based algorithm is used to remove false detections by con-173

sidering both the color and disparity information.174

3. Bounding box generation. Finally, the bounding boxes are gener-175

ated for each moving object by using the UV-disparity map analysis.176
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For a better understanding, a flowchart of the proposed system is given in177

Fig. (2), in which the three main steps are highlighted by specific bounding178

boxes.179

Dense  Optical Flow and 

Disparity Map Computation

Features Extraction, 

Matching and Tracking  

Ego-Motion Estimation 

and Covariance Matrix 

Calculation 

Compute  RIMF and Its Covariance 

Matrix 

Motion Likelihood 

for Each Pixel 

Graph-Cut for Moving Object 

Segmentation  

  U-Disparity Based Bounding Box 

Generation 

Output: Bounding Boxes of  

Moving Objects  

Stereo Vision 

Synchronized and Rectified Images 

 Depth + Color  

Information  

Grid-Based Object Clustering

This part is used to calculate the motion 

likelihood for each pixel.

This part is graph-cut based moving object 

segmentation.

This part is the post-processing to generate 

the bounding box for each moving object.

Figure 2: Framework of the moving object detection and segmentation system.

3. Moving Pixel Detection180

As described in Fig. 1, four images are considered: two at time t − 1181

and two at time t. The left image It−1,l in the previous frame is considered182

as the reference image. The right image in the previous frame, and the left183

and right images in the current frame are represented as It−1,r, It,l and It,r,184

respectively. Similarly, we define (ut−1,l, vt−1,l), (ut−1,r, vt−1,r), (ut,l, vt,l) and185

(ut,r, vt,r) as corresponding image points in the previous and current stereo186

frames.187

3.1. Ego-Motion Estimation and Uncertainty Computation188

Given a set of corresponding points in four images for two consecutive189

frames, the relative pose of the camera can be estimated by minimizing the190

sum of the reprojection errors using non-linear minimization approaches.191

First, the feature points from the previous frame are reconstructed in 3D192
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via triangulation and using the camera intrinsic parameters. Then these193

3D points are re-projected onto the current image frames using the camera194

motion as below:195

x̂i
t = f(Θ,xi

t−1) =

[
Prl(K,Θ,xi

t−1)
Prr(K,Θ,xi

t−1)

]
, (2)

where x̂i
t = (ûit,l, v̂

i
t,l, û

i
t,r, v̂

i
t,r)

T are the predicted image points in the current196

frame and xi
t−1 = (uit−1,l, v

i
t−1,l, u

i
t−1,r, v

i
t−1,r)

T are the detected image points197

in the previous frames. The vector Θ = (rx, ry, rz, trz, try, trz)
T represents198

the six degrees of freedom of the relative pose. Let Prl and Prr be the199

image projections of the 3D world points into the left and right images (non-200

homogeneous coordinates).201

In general, the optimal camera motion vector Θ̂ can be obtained by min-202

imizing the weighted squared error of measurements and predictions203

Θ̂ = argmin
Θ

F (Θ,x) = argmin
Θ

N∑
i=1

‖xi
t − f(Θ,xi

t−1)‖2
Σ,∀i = 1 · · ·N. (3)

where xi
t = (uit,l, v

i
t,l, u

i
t,r, v

i
t,r)

T are the matched points in the current frame204

by using tracking and matching strategies [26] and where ‖ . ‖2
Σ stands for205

the squared Mahalanobis distance according to the covariance matrix Σ.206

Although the optimal motion vector Θ̂ can be obtained by minimizing207

Eq. (3), its accuracy also depends on the precision of the matched and208

tracked features’ positions in the images. Let x = [xt−1,xt] ∈ R8N represent209

all points and xt−1 ∈ R4N ,xt ∈ R4N stand for the points at times t − 1210

and t, respectively. We assume that all points considered in the optimization211

procedure are well-matched pixel features with only additive Gaussian noise:212

x ∼ N (µ,Σ) , (4)

where µ = (µxt−1 , µxt)
T and Σ = diag(Σxt−1 ,Σxt) are the mean and the213

covariance of the features. The Gauss-Newton optimization of Eq.(3) can214

converge rapidly if the starting point is close to the optimal point. A real215

vision-based system requires both a robust estimation of the camera motion216

and a measurement of the uncertainty associated with this solution. In [27]217

and [28], the authors proposed a derivation of the covariance matrix using218

the following model:219

ΣΘ =

(
∂g

∂Θ

)−1(
∂g

∂x

)T

Σx

(
∂g

∂x

)(
∂g

∂Θ

)−T
, (5)
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where g(x,Θ) = ∂F (X,Θ)
∂Θ

is the gradient vector of F (Θ,x) with respect to220

Θ, and where Σx, such as defined in Eq. (4), is the covariance matrix of the221

measured features at previous and current frames. The partial derivatives,222

∂g
∂Θ

and ∂g
∂x

can be computed according to Eq. (5). Alg. (1) presents how the223

ego-motion and its associated uncertainty can be computed.224

Algorithm 1 Ego-motion estimation and error propagation

Require: - Stereo image pairs at previous and current frames;
- Covariance matrix of matched features;

Ensure:
- Relative pose Θ (R and tr) and its covariance ΣΘ;

1: I Features extraction, tracking and matching in four images;
2: I Compute the 3D point at previous frame using Eq. (??); .

RANSAC process to remove outliers;
3: for i = 1 do N . N is maximum RANSAC times
4: I Randomly select 3 matched features pairs;
5: I iter = 0;
6: while iter< 100 || Gauss-Newton increment > ξ do
7: I Compute Jacobian matrix and residual matrix;
8: I Update Θ using Gaussian-Newton iteration approach ;
9: end while

10: I Record Θ and inliers indexes if we have more inliers than before;
11: end for
12: I Refine the final parameters using all the inliers;
13: I Compute the covariance matrix ΣΘ using Eq. (5);
14: I return Θ and ΣΘ

3.2. Moving Pixel Detection225

At the beginning of Section 3, the RIMF has been proposed to detect226

moving pixels. In order to compute the RIMF, the GIMF should be estimated227

first. In addition, the uncertainty of RIMF can also be computed from the228

ego-motion and disparity map uncertainties.229

3.2.1. Global Image Motion Flow230

The GIMF is used to represent the image motion flow caused by the231

camera motion. Given a pixel position pt−1 = (ut−1, vt−1, 1)T in the previ-232

ous image frame, we can predict its image location pt = (ut, vt, 1)T in the233
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current frame according to Eq. (1). Theoretically, the image location corre-234

spondences of a 3D static point in the current frame can be predicted by its235

depth information in the previous frame and the relative motion information236

of the camera only. However, this prediction stands only when the 3D point237

comes from static objects, and it does not hold for dynamic objects. Finally,238

the GIMF g = (gu, gv)
T for an image point (u, v)T caused by the camera239

motion can be expressed as:240

g = (gu, gv)
T = (ut − ut−1, vt − vt−1)T . (6)

3.2.2. RIMF Computation241

Then, assuming that the MOF estimated between the previous and cur-242

rent frame at point (u, v) is m = (mu,mv)
T , the RIMF q = (qu, qv)

T is243

computed as:244

q = g −m = (gu −mu, gv −mv)
T . (7)

Ideally, the RIMF should be zero for a static point, while it should be greater245

than zero for moving points. Simply comparing the RIMF absolute difference246

to a fixed threshold does not lead to satisfying results to differentiate moving247

pixels from static ones, because points with different 3D world locations248

have different image motions. Moreover, the estimated uncertainty, e.g. on249

camera motion or pixel depth, have a different influence on the image points.250

Ignoring these uncertainties could lead to a large number of false positive251

detections. The uncertainty of the RIMF mainly comes from four parts. The252

first and the most important one is the uncertainty from the camera motion253

estimation because it has a global influence on each pixel according to Eq.254

(1). In addition, it affects differently the pixels at different locations. The255

second influence part is the error of the depth estimation and the third comes256

from the optical flow estimation process. The last one is the pixel location257

noise which results directly from the image noise (image rectification, camera258

intrinsic and extrinsic calibration, digital image quantization, etc).259

3.2.3. Motion Likelihood Estimation260

As mentioned above, a fixed threshold does not lead to a satisfying solu-261

tion to detect moving pixels. In order to handle this problem, the uncertainty262

of RIMF is propagated from the sensors to the final estimation using a first263

order Gaussian approximation. As in Eq.(7), the RIMF is a function of cam-264

era motion Θ, the pixel location (u, v) at previous frame, the disparity d and265

the measured optical flow (mu,mv). The uncertainty of the measured optical266
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flow is not considered in this work because it only affects the detection results267

locally. Based on the forward covariance propagation framework in [5], the268

RIMF covariance can be calculated by using a first-order approximation as269

below:270

ΣRIMF = JΣJT , (8)

where J represents the Jacobian matrix with respect to each input vari-271

able (e.g. the camera motion Θ, the pixel position (u, v) and the dispar-272

ity value d in the previous frame) and Σ = diag (ΣΘ,Σo) is the covariance273

matrix of all the input variables. The covariance matrix of the camera mo-274

tion is ΣΘ, and that of the disparity values in the estimation process is275

Σo = diag
(
σ2
u, σ2

v , σ2
d

)
, where σu and σv are the variances that are used276

to describe the pixel quantization error of the camera and σd. In [18], the277

authors proposed that the uncertainty of the disparity map could also be con-278

sidered as an approximate standard Gaussian Distribution and its variance279

can be linearly approximated by:280

σd(u, v) = σ0 + γUd(u, v), (9)

where σ0 and γ are two constant parameters, and where Ud(u, v) is the un-281

certainty on the disparity value at position (u, v). Here, the matching cost282

is used as a confidence measure of the disparity value (further details can283

be found in [29]). Compared to the variance of each parameter in Σ, the284

covariances between the ego-motion parameters, position and the disparity285

are negligible and the estimation process is difficult.286

Based on the ΣRIMF estimated above, we can compute the likelihood of a287

flow vector to be moving. Assuming a stationary world and a Gaussian error288

propagation, a flow vector is assumed to follow a Gaussian distribution with289

zero mean and covariance matrix ΣRIMF . Deviations from this assumption290

can be detected by testing this null hypothesis via a goodness-of-fit. Alter-291

natively, the Mahalanobis distance [30] associated to the RIMF vector can292

be computed:293

µq =
√

qTΣ−1
RIMFq, (10)

where q is the RIMF vector at a certain image location defined in Eq. (7).294

Since µ2
q is χ2-distributed, the RIMF motion likelihood ξ(m) of RIMF vector295

can be computed according to its µq value.296

In Fig. (3), the sub-figures (a),(b) are the motion likelihood images re-297

sulting from the Mahalanobis distance µq. Green pixels are detected as static298
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and red as moving. In sub-figure 3a, two cyclists come from the opposite di-299

rection of the host vehicle and a pedestrian moves in the same direction as300

the vehicle and all three have been well detected as moving. The shadow301

of the moving car in the glass window has also been detected. In sub-figure302

3b, all the moving pedestrians have been detected, but false positives on the303

ground are due to MOF errors.304

(a) Motion likelihood for frame 16 (b) Motion likelihood for frame 535

(c) Detection with threshold 0.75 (d) Detection with threshold 0.75

(e) Detection with threshold 0.9 (f) Detection with threshold 0.9

Figure 3: Motion likelihood calculation by using MIMF and moving pixel detection using
different thresholds.

4. Multi-Cues for Motion Segmentation305

A likelihood threshold can be applied to the motion likelihood image so306

as to distinguish between moving and static pixels. However, detection noise307

may pervade the process because of the imperfect MOF. Fig. (3) shows some308

detection results using different thresholds. For example, the motion likeli-309

hood estimation at frame 16 (sub-figure 3a) is good and all the moving objects310

have been well detected, no matter which thresholds are used. Despite that311

the motion likelihood at frame 535 (sub-figure 3b) is also well estimated, it is312

still noisy on the edge of static objects due to crude estimates of the optical313

flow. A lower threshold results in both high true positives and high false314

positives; conversely, a higher threshold may result in a poor detection rate.315

An optimal threshold that suits all situations cannot be determined.316
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4.1. Segmentation Problem317

To effectively separate the motion foreground from the background, a318

segmentation step is adopted here. Usually, the segmentation of image into319

moving and stationary parts can be considered as a problem of assigning320

binary labels to each pixel: l(x) = 1 if x is moving, otherwise l(x) = 0.321

Several constraints should be considered for segmentation. First, pixels with322

high motion likelihood should be detected as moving. Second, adjacent pixels323

with similar appearance and distance should share the same label; otherwise,324

their labels should be different. By considering all the constraints, an energy325

function can be built as326

E(L) = Er(L) + λEb(L) (11)

where L = {l1, l2, · · · , lp} is a binary vector, p is the number of the pixels in327

the image, li is a binary label for each pixel. Here, Er and Eb stand for the328

region and boundary terms and λ is used to balance their influences.329

The region term Er captures the likelihood that the pixels belong to the330

moving foreground or static background. The motion likelihood of each pixel331

can be used to build the region term as332

Er = −
∑
x∈Ω

{l(x)ξm(x) + (1− l(x))ξs(x)}, (12)

where Ω represents the image domain, ξm is the motion likelihood and ξs is333

a fixed prior likelihood describing the belief of points being static. Here we334

assume that all the image pixels share the same stationary likelihood ξs since335

no prior information is available.336

The boundary term Eb is used to encourage similar neighboring pixels to337

be assigned the same label. In order to obtain roust segmentation results, we338

apply both color [31, 32, 18] and depth information together for building Eb.339

Since moving objects usually have a significant depth difference with their340

lateral background, the boundary depth similarity can be defined as:341

Bd(xi,xj) = exp(−σ(|z(xi)− z(xj)|) + α), (13)

where z(xi) and z(xj) represent the depth values at the point xi and xj.342

Note that B( . ) is positive function, monotonically decreasing according343

to depth difference, in which α and σ are two parameters that control the344

descent speed and peak value respectively. A bigger value gives a higher345
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penalization cost to the depth difference, while the value controls the change346

of cost with the increase of absolute depth difference. Here we empirically347

set α = 0 and σ =
√

2 for all experiments. Similarly, the color similarity Bc
348

is also measured as Eq. (13) by considering the color difference. Finally, the349

boundary term is expressed as350

Eb =
∑

Ω

∑
x̂∈N4(x)

(Bd(x̂,x) +Bc(x̂,x))|l(x̂)− l(x)|, (14)

where N4(x) is the 4-neighborhood of a pixel x.351

4.2. Graph-Cut for Motion Segmentation352

The minimization of this problem can be solved in the graph-cut frame-353

work. A minimum cut, or min-cut, is the cut with minimal cost that can354

be computed using min-cut/max-flow algorithms [33, 31]. In Eq. (11), λ355

is used to balance the influence between the region and boundary terms.356

Clearly, the segmentation results heavily depend on the weight parameter357

λ. For a low value of λ, the segmentation is mainly on the motion like-358

lihood of a single pixel whereas a high value of λ results in only small or359

no segment at all. In our experiments, we have tested different values:360

λ ∈ {0.25, 0.5, 0.75, 2.0, 5.0}. The segmentation results show that small λ361

result in some error detection, while high λ result in small regions (such as in362

(d), (e) and (f)). We finally chose λ = 0.5 for our experiments, which gives363

good results compared to the other values tested. In order to save computer364

memory and to improve the processing speed in the graph-cut algorithm, a365

down-sampling technique is used. We take one pixel out of four in both rows366

and columns. Fig. (4) displays some of the segmentation results obtained367

using our approach.368

4.3. Bounding Box Generation369

A bounding box should be generated around each moving object. Ad-370

ditionally, some erroneously detected pixels (e.g., shadows) should also be371

eliminated. In our approach, we mainly focused on a cubic detection space372

of 30 m (longitudinal), 20 m (lateral) and 3 m (height) in front of the vehicle.373

In this limited subspace, a density map is constructed by projecting all the374

detected 3D moving points onto the xOz plane. The density map is associ-375

ated with an accumulation buffer. A cell in the accumulation buffer covers376

an area of 50 cm × 50 cm on the xOz plane. The weights that the points377
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(a) Original frame 16 (b) Original frame 535

(c) Motion Likelihood (d) Motion Likelihood

(e) Motion segmentation result (f) Motion segmentation result

Figure 4: Graph-cut based segmentation in different frames.

add to the density map have a Gaussian distribution, with the maximum378

at the center cell and decreasing in the neighboring cells. Because points379

become sparser as we move away from the camera, the diameter of the patch380

increases gradually with the distance. The size of the patch p is defined by381

the following strategy (as shown in sub-figure 5a ):382

p =


1× 1 cell

2× 2 cells

4× 4 cells

6× 6 cells

z < 10 m

10 m < z < 15 m

15 m < z < 25 m

25 m < z < 31 m

. (15)

After obtaining the density map, an empirical threshold is chosen so as to383

remove sparse points, that could be misdetected image pixels (e.g., shadow384

or objects borders). Here, a patch will be emptied if its amount of points385

is below this threshold (e.g. 50). The false alarms at objects boundary are386

usually due to the error on the measured optical flow (smoothing constraint).387

Sub-figure 5b shows some ROI generation results relying on the grid-based388

method. Based on this approach, the shadow can be easily removed, such389

as in 5b-(c). In 5b-(c), each color corresponds to one rough clustering in the390

disparity map.391
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25 m
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… …

(a) Grid map in the
XoZ plane.

(b) segmentation result

(c) Grid-based rough object clustering

(g) Density map  

(d) U-disparity map 

(e) Bounding box generation  

(a) Original image

(b) Objects clustering.

Figure 5: Bounding boxes generation from moving pixels segmentation.

4.3.1. U-Disparity Map Based ROI Generation392

In each cluster, the bounding box can be generated for every moving393

objects for the next recognition step. Region growing is used to remove394

redundancies and to integrate part detection using the dense disparity map.395

U-V disparity maps [34, 35], which are two variants of the classical disparity396

map, are often used for road and obstacle detection. The U-disparity map397

has the same width as the original image, which is formed by recording the398

number of the pixels who share the same disparity value along each image399

column.400

In the U-disparity map, an upright object will form a horizontal line401

because of similar disparity value. Conversely, each white horizontal line402

represents a corresponding upright object. This information can be effec-403

tively used to determine the width of the objects. After getting the width404

of the bounding box, region growing [36] is applied to the neighborhood of405

the clustering group pixels based on the disparity value. The pixels whose406
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disparity values are between the minimum and maximum disparity value of407

each cluster are considered to belong to the same object. The final bounding408

boxes of the moving objects are shown in 5b-(e).409

4.3.2. V-Disparity Map-Based Cluster Reduction410

According to [37], the real world height of the objects may be estimated411

by:412

hi = hc +
(yi − y0)z cos θ

f
(16)

Here, hi and hc are respectively the heights of the ith object and of the camera413

in the world coordinate frame; θ is the camera tilt angle and f is the camera414

focal length; z is the depth of the object; y0 and yi are the horizontal position415

and top of the object in the image coordinate. Assuming that moving objects416

are not higher than 3 m, some obvious false positives may be filtered. For417

this purpose, the horizontal position is first computed using the V-disparity418

map. Then, the actual height of the objects hi is calculated using Eq. (16).419

Finally we retain only the objects whose height is between 0.75 m and 3 m,420

because the height of most moving objects is in this range. Detailed steps421

can be found in Alg. (2).422

Algorithm 2 Bounding Box Generation and Cluster Reduction

Require: - Objects Bounding box;
- Camera height hc,camera tilt angle θ and camera focal length f ;
- The distance of objects to the camera z;
- Horizon position y0;

Ensure:
-Real world height of the objects hi ;

1: I Compute the U- and V- disparity maps;
2: I According to its disparity value, each moving pixel may be assigned

to different upright objects using the U-disparity map;
3: I Compute the horizontal line defined by y0 and the camera tilt θ from

the V-disparity map;
4: I Calculate the real world height hi of the objects using the horizontal

line y0, the camera height hc and the tilt angle θ as in Eq. (16);
5: I Keep the detected objects for which hi is between 0.75 m and 3 mm.
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5. Experimental Results423

Several real image sequences from the KITTI dataset2 have been chosen424

to test the effectiveness of our system. More details about the sensor setup425

and data information can be found in [38, 39]. The actual object labels and426

locations have been provided in some of these sequences, which can be used427

to evaluate our moving object detection algorithm. The video sequences are428

acquired from a SVS installed on the roof of a vehicle. Five different video429

sequences (fps = 10) in the raw data are chosen for our evaluation. These430

sequences are captured in the inner city streets, which includes moving vehi-431

cles, pedestrians, cyclists etc. In the inner city sequence, the host vehicle was432

driven at a low speed (about 15 km/h) because of complex road conditions.433

Before presenting the experimental results, we review our detection algo-434

rithm. First, dense disparity and optical flow [25] are computed before the435

moving objects detection steps. At the same time, the relative camera pose436

between two consecutive frames and its covariance are estimated based on437

sparse feature detection and tracking. The standard deviation of the fea-438

tures in Eq. (4) is empirically set to Σ = diag [1.0, 1.0] pixel. Ideally this439

value should be changed depending on the situation. In order to compute the440

variance of disparity in Eq. (9), we empirically set σ0 = 0.25 and γ = 0.075.441

5.1. Quantitative Evaluation442

Due to the difficulty of finding the moving object detection and segmenta-443

tion benchmark in the real traffic scene, we try to construct out own ground444

truth based on the existing KITTI dataset.445

5.1.1. Moving Object Segmentation Evaluation at Pixel Level446

In the “Scene Flow Evaluation 2015 benchmark”, the ground truth of447

some moving objects (pixel level) have been provided for the training im-448

ages. We can use this dataset to evaluate our depth-aided moving object449

segmentation approach at the pixel level. The precision (P ), recall (R) and450

F-measure (F ) are usually computed to measure the performance of the sys-451

tem; they are defined as452

R =
tp

tp+ fn
, P =

tp

tp+ fp
and F =

2R ∗ P
R + P

. (17)

2http://www.cvlibs.net/datasets/kitti/
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The true positive (tp) amount represents the number of pixels that have453

been correctly detected as moving. False positives (fp) are static pixels that454

have been mis-detected as moving. False negatives (fn) are the moving455

pixels that have not been detected. The training dataset consists of 200456

image groups and each group includes four images: two stereo image pairs457

at current and next time instant. However, some dynamic objects have been458

labeled in this training dataset, such as trucks, pedestrians and cyclists.459

Finally, only 164 image groups, where the moving objects have been fully460

labeled, have been used for our evaluation.461

Some examples of the moving object segmentation results are displayed462

in Fig. 6. Table 1 displays the moving detection results with or without seg-463

mentation. The results show that it is hard to determine an optimal motion464

likelihood threshold with reasonable precision and recall. A lower thresh-465

old gives a high recall value while many false positives have been generated.466

Inversely, a high threshold will reduce the recall value. By using segmenta-467

tion, the detection accuracy can be increased: the recall, precision and the468

F-measure are significantly improved compared to when using a fixed thresh-469

old. In addition, compared to [20], the segmentation results have been also470

improved, likely by adding the color information into the graph-cut frame-471

work.472

Methods Recall (R) Precise (P) F-measure (F)

Fixed threshold (0.5) 0.7568 0.4993 0.6016
Fixed threshold (0.7) 0.7338 0.6073 0.6646
Fixed threshold (0.9) 0.6315 0.7007 0.6643
Graph-cut with depth 0.7274 0.6997 0.7133
Graph-cut with depth + color 0.7641 0.6959 0.7284

Table 1: Moving objects segmentation evaluation on the KITTI dataset. Different thresh-
olds have been chosen for evaluation, while we set ξs= 0.65 for the whole evaluation.

5.1.2. Moving Objects Detection Evaluation at Bounding Boxes Level473

In the “Raw dataset” category, 2D bounding boxes of the moving objects474

have been provided for several sequences with tracklets. We also used these475

sequences to evaluate our system at the bounding box level. The ground476

truth of the moving objects are generated by labeling them manually from477
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(a) (b)

(c) (d)

Figure 6: Moving object segmentation on the KITTI ”Scene Flow Evaluation 2015 bench-
mark”. Sub-figures (a),(b) and (c) display three segmentation examples, the detected
moving pixels are drawn in red. In (a), the moving car has been well detected. In (b), the
black one right in front of the camera has not been detected because the car locates nearly
at the point of epipole. In (c), some background pixels have been detected as moving due
to the occlusion in the next frame. In (d), the silvery car has not been detected because
it is out of the detection range.

the tracklets for each frame. Here, only the moving objects whose distance478

is less than 30m are considered. We employ the PASCAL challenge [40]479

measure to evaluate the detection results:480

score =
area(BBg{i} ∩BBd{j})
area(BBg{i} ∪BBd{j})

, (18)

where BBd and BBg are the detected and ground truth bounding boxes481

of the objects. An object is considered to be correctly detected only when482

BBd{i} and BBg{j} share a sufficient overlap area. A threshold score is483

set to determine this overlap area: we chose score = 0.5 as in the PASCAL484

challenge [40]. The precision, recall and F-measure are also computed to485

measure the performance of the system. In this case, tp represents the num-486

ber of real moving objects bounding boxes have been correctly detected in487

the whole sequence, fp stands for static objects that have been misdetected488

as moving, and fn are the moving objects that have not been detected. The489

true static objects are not taken into account because our algorithm focuses490

on detecting moving objects only. Finally, 6 typical image sequences in the491

“City” category of the ”Raw dataset” are taken for our evaluation. Some492

detection results of these sequences are shown in Fig. 7.493

Fig. 7-(a) shows the detection results in sequence 5. This sequence is494

captured around the corner of a quiet city street. The moving van and495
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(a)

(b)

(c)

(d)

(e)

Figure 7: Moving object detection on different sequences. Sub-figures (a), (b), (c), (d)
and (e) display the detection results, respectively on sequences 05, 11, 17, 51 and 56 in
the category of ”City” in the raw data.

the cyclist have been detected in nearly all the frames. The good detection496

performance benefits from the low camera speed and the relative simple street497

environment. The van in the right image has not been detected due to the far498

distant. Fig. 7-(b) and (c) give results of sequences 11 and 17 respectively.499

In order to highlight the advantage of our proposal to consider the camera500

pose and disparity uncertainty, we take the method presented in [15] (which501

does not consider these uncertainties) as the baseline. In contrast with our502

proposed method, the RIMF is directly used to detect moving objects. We503

transform the RIMF into motion likelihood µq as µq = 1−exp(−|q|) and take504

this value as the input of the segmentation step. The motion likelihood in-505
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creases with the increasing of the RIMF. In order to achieve fair comparison,506

we keep all the other steps and parameters as the same as in the proposed507

approach.

Method Evaluation 05 11 17 18 51 56

Method [15]
Recall 0.781 0.895 0.961 0.910 0.967 0.949
Precision 0.383 0.675 0.961 0.843 0.556 0.510
F-measure 0.513 0.770 0.961 0.876 0.706 0.664

Our method
Recall 0.898 0.919 1.00 0.933 0.968 0.787
Precision 0.690 0.696 1.00 0.849 0.680 0.768
F-measure 0.780 0.792 1.00 0.890 0.799 0.777

Table 2: Moving object detection evaluation on different ”Raw” data sequences.

508

Tab. 2 illustrates the quantitative evaluation of the two approaches with509

the ground truth on six different image sequences. For a clear comparison, we510

have highlighted the best results in blue for each sequence. From the table,511

we can see that the detection results have been greatly improved for all the512

sequences. Taking the uncertainties into account improves the detection rate513

and reduces the false alarm rate.514

5.2. Detection Results on KITTI Sequences515

Besides the evaluation results mentioned above, we also tested our sys-516

tem on other scenarios in the KITTI dataset. Fig. 8a shows the detection517

results in the campus sequence (Campus sequence 37). During this sequence,518

the camera turned from left to right at a high speed: the vehicle direction519

changes nearly of 90 degrees in 4.3 seconds. The experimental results show520

that our algorithm can work well in this situation. The cyclists behind the521

trees far from the camera can be detected. In Fig. 8a, the red rectangle522

highlights the undetected moving objects. The cyclist has not been detected523

by our algorithm because it does not appear in the right camera and the 3D524

points cannot be reconstructed in the disparity map. Two pedestrians at the525

left boundary of the second image have also been included in one rectangle526

because they are not separable in the disparity space.527

We also tested our algorithm on a suburban highway sequence (Road528

sequence 16) and the detection results are displayed in Fig. 8b. On the529

highway, both the ego-vehicle and the other vehicles move at a high speed,530

about 60 km h−1. The frame rate of image sequence is 10 frames per second.531
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Campus Sequence 37

(a) Results on a campus sequence.

Road Sequence 16

(b) Results on a suburban road.

Figure 8: Detection results on KITTI dataset.

In this case, the dense optical flow approach does not work well because532

of the high changes between two successive frames. Then, sparse feature533

tracking and matching between two stereo frames can be used for detecting534

moving objects. A lower threshold is set in the feature extraction step to535

make sure that we can obtain enough features on the moving objects. The536

driving vehicles coming from the opposite direction were detected at a range537

of 40 m, which remains sufficient for an appropriate reaction of the driver.538

The white car moving in front of the camera was also properly detected even539

as it moves in the same direction as the ego vehicle.540

An interesting thing is that the proposed method can also detect forward541

moving objects even if it stands in the center of Field-Of-View and has exactly542

the same speed with the ego-vehicle, because the MOF is zero in this case,543

while the GIMF caused by camera motion is not. Therefore, the forward544

vehicle can be detected because the final RIMF is not zero. On the contrary,545

the proposed method can also consider the distant background existing in546

the center of FOV as static object because both the MOF and GIMF will be547

zero in this case.548

The last sequence we tested is taken in a crowded street3. The host vehicle549

3A video of the detection results can be found at
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(a) (b)

(c) (d)

Figure 9: Detection results on a crowd inner city street.

moves slowly, which makes detecting moving objects easier. Slowly moving550

objects can well be detected by our approach, even when they move on the551

epipolar plane. Note that the algorithm also detected partially occluded552

objects because dense disparity and optical flow maps are used. Some false553

negative and false positive detection happen in the real image sequences, as554

displayed in Fig. 9, due to reflections on windows in the scene.555

5.3. Computational Time556

All the experiments have been realized on a standard laptop (Intel i7,557

4 Core) with the Matlab R2015a processing environment. When the dense558

flow is used, the total average computational time is about 165 seconds for559

each frame. The dense optical flow and disparity map calculation step takes560

about 150 seconds. Around 10 seconds are spent on the motion likelihood561

computation, 4 seconds on the graph-cut based segmentation and 1 second562

on the bounding boxes generation. Computing ego-motion and estimating563

the uncertainty only takes about 0.25 seconds. Although our Matlab imple-564

mentation is not real-time, it is also faster when compared to [41] (7 minutes565

per frame) and further accelerations could be achieved by C/C++ imple-566

mentation with parallel/GPU computing.567

https://www.youtube.com/watch?v=mfSJnCoyLxc.
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6. Conclusion and Future Works568

In this paper, an approach has been proposed to detect moving objects569

from two consecutive stereo frames. The ego-motion uncertainty is estimated570

through a first-order error propagation model that is used to obtain the mo-571

tion likelihood for each pixel. Pixels with a high motion likelihood and a sim-572

ilar depth are detected as moving based on a graph-cut motion segmentation573

approach. Additionally, a fast recognition of moving objects becomes possi-574

ble based on the segmentation results. Detection results in several different575

real video sequences show that our proposed algorithm is robust with respect576

to global (camera motion) and local (optical flow) noise. Furthermore, our577

approach works with all image pixels and arbitrarily moving objects (includ-578

ing partially occluded) can be detected. Without any tracking strategies, our579

detection approach gives a high recall rate and also exhibits an acceptable580

precision rate in several public sequences.581

However, the computational complexity of the proposed method is an im-582

portant concern. This is mainly due to computation of the motion likelihood583

for every image pixel and the segmentation using the graph-cut algorithm.584

GPU-based algorithms could be used to overcome this weakness [42]. In ad-585

dition, the performance of MOD highly relies on the results of dense optical586

flow and disparity maps. However, their estimation in a complex dynamic587

environment (including other moving objects) often becomes very difficult.588
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