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a b s t r a c t

Tension/compression asymmetry is a key feature of the creep behaviour of ceramics at high temperature.
This paper investigates the capability of Drucker-Prager creep model, based on a sensitivity of the equiv-
alent creep stress to the pressure, to account for the creep behaviour of a refractory concrete subjected
to compression and bending. A relevant calibration procedure is proposed. The analysis mainly focuses
on the associativity of the creep flow. A profile analysis of a compressed sample allows concluding that
the creep flow is dilatant and thus associated. A discussion on the neutral axis shift during bending creep
is carried out with the model calibrated on the experiments.

1. Introduction

Modelling the creep behaviour is a major issue for any appli-
cation involving a long-term exposure of ceramic parts to high
temperature. In this framework, accounting for the well-known
asymmetry of ceramics creep behaviour is a key feature, from
all points of view: experimental characterization, modelling and
parameter identification. The tension/compression asymmetric
creep of ceramics at high temperature is generally attributed to
preferential damage [1] or cavitation [2,3] in tension, or to the
motion of solid particles in a glassy phase during creep deformation
[4].

Asymmetric creep was evidenced from tensile and compres-
sive tests for many materials, including ceramics [3,5]. However
tensile tests on brittle materials turn out to be delicate at high tem-
perature, whereas bending tests (which provide tensile stresses in
part of the specimen) are more easily carried out. In many studies,
bending was thus preferred to tension in order to assess the tensile
behaviour and complete compression data [1,6].

The experimental advantage of bending is counterbalanced by
the complexity arising in the interpretation of the results. Indeed,
a non-uniform elastic stress field is instantaneously built up and
then progressively modified by the non-uniform inelastic strain
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[7,8]. Primary creep still increases this non-stationary behaviour.
The stress field change during asymmetric creep implies that the
neutral axis in bending shifts from the specimen mid-plane [9].
The location of the neutral-axis can thus be used as an indicator
of creep asymmetry [10–12]. More recently, asymmetric creep evi-
dences were obtained from bending tests monitored by full-field
measurement methods: 3D-Digital Image Correlation (3D-DIC) at
room temperature after interrupted tests [13] or during the test at
high temperature [14] by a global approach to 2D-DIC. Both stud-
ies have shown that the neutral axis shift mainly occurs at the
beginning of the creep.

In many studies [6,11,15–18] a steady-state creep law is enough
to model the material behaviour. In the case of materials that
exhibit a pronounced primary creep, this assumption no longer
holds since the primary creep controls the stress field change. The
analysis of the bending experiment is therefore much more com-
plex. Moreover, the specimen may be subjected simultaneously
to stationary creep on the upper and lower faces and to primary
creep in the vicinity of the neutral axis, where the creep strain
remains low. A previous work [13] has shown that the behaviour
of the studied material necessitates taking the primary creep into
account.

Understanding the non-uniform and non-stationary stress field
involved in bending creep necessitates appropriate modelling tools.
Many uniaxial creep laws exist that relate the strain rate to the
applied stress. Some authors propose to explicitly account for the
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asymmetry by combining two different behaviours depending on
the sign of the stress [2,6].

More generally, tri-axial stress fields usually consider that the
strain rate tensor derives from pseudo-potential, function of the
stress field, and is proportional to a scalar function that describes
the uniaxial creep law. This scalar function depends on the stress
field through an equivalent stress. In this framework, another way
to implicitly account for the asymmetry is to build an equivalent
stress that intrinsically includes this effect, for instance by intro-
ducing a dependency to the first stress invariant.

Asymmetry in ceramics is often related to damage occurring in
the tensile area [19]. However, plasticity models with yield sur-
face dependent on the first stress invariant proved to be able to
describe the behaviour of concretes under compression [20]. In par-
ticular, Drucker-Prager [21,22] yield surface is often used to model
the behaviour of confined concretes [23–25], and less frequently
the creep behaviour of refractories [26,27].

An important consequence of these models is that the assump-
tion of creep incompressibility is not consistent with the hypothesis
of normality [22,28] if the equivalent creep stress depends on the
first stress invariant [29]. However, according to Vermeer and de
Borst [30], for materials such as soils, rocks and concretes, exper-
iments have disproved the hypothesis of normality. It is therefore
mandatory to investigate the associativity of the creep flow.

Table 1
Composition of the refractory castable.

Component Composition (wt.%)

Al2O3 85
SiO2 10
CaO 1.1
Fe2O3 1
Water requirement 4.2–5.2

Theoretical developments describing the creep asymmetry as
a consequence of an anisotropic kinematic hardening, have been
applied to secondary [31] or primary creep [32] of metallic alloys.
In the present study, only monotonic behaviours will be considered,
and the strain hardening will be assumed to be isotropic (as it is the
case for soils [22]). Indeed the creep strain rate is very small and
the Bauschinger effect, if any, is expected to become significant very
late. However, it is noteworthy that the neutral axis shift toward the
compressed area due to asymmetric creep implies that an amount
of material initially under compression will later undergo tension,
as described in Ref. [13]. This phenomenon will not be considered
in this paper and bending tests will be considered as monotonic.

The present study aims at contributing to understand the stress
field change and the neutral axis shift while bending creep, by
combining both experimental and simulation approaches.

It is proposed in this paper to investigate the capability of a
Drucker-Prager creep model to describe the asymmetric behaviour
of a fibre reinforced refractory concrete assuming an isotropic hard-
ening. An original calibration method is proposed to identify the
model parameters from compression and bending data considering
two extreme assumptions: in the first case, the flow is assumed to
be associated (and thus dilatant), whereas the second one assumes
a non-dilatant flow (and thus non-associated). The validity of these
assumptions is discussed by comparing the experimental results to
the numerical simulations.

2. Material and methods

2.1. Material

The material under study is a commercial refractory castable
reinforced with 2 wt.% of FeCrAl hooked-end fibres (length 25 mm,
diameter 0.7 mm). The concrete is constituted of bauxite aggre-
gates (size between 0.2–5 mm), dispersed in commercial ultra low
cement bauxite matrix (Table 1), composed of bauxite particles
lower than 200 "m in diameter, 8 wt.% of calcium alumina cement,
fumed silica and #-alumina. The material is characterised by an
open porosity of 10 vol.% and an apparent density of 2970 kg m−3.
A more detailed description of this material is available in [13].

2.2. Elasticity properties

The elasticity properties of the material were measured by
impulse excitation of vibration method [33]. The Young’s modulus
of three 16 × 40 × 25 mm3 samples was measured in bending con-
figuration up to 1050 ◦C (the maximum temperature of the device)
at 3 ◦C·min−1. The dilatometric behaviour of the matrix is stable
enough [34] to consider that the modulus should not vary signifi-
cantly up to 1200 ◦C, the temperature of the creep tests performed
in this study. Moreover, the instantaneous strains and deflections
will be subtracted from all experimental and numerical data con-
sidered for calibration purpose. The effect of elasticity is therefore
expected to be only of the second order. A value of 45 GPa will be
considered for the Young’s modulus at 1200 ◦C, with a ±2 GPa dis-
persion related to the material heterogeneity. The shear modulus
was measured at room temperature in a torsional configuration.



The value of the Poisson’s ratio at room temperature, 0.1, has been
assumed to stay constant with temperature. It is noteworthy that
the Young’s modulus of this kind of materials is the same in ten-
sion and compression [35]. The elastic part of the strain is therefore
linear isotropic and symmetric, following the generalized Hooke’s
law.

2.3. Bending creep experiment

The bending data used in this study are those described in a
previous paper [13] (the same batch of concrete was used) and pro-
vide the neutral axis location after bending creep at 1200 ◦C. This
temperature is high enough to involve creep without macroscopic
damage [13] and is just below the onset of an important shrink-
age of the matrix [34]. The bending specimens (35 × 40 × 165 mm3)
were cast under vibrations and kept in the mould for 24 h at room
temperature until the concrete sets. The specimen are then dried at
110 ◦C for 24 h and fired at 1200 ◦C for 30 h. Finally, the four faces of
the specimen are ground to get plane and parallel bearing surfaces
and obtain a relevant texture to perform 3D-DIC measurements.

2.4. Compressive creep experiment

The bending data are useful as they involve tension in the mate-
rial. To complete these experiments, compression tests have been
performed at 1200 ◦C with alumina plates using the same setup as
depicted in [36]. The specimens were 40 mm in height and 25 mm
in diameter and were machined in a bending specimen with a dia-
mond drill bit. The creep duration was 11 h for specimens under
compressive stress levels of 3, 4, 5 and 6 MPa. Another test at 3 MPa
for 25 h was also perform to assess the repeatability of the experi-
ment and investigate the limit of the primary creep.

Friction plays a non-negligible role in the compression tests, as
non-desired mechanism of dissipation, involving shear stresses and
non-uniform loading. The coefficient of kinetic friction between a
concrete pin with a 25 mm-radius spherical contact surface and an
alumina plate with the same roughness as the compression plates
was measured at room temperature. A mean value of 0.28 ± 0.03
was obtained with a normal load of 1 N and a linear sliding speed
of 2 mm·s−1. Another test at 1 m·s−1 has shown that the coefficient
of friction is first of the same value, but quickly increases up to 1
and more, probably under the effect of temperature increase. Two
assumptions will therefore be compared in the numerical analysis:
a sliding contact (Coulomb model) with a coefficient of friction of
0.28, and a sticky contact.

3. Model

The creep model used in this study is a built-in function of the
commercial software ABAQUS/Standard and detailed in the user
manual. A brief description is given here in order to clearly state
the assumptions made. This section also provides a description
of the numerical simulation of the experiments performed with
ABAQUS/Standard. In this model, the strain tensor is additively
decomposed into an elastic component and a creep component.

3.1. Uniaxial primary creep law

As explained previously in the introduction, the processing of
bending data necessitates considering the primary creep to prop-
erly compute the stress field in the specimen during the whole test
even if a stationary creep arises. It is also important for compres-
sion tests since friction at the contact with the plates induces a
triaxial state of stress that imply that the stationary creep, if any, is
not reached simultaneously in the whole specimen. The creep law

Table 2
Values of A1, m and n identified in the first one-dimensional case.

A1 (MPa−n s−(m + 1)) m n

2.57 10−5 −0.593 0.716

considered here is a usual 3 parameters creep law with strain hard-
ening, Eq. (1), including a Norton-type stress contribution, usually
used for refractories creep modelling [37].

ε̇cr =
[
A(!)n

[
(m+ 1) εcr

m
1
m+1

(1)

3.2. Drucker-Prager primary creep law

3.2.1. Equivalent creep stress
The tension/compression asymmetric creep behaviour of the

refractory concrete is modelled using a Drucker-Prager creep law.
The Drucker-Prager creep is an extension of the Drucker-Prager
plasticity criterion [21,22] that assumes that the creep intensity
depends not only on Mises equivalent stress q (function of the sec-
ond stress deviator invariant) but also on pressure p (function of the
first stress invariant). The tension/compression asymmetry thus
derives from a pressure effect and is not an effect of the third invari-
ant. The advantage of this model is that the creep law is the same in
tension and compression, allowing a reduced number of parame-
ters. The model introduces an equivalent stress $̄cr , Eq. (2), function
of q and p. Eq. (2) is the expression of the equivalent stress when
the model is calibrated from uniaxial compression data. Indeed, for
a compressive uniaxial state of stress (!< 0), Eq. (2) reduces to
!̄cr = −!, whereas for a tensile uniaxial state of stress (!> 0), it

leads to !̄cr = ! 1+ 1
3 tanˇ

1− 1
3 tanˇ

> !. For a given absolute value of the uni-

axial stress !, the equivalent stress is therefore higher in tension
than in compression implying a higher creep rate in tension.

!̄cr = q− p tanˇ
1 − 1

3 tanˇ
(2)

This model implies that any state of stress with the same equiv-
alent stress induces the same creep intensity. In the meridional
stress plane (p-q plane), the states of stress with the same equiva-
lent stress are defined by a straight line passing through the actual
(p,q) point and making an angle % with the p-axis. % is the material
angle of friction. In the deviatoric stress plane, the equivalent-creep
surface thus defined is the Mises circle.

It is noteworthy that if q ≤ p · tan
(
ˇ
)

(and assuming 1 −
1
3 tanˇ > 0), then !̄cr ≤ 0, what means that the material do not
creep. The states of stress involving a high hydrostatic pressure,
for which the model would predict no creep, do not fall into the
scope of the present model, only identified in bending and uniaxial
compression.

3.2.2. Creep flow
The creep flow derives from a hyperbolic pseudo-potential Gcr ,

Eq. (3), defined by three parameters: the dilation angle at high con-
fining pressure,  , the eccentricity, ε, that defines the curvature of
the potential, and the initial yield stress, !̄0, that must be set high
enough in the present case to prevent plasticity and activate only
a creep behaviour. This pseudo-potential is hyperbolic in the p-q
plane and corresponds to the Mises circle in the deviatoric stress
plane, and limits the model to isotropic hardening.

Gcr =
√(

ε!̄0 tan 
)2

+ q2 − p tan (3)

This potential form is continuous and smooth, especially at the
intersection with the p-axis, and asymptotically approaches the



Fig. 1. Meshes, boundary conditions and load application points for compressive (a) and bending (b) creep simulations.

equivalent-creep surface. In the present case, only bending and
compressive data are considered. Therefore the potential will be
chosen as close as possible to the equivalent-creep surface by set-
ting arbitrarily the eccentricity parameter to the minimum value
allowable, 10−6. In such conditions, except in the vicinity of the p-
axis, the potential is very close to a straight line passing through
the actual (p,q) point and making an angle  with the p-axis, and
the potential is mainly defined by the value of the dilation angle.

As discussed in the introduction, the dilatancy of the flow is a
key feature of the creep behaviour when the first stress invariant
is introduced in the equivalent creep stress. Two assumptions are
considered in the paper. First, the assumption of creep incompress-
ibility is formulated, leading to a non-dilatant flow with = 0 (the
potential only depends on q). Then the hypothesis of normality will
be assessed by setting the dilation angle to the friction angle value,
 = ˇ. It is noteworthy that even with the minimum value of the
eccentricity, the flow is not exactly associated, especially in the
vicinity of the p-axis.

The uniaxial creep law, Eq. (1), is translated to the triaxial case,

Eq. (4), and relates the equivalent creep strain rate,
˙
ε̄
cr

, to the equiv-
alent creep stress, !̄cr , and the equivalent creep strain, ε̄cr , in order
to account for the non-linear primary creep through an isotropic
strain hardening.

˙
ε̄
cr

=
[
A !̄cr

)n[
(m+ 1) ε̄cr

m
1
m+1

(4)

From Eq. (4), the scalar equivalent creep strain rate,
˙
ε̄
cr

, can be com-
puted at each time step, and contributes to calculate the creep strain

rate tensor
˙
=
ε

cr

, calculated from Eq. (5), where f cr is defined in such

a way that
˙
=
ε

cr

is work conjugate to
=
!, Eq. (6), as well as

˙
ε̄
cr

is work
conjugate to !̄cr (cf. ABAQUS Theory Manual for further details on
the numerical integration of these equations by the backward Euler
method, selected through the activation of geometrically nonlin-
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Fig. 2. Comparison of experiment (o) with the creep model (−) calibrated assuming unidirectional compression.



a

b

Fig. 3. Least square gap (arbitrary unit) between simulated and experimental strain fields as a function of A (unit MPa−n s−(m + 1)) and ˇ (◦) assuming (a) a non-dilatant flow
and (b) an associated flow.

ear analyses even if only small strains are involved in the problems
under consideration).
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3.3. Finite element computations

The numerical simulations of the compression creep tests were
carried out with axi-symmetric elements and a symmetry plane
was defined at the mid-height of the specimen, as depicted in
Fig. 1a. The compression plate was schematised as a discrete rigid
body and a load is applied on it. The 12.5 × 20 mm2 rectangular
geometry was meshed with 170 linear quadrilateral elements by
considering a single bias in both directions in order to ensure a
finer element size in the vicinity of the edge of the specimen, in
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Fig. 4. Comparison of the longitudinal total strain field in the bending specimen computed at the end of creep test and measured after unloading assuming a non-dilatant
or an associated flow.

contact with the compression plates. The length of the element
edge thus ranges between 0.4 and 2 mm (the simulations provide
similar results using a twice finer mesh).

The numerical simulations of the bending creep tests were per-
formed with plane strain elements and a symmetry plane was
defined in the mid-length of the specimen, as depicted in Fig. 1b.
The support and loading points are 12 mm diameter arcs of cir-
cle schematised as analytical surfaces. The former is fixed and a
load of 200 N is applied on the latter. The results reported in Sec-
tion 4 for the calibration of the model were obtained by meshing

the 40 × 80 mm2 rectangular geometry with 800 linear 2 mm edge
square elements. Indeed, a sensitivity analysis to the mesh size
(performed a priori with arbitrary parameters values and a pos-
teriori with the optimal set of parameters) showed that the strain
field at the symmetry plane is not sensitive to the element size:
after a creep step of 25 min, the discrepancy between the minimal
strain obtained with a mesh size of 2 mm and 0.5 mm is about 2%,
and lower than 1% for the maximal strains. The strain field being
linear, the neutral axis location is therefore insensitive to the mesh
size.

Fig. 5. Neutral axis location ($y/h) as a function of ˇ and A assuming an associated flow.



Table 3
Values of A2 and ˇ identified from bending creep full-field measurements.

Assumption  (◦) A2 (MPa−n s−(m + 1)) ˇ (◦)

Non-dilatant flow 0 2.57 10−5 56.5
Associated flow 42.9 1.80 10−5 42.9

In contrast, the bending creep results reported in Section 5 and
computed with the optimal set of parameters, were obtained with
a mesh size of 0.5 mm. Indeed, the specimen deflection turns out to
be sensitive to the mesh size, because of the material deformation
at the contact with the support and loading points: a discrepancy
of 13% is obtained considering element sizes of 0.5 and 2 mm (the
error is estimated at 15% for 2 mm and 1.4% for 0.5 mm, assuming
a quadratic fit of the deflection computed with an element size of
0.5, 1, 1.5 and 2 mm). Moreover the computation time is not so
important here since only one computation is performed.

In all cases, the load was applied on the reference point that
controls the motion of the rigid body and the analytical surface, i.e.
respectively the compression plate and the upper loading point. The
contact between the specimen and the rigid bodies assumes either
sliding with a coefficient of friction of 0.28 or a sticky contact.

4. Results of model calibration

The methodology involved to identify the parameters of the
Drucker-Prager creep law includes three steps. The compression
data are first processed as one-dimensional creep to identify the
parameters of the creep law, m and n, and to assess a first value
A1 of parameter A. The angle of friction ˇ of the material is then
identified from kinematic full-field measurements performed dur-
ing interrupted bending creep tests, to account for the shift of the
neutral axis location. Finally, the compression tests are simulated
to take friction with the plate into account and identify the final
value of A.

4.1. One-dimensional calibration

A first set of parameters was identified using a one-dimensional
model consisting in a numerical integration of Eq. (1) using the
trapezoidal rule. The experimental stress is imposed as boundary
condition. A Newton algorithm was used to identify the values of
parameters m and n and a first value A1 of parameter A, considering
the four compressive tests at 1200 ◦C under nominal stress levels
of 3, 4, 5 and 6 MPa.

Fig. 2 compares the experimental data and the results of this
model obtained with the optimum set of parameters reported in
Table 2. Considering the unavoidable scattering inherent to the
characterisation of heterogeneous materials, a very proper agree-
ment is observed over the whole duration of the tests irrespective
of the experiment under consideration, with a maximum gap lower
than 9% for the 4 MPa curve and lower than 6% for the other curves.
The form of the creep law, Eq. (1), is thus able to properly account
for the hardening occurring during the primary creep under com-
pression.

Table 4
Values of A identified from compressive creep experiments.

Flow assumption Contact  (◦) A (MPa−n s−(m + 1)) ˇ (◦)

Non-dilatant flow Sliding with friction 0 3.18 10−5 56.5
Associated flow Sliding with friction 42.9 3.01 10−5 42.9
Associated flow Sticky 42.9 3.54 10−5 42.9
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Fig. 6. Comparison of experimental (circles and squares) and simulated (lines) com-
pressive creep behaviours assuming (a) a non-dilatant flow and a sliding contact
between the specimen and the plates, (b) an associated flow and a sliding contact
between the specimen and the plates and (c) an associated flow and sticky contact
between the specimen and the plates.
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4.2. Identification of the angle of friction ˇ

The angle of friction ˇ is the parameter that controls the sen-
sitivity of the equivalent creep stress to the pressure, and thus
controls the creep asymmetry, assessed in this study through the
neutral axis location measured in the interrupted bending exper-
iment reported in [13]. As the equivalent creep stress depends on
ˇ, the value of this parameter may be calibrated together with the
parameter A to ensure that the creep strain rate remains the same
when changing ˇ (and thus still matches the experimental creep
curves). The parameterm of the creep law can keep the same value
identified in the unidirectional approach, since ˇ does not affect
the isotropic hardening. It was also verified that the last parameter
of the creep law, n, could be kept constant to still properly repre-
sent the effect of stress. Indeed considering pure compression tests
under several loads, the equivalent creep stress is proportional to
the Mises equivalent stress (independent on the material param-
eters), and the effect of changing ˇ can be compensated only by
adjusting A.

Therefore ˇ is identified together with a second value A2 of
parameter A. This calibration is performed based upon matching
the longitudinal strain field computed along the symmetry line
(Fig. 1b) to the experimental strain field reported in [13]. Several
simulations of the bending creep experiment were performed vary-
ing the values ofA andˇ in order to build the response surface of the
model, considering both assumptions of non-dilatant flow (Fig. 3a)
and associated flow (Fig. 3b).

For each simulation, the longitudinal component of the total
strain along the symmetry line (cf. Fig. 1b) was extracted and fitted
using a 6-th degree polynomial in order to interpolate the data at
the experimental values, and to compute the gap with the experi-
mental strain field using the least square method. The coordinate
where the longitudinal component of the total strain is zero was
also interpolated using the polynomial fit to compute the location
of the simulated neutral axis.

These results are reported in Fig. 3 and show that an optimal
value can be found for each assumption, as evidenced by the con-
tour plot under the surfaces. The value A2 of parameter A and of ˇ
corresponding to the optimisation considering both assumptions
are summarized in Table 3. This identification shows that the value
of ˇ is significantly affected by the assumption under considera-
tion. A very high value of 56.5◦ is found assuming a non-dilatant
flow.

Fig. 4 compares the experimental strain field to the results of
both calibrations assuming a non-dilatant flow or an associated
flow. A first observation shows that each assumption satisfactorily
reproduces the strain field in the areas where the strain is large, i.e.
far away from the neutral axis. In the vicinity of the neutral axis,
the assumption of associated flow seems closer to the experimen-
tal curve but the experimental data may not be accurate enough in
this low-strain area to argue the validity of this assumption.

In this approach, it has been assumed that the location of the
neutral axis didn’t change between the interruption of the creep
test (at 1200 ◦C) and the full-field measurement performed at room
temperature (the elastic springback and relaxation occurring after
unloading and during cooling are not accounted for). This assump-
tion will be discussed further considering the numerical results
(Section 5.2).

Therefore A2 is not expected to be the actual value of A because
the simulation doesn’t account for the specimen deformation
occurring between the interruption of the creep test and the full-
field measurement. The experimental and simulated strain fields
may thus not be the same, and only the location of the neutral axis
is assumed to be the same.

Fig. 5 completes the results of Fig. 3a and plots the neutral axis
location (parameterized by the ratio between the neutral axis shift
$y and the specimen height h) computed assuming an associated
flow, as a function of parameters ˇ and A. The figure shows that the
neutral axis location is a one-to-one function of ˇ ranging between
30 and 45◦, irrespective of the A value. This result validates the
methodology of calibration by showing that even if the value of A2
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identified in this step is not the final one, the value of ˇ is the one
that implies the right neutral axis location and thus controls the
creep asymmetry. A similar conclusion can be formulated consid-
ering the non-dilatant assumption.

4.3. Calibration of A from compressive creep

The compressive creep experiments are simulated in
ABAQUS/Standard in order to impose proper boundary condi-
tions at the contact between the sample and the plates. The
parametersm, n, and ˇ are set to their value identified previously.

The final value of A is identified in such a way that the simulation
matches the compressive creep experiments. For each assumption
(dilatant flow with sliding contact, associated flow with sliding
contact and associated flow with sticky contact), four Newton
iterations are performed to obtain the values reported in Table 4
and provide the same creep curves when compared to experiment
(Fig. 6), i.e. a gap lower than 2% with the unidirectional calibration.
It is noteworthy that the comparison to the experimental com-
pressive creep curves provides approximately the same results,
depending on the residual of the identification, irrespective of
the assumption of unidirectional compression, non-dilatant or



Fig. 9. Neutral axis shift during a bending creep test computed considering the locus of zero stress (S11 = 0) and the locus of zero total strain (LE11 = 0).

associated flow, which highlights that the compression tests are
not sufficient to characterize the creep behaviour of the concrete.

4.4. Analysis of the sample profile

In order to further investigate the dilatancy assumption, as well
as the actual tribological behaviour during the compressive creep
experiments, a simulated sample profile will be compared to an
experimental one. The reference experimental sample profile is the
average of four linear scans performed along the axis of the sample
subjected to a compression stress of 3 MPa for 25 h (and thus not
used for calibration) with an extended field confocal microscope
(AltiSurf520, Altimet).

Fig. 7 compares the change in radius along the sample axis
obtained from simulation and measured on the compression spec-
imen subjected to 3 MPa for 25 h at 1200 ◦C. The experimental
profile was measured using the extended field confocal microscope,
and was used together with a measurement of the maximal speci-
men diameter with a micrometer to assess the change in radius.
This value is therefore less accurate than the profile itself and
an uncertainty on the vertical position of the experimental curve
must be considered in Fig. 7. However, the assumption of a non-
dilatant flow provides an average change in radius significantly
lower than the experimental one. In addition, the very good agree-
ment (highlighted by the translated experimental curve) between
the experimental profile and the simulated profile demonstrates
that both assumptions of sticky contact and associated flow are
very realistic, and are the only ones (among the tested assump-
tions) that allow to accurately account for the compressive creep
curves, the neutral axis location and the sample curvature.

5. Discussion

In this section, the model results are compared to experiment
in order to assess its limits. Finally the discussion will focus on the
neutral axis shift during bending creep.

5.1. Comparison of simulated and experimental bending
behaviours

The creep bending experiment was simulated using the opti-
mized set of parameters, i.e. corresponding to the calibration
assuming an associated flow with sticky contact for compression
(Table 4). For bending simulation, the sticky contact assumption
provides inconsistent results compared to the experimental strain
field, and a sliding contact with friction (coefficient of friction of
0.28) was therefore assumed, as it was also assumed to identify
the value of ˇ (Section 4.2). The difference between the contact
conditions in both cases, compression and bending, is not surpris-
ing considering the different geometries in contact, as well as the
different contact pressures and tangential stresses. Moreover the
bending loading points are not fastened on their support and may
be free to sligthly rotate.

Fig. 8a compares the longitudinal total strain field computed
with the aforementioned model during interrupted bending creep
to the experimental results reported in [13]. As expected from the
discussion of the influence of ˇ, all curves intersect each other at a
strain of zero, and the simulation provides higher strain values due
to the high value of A necessary to fit the compression data.

Fig. 8b compares the bending deflection computed consider-
ing a continuous bending creep and an interrupted bending creep
to experimental data obtained from two different specimens dur-
ing continuous and interrupted creep. The first rough comparison
of simulation and experiment confirms the strain overestima-
tion shown in Fig. 8a since the computed deflection is overall
20% higher than the experimental one. Considering the available
experimental curves, it seems that this cannot result from the mate-
rial heterogeneity alone. Moreover, the deflection decrease during
the unloading, relaxation and cooling steps (partly plotted only
for the interrupted experiment) is widely underestimated by the
simulation of the unloading step. During the loading steps after
test interruption, the experiment shows a significant deflection
increase, and the curve tends toward a creep curve parallel to the
continuous experiment. The simulation doesn’t account for this
behaviour and the computed creep curve tends toward the con-
tinuous computed behaviour. It is noteworthy that at least part of
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this behaviour may result from the setup deformation during load-
ing and unloading steps, and also from a compaction of the material
at the contact with the support and loading points.

However the assumption of isotropic hardening is here invali-
dated by the loading behaviour after a creep-unloading sequence.
Indeed, the isotropic hardening remains constant during unload-
ing while a kinematic hardening would change. It could indicate
that the main mechanism involved during primary creep is related
to the motion of hard particles in a glassy matrix, more consistent
with a kinematic hardening than an isotropic one. This mechanism
is also consistent with the dilatant behaviour of the material if the
hard particles are not spherical as it is the case in this material.
Nevertheless, under monotonic conditions, the model will be able

to properly describe the material behaviour and will be used in
Section 5.2 to investigate the neutral axis shift while bending creep.

5.2. Analysis of the neutral axis shift during bending creep

The simulation of bending creep allows analysing the shift of
the neutral axis. Fig. 9 compares the neutral axis shift during creep
(loading not considered) depending on the chosen criterion: locus
of zero-stress (S11 = 0) or locus of zero-total strain (LE11 = 0). Due
to the very low elastic strain compared to total strain, the locus of
zero-creep strain is very similar to the locus of zero-total strain.
The neutral axis at the end of creep is thus very closed to its loca-
tion after unloading, as assumed in Section 4.2 for the identification
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of ˇ. Irrespective of the neutral axis definition, the neutral axis
location rapidly stabilizes whereas the deflection curve is still non-
linear. In contrast, Leplay et al. [14] report a significant neutral axis
shift together with a perfectly linear bending creep, showing that
the asymmetric creep alone doesn’t imply that the global bend-
ing behaviour is non-linear. It is noteworthy that the final neutral
axis location ($y/h = 0.09) reported in [14] is much lower than
the value found in this study ($y/h = 0.27) considering the locus
of zero-total strain.

Fig. 10a plots the total strain computed at the mid-plane (y/h =
0) and on the lower (y/h = −0.5) and upper (y/h = 0.5) faces of the
specimen, as well as in the vicinity of the final neutral axis loca-
tion (y/h = 0.272), during creep (loading not considered). The creep
strain follows the same evolution at each point. This figure illus-
trates that the total and creep strains fields remain almost linear in
the height of the specimen all along the creep.

In contrast, the stress field change due to creep at the lower
and upper faces (Fig. 10b) results in a bilinear profile shape due to
asymmetric creep, with a lower slope in the tensile area than in
the compressive one, and a tensile area larger than the compres-
sive one. When the creep flow stabilizes, the maximal tensile stress
begins to decrease because of a fast creep related to a high equiv-
alent stress; the mean stress in the tensile area therefore tends to
decrease, what is counterbalanced by a second shift of the neutral
axis (between 300 and 500 s in Fig. 9).

As shown in [13] using an analytical model of stationary creep,
Fig. 11 confirms that an amount of material, initially under com-
pression during the loading step, is finally subjected to tensile
stress, as the result of the neutral axis shift. At y/h = 0.272, the
transition from a compressive to a tensile state of stress leads the
total strain, initially negative, to tend toward positive values during
the creep. This phenomenon may explain why the model overes-

timates the creep strain in bending, as this test is not monotonic
anywhere in the specimen. The assumption of isotropic hardening
would therefore imply some inconstancy in the modelling results.

6. Conclusions

This paper reports an analysis of experimental data obtained
from simple monotonic compression and bending creep tests at
1200 ◦C through the Drucker-Prager creep model. The aim of the
study is to assess the capability of the model to properly account
for the tension/compression asymmetry evidenced in the creep
behaviour of the fibre-reinforced refractory concrete under study.
The analysis focuses on the primary creep of the material through
an isotropic strain hardening law, assumed a priori.

A multi-steps method is proposed to calibrate this model,
using kinematic full-field measurements performed on interrupted
bending creep specimens. A calibration method involving only
usual tests at high temperature, instead of complex triaxial tests, is
of prior interest for technical applications and in order to charac-
terize the creep behaviour over a large temperature range.

The model proved to be able to properly describe the compres-
sive behaviour, together with accounting for the location of the
neutral axis of bending specimen, shifted from the mid-plane after
creep. It was possible irrespective of the assumption formulated on
the dilatancy of the creep flow. However the geometrical charac-
terisation of a compression sample shows that the flow is dilatant,
and that the flow pseudo-potential must be built in such a way that
the hypothesis of normality holds true (here, dilatancy and friction
angles are equal). However, the model is not able to simultaneously
reproduce compressive and bending creep curves (the simulated
bending deflection is 20% higher than the experimental one and
the simulated strain field is twice the experimental one), because
the assumption of isotropic hardening is probably not relevant.

Despite this partial agreement with experimental results, show-
ing that an assumption of kinematic hardening would better
describe the behaviour during unloading and reloading, the model
allows analysing the neutral axis shift during creep bending. This
analysis shows that the neutral axis very quickly stabilizes toward
a given location. These results show that simulation is unavoidable
to catch the complexity of the stress field change in bending creep,
and further build a more relevant model.
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