
HAL Id: hal-01608991
https://hal.science/hal-01608991

Submitted on 3 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An FPGA-based architecture for embedded systems
performance acceleration applied to Optimum-Path

Forest classifier
Wendell F.S. Diniz, Vincent Frémont, Isabelle Fantoni, Eurípedes G.O.

Nóbrega

To cite this version:
Wendell F.S. Diniz, Vincent Frémont, Isabelle Fantoni, Eurípedes G.O. Nóbrega. An FPGA-based
architecture for embedded systems performance acceleration applied to Optimum-Path Forest clas-
sifier. Microprocessors and Microsystems: Embedded Hardware Design , 2017, 52, pp.261 - 271.
�10.1016/j.micpro.2017.06.013�. �hal-01608991�

https://hal.science/hal-01608991
https://hal.archives-ouvertes.fr

An FPGA-based architecture for embedded systems performance acceleration
applied to Optimum-Path Forest classifier

Wendell F. S. Diniza,b,∗, Vincent Fremontb, Isabelle Fantonib, Euŕıpedes G. O. Nóbregaa

aDepartment of Computational Mechanics, Faculty of Mechanical Engineering, University of Campinas. Rua Mendeleyev, 200 - CEP
13083-860 Cidade Universitária Zeferino Vaz - Campinas - SP

bSorbonne universités, Université de technologie de Compiègne, CNRS 7253 UMR/Heudiasyc. CS 60319, 60203 Compiègne cedex

Abstract

Classification techniques development constitutes a foundation for machine learning evolution, which has become a
major part of the current mainstream of Artificial Intelligence research lines. However, the computational cost associated
with these techniques limits their use in resource constrained embedded platforms. As the classification task is often
combined with other high computational cost functions, efficient performance of the main modules is fundamental
requirements to achieve hard real-time speed for the whole system. Graph-based machine learning techniques offer
a powerful framework for building classifiers. Optimum-Path Forest (OPF) is a graph-based classifier presenting the
interesting ability to provide nonlinear classes separation surfaces. This work proposes a SoC/FPGA based design and
implementation of an architecture for embedded applications, presenting a hardware converted algorithm for an OPF
classifier. Comparison of the achieved results with an embedded processor software implementation shows accelerations
of the OPF classification from 2.18 to 9 times, which permits to expect real-time performance to embedded applications.

Keywords: FPGA implementation, Machine Learning, Classification, Optimum-path Forest

1. Introduction

Machine learning methods for object detection, recog-
nition, and classification are key features for autonomous
robotic systems. Current development approaches have
been mainly relying on efficient parallel computation based5

on Graphics Processing Units (GPUs), which are generally
intensive power consumers. On the other hand, embed-
ded applications have been turning into the more common
computational application nowadays, which may greatly be-
nefit from embedded parallel computation solutions. FPGA10

(Field Programmable Gate-Array) systems present hard-
ware concurrency and high modularity, being a natural
candidate to implement low power parallel programming
concepts. FPGA-based solutions can face the complexity
of advanced machine learning approaches, enabling these15

applications in small robots with limited power resources.
FPGAs present a level of flexibility that general purpose

CPUs can not reach. Also, their computational power by
energy consumption rate surpasses GPUs’, with the newest
models offering even more computational power than late20

GPU models [1, 2]. In the last years, the main producers
introduced SoC/FPGA boards, incorporating in the same
encapsulation a regular processor, an FPGA and a high-
speed communication bus between them. This type of SoC

∗Corresponding author
Email address: wdiniz@fem.unicamp.br, wfiorava@hds.utc.fr

(Wendell F. S. Diniz)

(System on a Chip) is a very convenient one to implement25

parallel digital processing, with extended flexibility due to
the heterogeneous processors configuration.

Graph-based pattern recognition provides an interesting
and powerful framework for classification problems. These
methods formulate the classification problem as a graph,30

where the nodes represent the samples’ feature vectors and
the edges represent the relation between nodes. Application
of heuristic rules leads to identify groups of similar samples
as sets of connected components, which are then used to
classify unknown samples.35

Recently, the Optimum-path Forest (OPF) has been
proposed as a new framework for graph-based classifica-
tion [3, 4]. The method addresses a graph partition task
as a competitive process, in which a series of connected
components, rooted on key samples called prototypes, try40

to conquer the unknown samples according to a path-cost
function. The prototype that offers the best reward propag-
ates its label to the unknown sample. The method has
shown good performance in several applications, present-
ing similar accuracy to known methods such as Support45

Vector Machines (SVM) and Artificial Neural Networks
(ANN) [5, 6, 7, 8]. The set of operations used by the OPF
algorithms consists of vector-based operations with great
potential for fine-grain parallelism. This characteristic can
be explored to build a classification framework dedicated50

to the embedded systems. All these ideas point to FPGA-
based solutions as an attractive option to provide hardware
acceleration by parallelism to OPF algorithms, while keep-

Preprint submitted to Microprocessors and Microsystems 11th May 2017

ing small power consumption. Some recent works present
parallel implementations of the OPF training stage using55

the OpenMP specification [9] and GPUs [10, 11].
The main contribution of this work is the design, imple-

mentation, and test of an FPGA-based parallel processing
architecture for the OPF classifier, aiming embedded ma-
chine learning systems. The main goal is to achieve hard-60

ware acceleration provided by adopting SoC/FPGA flexible
devices. The designed system is intended to fit into hard
real-time signal processing applications, however implying
a low power system. The processing speed gain will be
evaluated by comparison between the parallel hardware65

implementation and the algorithm software version running
on the SoC embedded processor. The main architectural
challenge is to balance parallelism with memory manage-
ment, considering latency efficiency and bandwidth.

Recent launching of an OpenCL (Open Computing70

Language) compiler aiming FPGA development, imply-
ing shorter development times through an efficient work-
flow proposition, makes it the today preferred language
to adopt for parallel programming [12, 13]. Regarding
OPF algorithm development and performance, some OPF75

published classifiers can greatly benefit from an effective
embedded architectural framework. The versatility of the
classifier and its potential for parallelism and application
for embedded systems is the main motivation to adopt the
OPF to exemplify the proposed architecture. To the better80

knowledge of the authors, there are no published works
presenting an FPGA-based parallel architecture focusing
on the classification stage or the respective implementation
of the OPF algorithm adopting OpenCL.

The paper structure is presented in the following: Sec-85

tion 2 presents a literature review of OPF applications
and hardware-based approaches for machine learning using
FPGA. Section 3 presents an overview of the OPF classifier
followed by the guidelines for its implementation in FPGA
hardware in Section 4. Section 5 proceeds with the perform-90

ance evaluation of the proposed implementation. Finally,
Section 6 presents the paper conclusions and directions for
future developments.

2. Related works

2.1. Optimum-path Forest theory and applications95

An OPF based classifier can be viewed as a generaliza-
tion of the Image Forest Transform (IFT) [14], which is a
design tool for image processing operators. Both algorithms
share the principle of a clustering of similar nodes offering
a reward measured by the path-cost function, in order to100

conquer a new individual one. The OPF classifier extends
the concepts of IFT from images to general graphs [3].
The pixels and intensity/color values of the images are
respectively equivalent to samples and feature vectors in
a classification task. Those features can be extracted in105

many different application-specific ways. For example, the
feature vectors may be just an intensity vector for RGB

levels, or, to design a face recognition system, the feature
vectors may be a description of salience points using a well-
known technique, as SIFT [15] or Haar-like feature [16],110

among many others. Moreover, OPF presents some inter-
esting characteristics: it is non-parametric, intrinsically
multi-class, can deal with non-linear feature spaces without
requiring a transformation or change in domain, does not
make any assumption about the shapes of the classes and115

can handle some degree of overlapping between classes.
Both supervised and unsupervised learning approaches are
possible to be used for training an OPF system, however,
for the moment, the focus is on the supervised learning
version.120

The method has been successfully applied to several clas-
sification tasks, including spoken emotion recognition [6],
oropharyngeal dysphagia identification [5], infrared face
recognition [7], and satellite image processing for land use
classification [8]. Considering these publications, OPF125

showed to be at least at a similar level of accuracy and
computational efficiency of the well-known Support Vectors
Machine (SVM) classifier. The implementation complexity
of the OPF is also smaller than SVM’s, which, allied to its
faster execution time, indicate its suitability for embedded130

applications.

2.2. FPGA accelerated machine learning

FPGAs have been consistently used as an alternative
for building high-performance embedded systems. Their
employment on classification tasks has several examples.135

Artificial neural networks were the first methods to take
advantage of the massive parallelism capacity offered by
FPGA implementations. Reference [17] shows an early
effort in this field, presenting an architecture suitable for
applications in image processing, pattern recognition, and140

neural networks. It uses a Single Instruction Multiple Data
(SIMD) approach, with a network of Processing Elements
(PE) and a custom memory controller for distributing data
among the PEs. Recently, new developments in this area
can be found in [18, 19].145

FPGA promises have attracted implementation of sev-
eral classification methods. An SVM application for single
digit recognition using an FPGA implementation can be
found in [20]. Parallel to improvements in the SVM al-
gorithm and evolution of the FPGA devices themselves,150

new propositions for SVM implementations appeared in
[21, 22, 23]. In the recent years, CV applications, such
as pedestrian detection, have received some FPGA imple-
mentations [24, 25]. Convolutional Neural Networks, which
has been the basis for Deep Learning applications, are also155

often implemented in FPGA [26, 27, 28, 29].

3. Optimum-path Forest Classifier

The following subsections present the adopted OPF
supervised training and classification stage details.

2

3.1. Training stage160

The basic training routine presented in [3] is done in
two stages, called fitting and learning phases. The fitting
phase starts with the selection of a set of samples from the
data universe to act as the training set. Considering that
this set must represent all possible classes, the algorithm165

fits the problem by constructing a complete graph using
the training set samples as the nodes. The weights of the
edges are obtained by calculating the dissimilarity between
the nodes, using a previously defined dissimilarity function.
The Euclidean distance (L2 norm) is the most used dissim-170

ilarity function, but it can be substituted by any distance
function that suits a particular requirement of an applic-
ation. From this complete graph, a Minimum Spanning
Tree (MST) is extracted. The algorithm associates a cost
to each node and also mark special nodes called prototypes.175

The prototypes are defined as nodes of different classes
that share an edge. The edges between prototypes are then
removed because they are the leaves of a classification tree,
consequently, the associated cost for all prototypes is set to
0. The algorithm then assigns to each node their respective180

cost, which corresponds to the value of the maximum edge
weight found in the path from the node to its respective
prototype. The fitting process is shown on Figure 1.

The resulting forest can be directly used to classify the
unknown samples, but some methods were proposed to185

increase the accuracy of the classifier including another set
of samples called the evaluation set [3, 30]. The classifier
is built from the training set, and its accuracy is evaluated
by classifying the samples in the evaluation set. A learning
procedure is applied, consisting in switching misclassified190

nodes in the evaluation set with samples of the training
set and restarting the training and evaluation again with
the new sets. After a determined number of restarting
iterations, depending on an adopted convergence criterion,
the instance with the best accuracy is selected as the classi-195

fier. This procedure is meant to find the most informative
samples in the universe set for being used for the final
classifier.

3.2. Classification stage

For a given unknown sample s, its resulting classification200

label λ(s) is given by:

λ(s) = λ(t) | t = min
∀t∈T
{max{C(t), d(s, t)}}, (1)

where T is the classifier set, C(t) is the associated cost of
the classifier nodes and d(s, t) is the value returned by the
dissimilarity function. The tree that offers the minimum
cost to connect to the unknown sample, that is, the one that205

holds the lesser dissimilarity, propagates its class to the
sample. So, the classification is a process of minimization
of dissimilarity. The classification process is exemplified in
Figure 2.

Papa et al. [30] present a variation of the classifying210

algorithm exploring a theoretical property of the OPF that

can accelerate the classification process. As the classifier
finds the node that offers the minimum cost to connect
to the unknown sample, one can assume that the winning
one will have a small cost (not necessarily the lowest). So,215

if we present the classifier’s nodes in an ascending order
of their costs, the probability of the winning one to be at
the beginning of the list is high. Then, one must search
through the list until it finishes (the worst case) or finds a
node whose cost is greater than the calculated cost for the220

unknown sample in the previous iteration. That node is
the winner node. Algorithm 1 shows the process.

Algorithm 1 OPF classification algorithm.

Require: Ordered classifier set T , label map λ(T), con-
nectivity cost map C(T), dissimilarity function d(s, t)
and test set S.

Output: Test set label map λ(S).
Auxiliary: Variables tmp and mincost, counter i.

1: function OPF Classifying(T)
2: for all s ∈ S do
3: i← 1
4: mincost← max{C(ti), d(s, ti)}
5: λ(s)← λ(ti)
6: while i < |T | and mincost > C(ti+1) do
7: tmp← max{C(ti+1), d(s, C(ti+ i)}
8: if tmp < mincost then
9: mincost← tmp

10: λ(s)← λ(ti+1)
11: end if
12: i← i+ 1
13: end while
14: end for
15: end function

4. Proposed FPGA architecture for OPF classific-
ation

4.1. High level system design225

The proposed architecture was conceived to use an
SIMD (Single Instruction, Multiple Data) based auxiliary
Parallel Processor associated with a Host Processor (HP)
and a double-access global memory module. Figure 3 shows
an overview of the main system. In the adopted config-230

uration, the host processor controls the main application
execution flow, managing the data access, and dispatching
commands to the parallel processor (PP). HP processed
data written on the Global Memory (GM) is distributed
by PP to be processed in parallel by the several processors235

that are inside the Elementary Processor Array (EPA). As
the processing task finishes, it signals the host back.

The host processor can be based on any kind of all-
purpose device. It is usually programmed using a high-level
programming language, like C/C++.240

The auxiliary parallel processor is designed to execute
the computationally intensive tasks of the application. It

3

0.5

0.4

0.7

1.0
0.7

1.1

0.8

1.1

0.9

1.0
0.8

0.2

0.5

0.6

0.3

(a)

0.5

0.4

0.2

0.5

0.3

(b)

0.5

0.4

0.5

0.3

(c)

(0, 0.4)

(0, 0.5)

(0, 0.0)

(1, 0.5)

(1, 0.3)

(1, 0.0)

(d)

Figure 1: Training sequence for the OPF classifier. In (a), the complete graph with edges weighted by dissimilarity. In (b), the Minimum
Spanning Tree is found. Following, in (c), the prototypes are marked and their connections undone. The last step, shown in (d), is to assign
the labels and the costs for each node. The prototypes are assigned a cost of 0 and propagate their labels to the nodes in their trees. The cost
of the nodes are the maximum value of the edges in the path from them to their respective prototypes.

consists of a Control Logic Module (CLM) and one or more
EPA. Communication with HP is done via an interconnec-
ted bridge, which also grants access to GM, which is the245

main interface for data exchange between the processors.
The bridge implements a shared access policy which contrib-
utes to reducing data access latency and a Direct Memory
Access (DMA) channel (not shown Figure 3) grants the
parallel processor the ability to read and write data directly,250

making better use of the bandwidth. The host processor
controls the DMA channels, avoiding racing conditions
that could corrupt the data, through an arbiter that orders
access requests to the shared region, and also protecting
the access to reserved areas. This policy also allows the255

parallel processor to run asynchronously, leaving the host
processor free to run other tasks.

Control Logic Module provides an interface with the
host processor for receiving commands and the memory
addresses to read and writing back. It also distributes260

the data among the EPAs, control their execution and
coordinates the memory access for writing back the results.

Figure 4 details the EPA configuration. Each EPA
is composed of a number of Elementary Processors (EP),
internal memories and a control module.265

Each EPA has its own Local Shared Memory (LSM)
with an associated Memory Management (MM) module.
This memory is used for fast data exchange between the
EPs. The MM module implements the same protection
policy to avoid memory corruption that the host processor270

uses. It is also responsible for coordinating the access to

the global memory. There is also a Local Private Memory
(LPM) module for each EP. The LPM access is managed
by the EP itself, which uses it to store intermediary data.

The Elementary Processors provide the core functional-275

ity to the application. They are responsible to effectively
execute the computationally intensive task to be accel-
erated. All the EPs are identical, executing the same
operation in different blocks of data, complying with a
hardwired SIMD architecture. Figure 5 shows how it is280

organized.
In this work, the EPs implement the OPF classifica-

tion algorithm shown in Algorithm 1. The dissimilarity
function is the most computationally expensive step in
the algorithm, therefore a specific hardware module imple-285

ments the respective process. Alongside the natural speed
gain by implementing the function in a dedicated hardware,
the architecture explores parallelism, enabling several data
chunks to be processed simultaneously. Nonetheless, the
parallel architecture was designed to be flexible enough to290

be adapted to different applications simply by redesigning
the EP.

4.2. System implementation details

Considering that OpenCL is available since 2013 for
Altera® products, representing a considerable advance to295

FPGA development [31], it was adopted for the implement-
ation of the proposed architecture. Because OpenCL is an
open standard for parallel programming on heterogeneous

4

(0, 0.4)

(0, 0.5)

(0, 0.0)

(1, 0.5)

(1, 0.3)

(1, 0.0)

0.6

0.3

0.9

0.5

0.4

0.8

(a)

(0, 0.4)

(0, 0.5)

(0, 0.0)

(1, 0.5)

(1, 0.3)

(1, 0.0)

0.6

0.3

0.9

0.5

0.4

0.8

(b)

(0, 0.4)

(0, 0.5)

(0, 0.0)

(1, 0.5)

(1, 0.3)

(1, 0.0)

0.6

0.3

0.9

0.5

0.4

0.8

(c)

(0, 0.4)

(0, 0.5)

(0, 0.0)

(1, 0.5)

(1, 0.3)

(1, 0.0)

(1, 0.4)

(d)

Figure 2: Classification sequence for the Optimum-Path Forest classifier. In (a), the unknown sample is presented to the classifier nodes. Then,
they compete to connect to the sample, offering their costs. The cost assumed by the sample is calculated according to OPF connectivity
function (Eq. 1). The values in parenthesis next to the nodes are, respectively, the label and the path cost from the node to its respective
prototype. In (b), notice in the highlighted path that although the node that generates this path is the closest to the sample, with a distance
of (0.3), the final path cost is given according to the OPF connectivity function, that is, the highest edge value in the path to the prototype,
resulting in a final path cost of (0.5). Then, in (c), applying the connectivity function to the highlighted path, results in a cost of (0.4). Finally,
in (d), after repeating the process to all possible paths, the one with the minimum path cost wins the unknown sample and gives its label.
Thus, the sample is classified as one of the square class.

B
r
i
d
g
e

CPU

Host Processor

Control
Logic Module

Parallel Processor

EPA #0 EPA #N...

...

Global Memory

Figure 3: Proposed architecture general overview. The two processing
elements communicate through a bridge that also grants memory
access. The parallel processor can receive parameters directly from
the host processor and seek the data out through a DMA channel
accessed from the bridge.

platforms, it may be seen as more than a language, imply-
ing a specific workflow, which provides solutions for FPGA300

design and implementation. Therefore, it complies exactly
with the HP/PP framework, which, adopting a SoC/FPGA
board, conducts to a natural function distribution between
the embedded microprocessor and the FPGA chip. This

lead to adopting the Arrow SoCKit as the development305

platform. It is built around a Cyclone V SoC FPGA chip
featuring, in a single chip, a dual-core A9-Cortex ARM
processor, an FPGA device and an internal high-speed
bridge connecting the processor to the FPGA fabric, as
well as a second low-speed bridge. The ARM processor en-310

ables the implementation of stand-alone embedded systems,
eliminating the need for an external host computer.

Some OpenCL key concepts that organize the parallel
code are necessary to be introduced. The first one is the
division of the code into parts: host code and device code.315

The host code is the sequential part of the application, com-
prising mostly algorithm configuration and execution flow
control. The device code is the computationally intensive
part that will run on the specific parallel hardware.

Parallel functions in the OpenCL context are called320

kernels, which are implemented by the programmer tak-
ing into account the parts of the application that require
parallel execution and using the respective available API
(Application Programming Interface). The OpenCL com-
piler converts it into the platform specific machine code325

according to the programmable device, in this case the
Cyclone V. This means that an OpenCL development is
comprised off a sequential part, written in C/C++ and ex-
ecuted in the host, which prepares data to be processed in

5

Local Shared Memory

Memory Management

EP #0 EP #1 EP #N...

...
Local
Private
Memory

Local
Private
Memory

Local
Private
Memory

EPA Control Logic Module

Figure 4: Elementary Processor Array (EPA) block diagram. Each
EPA has a Memory Management (MM) module that controls the
access to the external global memory and the local shared memory.
Each Elementary Processor (EP) can access these memories through
the MM. Individual local private memory blocks are accessed and
controlled by their respective EPs. A Control Logic Module manages
the application flow through parameters received by the external
controller.

parallel, and a sequence of kernel calls, written in OpenCL,330

to process the data in specialized parallel hardware.
Two other OpenCL important concepts are work-items

and work-groups. A work-item is the elementary processing
element in an OpenCL kernel, meaning the part of the
hardware designed to effectively execute parallel code and335

hardware implemented. A work-group is the user-defined
association of a given number or work-items into an abstract
encapsulation, in order to organize the parallel execution
of the desired kernel function.

4.2.1. OpenCL workflow for FPGA programming340

Traditionally, the Register Transfer Level (RTL) work-
flow is used for FPGA development when a Hardware
Description Language (HDL, e.g. Verilog or VHDL) is
the programmer option. These languages can always be
used to design parallel systems. This process requires a345

deep knowledge of digital circuit architectures design and
involves time-consuming simulation and verification stages.
However, the OpenCL workflow has a higher abstraction
level, which facilitates the complete development in gen-
eral, and it has to be forcefully adopted when OpenCL350

is used. The main advantage of the OpenCL workflow is
to incorporate the RTL procedures in a transparent way,

Data Router

Control Logic Block

ED C(ti) λ(ti)

>

0 1

C(ti−1)

>

1

0

1

0

λ(s)

Figure 5: Elementary Processor showing the hardwired OPF al-
gorithm. The control block receives the parameters from the external
controller to command the data flow between the processing compon-
ents. The Euclidean Distance (ED) block perform the calculation
using floating point hardware in the FPGA device. The comparis-
ons are them processed in combinational logic, with the controller
generating a synchronization signal to update the registers and then
writing the result back to the previously assigned memory address.

which brings efficiency to the development. Figure 6 shows
the relation between both workflows.

It may be seen in Figure 6 the RTL workflow comprising355

some fundamental steps, taken after the code development,
which are: functional simulation of the compiled code,
synthesis of the approved simulated code, routing of the
viable synthesis result considering all power and timing con-
straints, to finally upload to the target board the bitstream360

hardware configuration file. All these steps are manually
controlled by the programmer, and eventually, the process
has to return to the initial step if any intermediary test
fails.

The OpenCL workflow, also shown in Figure 6, rests365

over the RTL one. It means that the RTL steps are yet
necessary, but now it proceeds in an automatic and trans-
parent way. After compilation of the OpenCL code, the
functional verification is done through an emulation of the
system in the host developing computer. After functionally370

approved, the system is optimized and checked against the
resource constraints, and the procedure follows up with
the automatic synthesis and routing steps. This avoids
the always present respective feedback to the initial step
imposed to the manual procedure.375

The compiler also takes care of handling the interfacing
between the host processor and device processor through
predefined interconnect Intellectual Properties (IP) that
map the data exchange to the actual hardware. This is
traditionally the most time-consuming task in the system’s380

design using RTL workflow, as the developer must tune
his solution to work in very specific protocols to be able
to manage the data transporting between the system com-

6

OpenCL
Code

HDL CodeEntry Point

Compile

Emulation

Functional
Verification

Synthesis

Resources
Constraints

Place &
Route

Power & Time
Constraints

Device
Programming

Optimization

Functional
Simulation

OpenCL workflow RTL workflow

OpenCL workflow

RTL workflow

Common workflow

Figure 6: The FPGA OpenCL programming workflow. It incorpor-
ates the RTL workflow as an automatic process, based on verified
components. This introduces a higher level of abstraction to the
development, as the user will concentrate on the algorithm design.

ponents and extract the best performance, and linking the
design with the actual hardware in use.385

4.2.2. Host Processor code organization

This section details the HP design transcription for
implementation on the board. The ARM processor SoC
board represents the HP and as such it executes the host
code, which is written in C/C++. The code is organ-390

ized into sub-tasks: input file reading, data preparation,
buffer preparation, kernel configuration, kernel launching,
presentation of results and resources deallocation. Fig-
ure 7 presents the execution flow of each sub-task, which
is explained in the following:395

• Input file reading: the data sets is organized as two
input files, one containing the classifier itself and
another with the test data to be classified. Both the
files are in the OPF binary format provided by the
library.400

• Buffer preparation: the OpenCL API uses a spe-
cific data structure as buffers to communicate data
between Host and Device memory spaces. Therefore,
it is necessary to prepare these buffers before moving
data around them. As the adopted board uses a405

shared memory space between the ARM processor
and FPGA fabric, there is no need to make an explicit
call to write and read functions. Once the buffers are
defined, both the Host and Device can access them.
The host writes the input data into the corresponding410

buffers and the device will be responsible for writing
its processing results into the output buffers.

• Kernel configuration: Once all the buffers are cor-
rectly set, the kernel interface is read and configured
to run. During the compiling process, the kernel code415

is stored into a binary file that holds the image to
be configured into the FPGA fabric and its interface
description. Each buffer is associated with its cor-
responding argument in the kernel interface. These
steps prepare the kernel to execute.420

• Kernel launching: At this point, the execution is
transferred from the host code running on the ARM
processor to the device synthesized in the FPGA
fabric. The FPGA execution is asynchronous, that
is, the host code will continue to run independently425

of the parallel hardware. It is possible, in the case
of very complex parallel code, that the host finishes
its execution before the kernel finishes. The API
provides barrier function calls to prevent this beha-
vior. Once the kernel completes its execution, the430

results are written into the output buffers and are
ready to be accessed by the host.

• Presentation of results: The host code can finally
present the results in the manner the user chooses to
do so.435

• Resources deallocation: Once the application finishes,
the buffers must be freed to let the device ready for
a new task, if it is the case.

The efficiency of the classifier was evaluated using offline-
trained OPF data stored in libOPF [32] format. The final440

system is flexible enough to permit the use of different
datasets, with diverse feature vector dimensions and mul-
tiple classes. Therefore, it can be adapted for different
classification tasks just changing the data acquisition and
feature extraction methods to a more suitable one to the445

application in question.

4.2.3. Parallel Processor code organization

Algorithm 1 is implemented as a hardwired SIMD ar-
chitecture in the EP, as shown in Figure 5. The algorithm
executes in two loops, in order to classify each sample,450

which corresponds to the outer loop. For each sample, the
inner loop will iterate over the classifier nodes to identify

7

Input File Data
Reading

Fill
Buffers

Config
Kernel

Launch
Kernel

Wait
Kernel

Data
Writing

Output File

END

Input
Data

Read
Input

Execute
Process

Write
Output

Output
Data

Storage Host Code Shared Memory Device Code

Figure 7: Host code sub-task execution flow, showing the interactions
between the processing elements through the shared memory space.

the respective minimum cost prototype, taking into ac-
count the euclidean distance between the sample and each
node of the forest. Each EP corresponds to an OpenCL455

work-item and the EPAs correspond to work-groups. The
EPs hardwired SIMD code is implemented as an OpenCL
kernel. Following these directives, the kernel was organized
such that each EP/work-item will load one sample from
the test set and perform the inner loop over the classifier460

nodes. Notice that the number of samples to be classified
in parallel is the total number of EPs considering all EPAs.
The currently available compiler does not support more
than one kernel simultaneous instances, nor to call a kernel
inside another kernel, thus restricting the inner loop to run465

sequentially inside each EP/work-item.
Figure 8 shows how the kernel is organized. The classi-

fier data is shared among the EPs/work-items that belong
to the same EPA/work-group, while the input data is di-
vided among all EPs/work-items. The most computation-470

ally expensive operation in the OPF classification algorithm
is the Euclidean distance calculation. The compiler builds
the internal configuration of EPs/work-items as a pipelined
structure, finely tuned with the memory access timing,
which contributes to increasing the system’s throughput475

by a better employment of the memory bandwidth. The
compiler directive num compute units(N) can be used to
replicate compute units N times. Each compute unit cor-
responds in the architecture to an EPA, and each one is
capable of simultaneous execution of different work-groups,480

thus increasing the parallel processing capacity. However,
this replication comes with a penalty in global memory
bandwidth, as the access to distribute the data between
the units will be shared. To effectively profit from having
multiple EPAs, the problem to be processed must have a485

favorable computation-to-memory access ratio, when the

global memory access time will be amortized by the com-
putation time. Therefore, a case-to-case analysis must be
performed to find the best configuration for each specific
problem.490

Work
Item

Work
Item

Work
Item

Work
Item

Work
Item

Work
Item

Work
Item

Work
Item

Work
Item

Work
Item

Input Data

Work Group

Output Data

Classifier
Data

Figure 8: Data distribution for execution by the OpenCL kernel
converted in parallel hardware.

This work evaluates two configurations for the PP syn-
thesis, using one or two EPAs per PP. Considering the
number of logic elements necessary to synthesize the ar-
chitecture, two EPAs was the maximum possible on the
current hardware. The compiler tries to optimize the shared495

access, resulting in a rearrangement of the kernel maximum
clock frequency that can be achieved in the final synthesis.
Aspects of the board implementation also affect the optim-
izations that the compiler implements, as they are highly
coupled with the speed parameters of the memory chips.500

This results are detailed in the next section.
There are some freedom and some restrictions to con-

figure the parallel execution. Initially, the number of work-
items in a work-group was defined as 512, as a design
choice to be assessed after testing. Memory access is 32505

bit-aligned, using the shared memory controller on the HP,
which implements a direct interface between the FPGA
fabric and the Hard Processor System (HPS) DDR control-
ler, which in the current configuration implements a data
port 256 bits wide. For the adopted board, there is 1 GB510

of DDR memory. The first 512 MB are reserved for the
operational system and the remaining 512 MB are set as
the shared memory space. Each kernel is launched with
a configuration given by the number of elements to clas-
sify divided by the maximum number of work-items. This515

gives us the required number of work-groups for execution.
Uneven results are padded with zeros and the appropriate
range verification is done in the EPs. PP configurations
with more than one EPA can execute one work-group per
EPA, however, as mentioned before, global memory ac-520

cess is serialized between the EPAs. Therefore, to avoid
sub-optimal utilization of the hardware capabilities, the
task to be processed must have a favorable computation-

8

to-memory ratio. This relation is well known in parallel
code design and serves as a guideline to the appropriate525

domain division for parallel execution, accounting both for
the problem and the parallel hardware characteristics.

5. Results and performance analysis

5.1. Hardware and software specifications

The development board host processor was set up to530

run at 800 MHz. The operational system used was the
image provided by the manufacturer, consisting of a Linux
distribution based on the Yocto Project. The distribution
was installed to the board with the addition of the OpenCL
runtimes libraries that expose the FPGA side interfaces535

to the Linux Hardware Abstraction Layer. A micro-SD
card hosts the operational system and acts as mass storage
device.

The offline training of the different datasets used a PC
equipped with an Intel® Core™ 2 Quad Q8400 CPU 2 GHz540

with 8GB DDR2 RAM memory running Ubuntu 14.04
Trusty Tahr operating system. The resulting classifiers
were saved in a file and then transferred to the development
board micro-SD card.

The comparison was made with the software-only clas-545

sification running in the ARM-based processor and its
accelerated implementation on the FPGA. The libOPF
version used was 2.1, the latest one available at the time
of this work.

5.2. Metrics and key performance indicators550

The focus of the comparison is the processing speed
gain obtained by measuring the acceleration provided by
the FPGA parallel hardware against its software-only coun-
terpart. The execution times for classifying the whole
dataset was measured and the average duration to classify555

an individual sample was calculated.
The chosen performance metric for evaluating the qual-

ity of the classification was the Average Accuracy. As
the classifier function used for the software and hardware
versions are same, there is no reason to perform a complete560

qualitative analysis of the results. This metric gives us a
general idea of the classification’s quality and can be used
to assess the divergence (if any) in the results of the two
versions caused by design decisions.

As defined in [33], the Average Accuracy measures the565

average per class effectiveness of a multi-class classifier and
is calculated as:

Acc =

∑l
i=1

tpi+tni

tpi+fni+fpi+tni

l
, (2)

where l is the number of different classes of the problem
and tp, fp, tn and fn stand for, respectively, true positives,
false positives, true negatives and false negatives for the570

i-th sample in the testing set.

5.3. Dataset descriptions

The system was tested by running the classification in
six different datasets. The first five were picked from the
publicly available Machine Learning repository of Univer-575

sity of California Irvine [34]. The last one is composed
of HOG descriptors taken from a compilation of several
popular pedestrian detection datasets generated from an
authors’ previous work [35]. The data sets D1, D3, D5,
and D6 are originally from CV applications, with different580

descriptors used to generate the feature vectors. Using
these data sets will permit to analyze the performance of
the OPF in diverse CV scenarios. Table 1 compiles each
dataset characteristics. Datasets with a different number of
classes and attributes are used to assess how this variation585

affects both the software and hardware versions.

Table 1: Dataset descriptions

Id Name # attr. # classes # samples

D1 Brest Cancer Winsc. (Diag.) 9 2 569
D2 Glass Identification 9 6 214
D3 Image Segmentation 19 7 2,310
D4 Iris 4 3 150
D5 Parkinsons 22 2 197
D6 Pedestrian 3,780 2 12,160

The classifiers were generated by Repeated Ran-
dom Sub-sampling, choosing the best instance of
100 different randomly generated collections of train-
ing/evaluation/testing sets. The training set used 40%590

of the total samples, and the evaluation set 20%. The
remaining 40% constitutes the testing set.

5.4. Performance analysis

Table 2 presents the accuracy observed for every data
set running on each version of the classifier, compiling595

the kernel to result in only one compute unit (EPA). It
presents also the number of samples in the test set, the
total time spent in the classification in milliseconds, the
average classification time per sample and the speed-up
obtained by using the hardware implementation against its600

corresponding software version. Table 3 shows the same
metrics, but now for adopting two compute units (EPAs).

Table 2: Accuracy and classification times for software (S) and
hardware (H) versions of the OPF classifier, kernel compiled to
generate 1 compute unit

Id/Version
of

samples
Accuracy

Total time
(ms)

Avg. time
per sample

(ms)
Speed-up

D1/SW 276 0.902174 5.66221 0.02051 -
D1/HW 276 0.902174 0.74398 0.00269 7.62
D2/SW 91 0.882784 3.75272 0.04123 -
D2/HW 91 0.882784 0.57631 0.00633 6.51
D3/SW 924 0.927644 220.702 0.23885 -
D3/HW 924 0.927644 40.516 0.04384 5.44
D4/SW 60 0.955556 0.34493 0.00574 -
D4/HW 60 0.955556 0.12171 0.00202 2.84
D5/SW 80 0.8125 4.40499 0.05506 -
D5/HW 80 0.8125 0.77412 0.00967 5.69
D6/SW 4,864 0.801809 1,531,710.0 314.90748 -
D6/HW 4,864 0.801809 389,658.0 80.11060 3.93

9

Table 3: Accuracy and classification times for software (S) and
hardware (H) versions of the OPF classifier, kernel compiled to
generate 2 compute units

Id/Version
of

samples
Accuracy

Total time
(ms)

Avg. time
per sample

(ms)
Speed-up

D1/SW 276 0.902174 5.39210 0.01953 -
D1/HW 276 0.902174 0.59944 0.00217 8.99
D2/SW 91 0.882784 3.82270 0.04200 -
D2/HW 91 0.882784 0.60408 0.00663 6.32
D3/SW 924 0.927644 220.7240 0.23887 -
D3/HW 924 0.927644 40.3604 0.04368 5.46
D4/SW 60 0.955556 0.377469 0.00629 -
D4/HW 60 0.955556 0.172921 0.00288 2.18
D5/SW 80 0.812500 4.40748 0.05509 -
D5/HW 80 0.812500 0.80762 0.01009 5.45
D6/SW 4,864 0.801809 1,532,010.0 314.96916 -
D6/HW 4,864 0.801809 379,957.0 78.11615 4.03

The two compute units configuration is the maximum
number possible to synthesize, given the available resources
on the adopted FPGA model. It can be perceived that605

changing the number of EPAs does not significantly affect
the processing times for the OPF classification algorithm.

Table 4 shows the resource utilization for each kernel
configuration. This information can be obtained using the
manufacturer’s provided profiling tools that accompany610

the OpenCL SDK.

Table 4: FPGA resource utilization for each kernel configuration

Resource 1 compute unit 2 compute units

ALUTs 14,112 23,710
Registers 22,402 40,056
Logic utilization 11,153 19,364
DSP blocks 8 16
Memory bits 1,450,336 2,640,320

Table 5 shows the bandwidth achieved for each dataset
in each kernel configuration also obtained with the profil-
ing tools. The datasets D3 and D6 achieved the highest
bandwidth, what is expected, given that they have a bigger615

number of testing elements, what causes the data transfer
to computation ratio to be better. This ratio is also affected
by the feature vector length, so it is expected to vary.

Table 6 shows the power estimation for each kernel
configuration, also obtained using the corresponding man-620

ufacturer’s provided tool.
The difference in area between the two configurations

is 73% while the difference in power consumption is 34%.
However, as the difference in performance between the
two configurations was negligible, it is recommended to625

use in this application the configuration with one compute
unit, as it reduces the power consumption and leaves some
FPGA fabric free for other uses.

The clock frequency is determined by the compiler as
112.5 MHz for the first configuration with one compute unit630

and 92.6 MHz for the second one, which are approximately
eight times smaller than the HP clock frequency (800 MHz).
Nonetheless, It is important to remark that the hardware
accelerated processing times were up to 9 times faster than
the pure software counterpart running in the HP alone. The635

Table 5: Global memory bandwidth for each dataset and kernel
configuration

Dataset
Global Bandwidth

1 comp. unit
(MB/s)

Global Bandwidth
2 comp. units

(MHz)

D1 1,037 926.4
D2 75.1 71.5
D3 2,183.6 2,000.2
D4 133.6 126.7
D5 109.3 100.4
D6 2,080.4 1,885.4

Table 6: Power estimation for each kernel configuration

Component
Thermal Power (W)

1 compute unit
Thermal Power (W)
2 compute units

Logic 0.131 0.239
RAM 0.241 0.446
DSP 0.023 0.046
I/O 0.005 0.005
PLL 0.031 0.031
Clocks 0.122 0.197
HSDI 0.000 0.000
Hard Memory Controller (HMC) 0.000 0.000
XCVR 0.000 0.000
PCS HIP 0.000 0.000
Static 0.315 0.325
Total FPGA 0.868 1.289
Hard Processor System (HPS) 0.217 0.217
HPS Static 0.139 0.141
Total SoC Power 1.224 1.647

variation in speed-up values is expected, given the nature
of the OPF classification algorithm and the variation in
dimensionality and number of classes of each dataset.

6. Conclusions

This work proposes an architecture for embedded sys-640

tem parallel processing comprising a host processor and
a parallel multiprocessor array. Its implementation of a
computer vision application algorithm in a SoC/FPGA
board using the OpenCL language and workflow is also
presented. Adopting OpenCL yields, in general, a shorter645

development time, considering that it implies the use of
higher level abstraction and verified IPs and consequently
less programming error correction effort.

A software version running on the dual-core ARM host
processor is used to assess the acceleration provided by650

the hardware implementation. The comparison shows that
the hardware implementation was able to execute 2.18
to 9 times faster than the software version. Also, two
different configurations, using one or two compute units
were compared, exposing the differences in global memory655

bandwidth and energy consumption of each configuration,
giving support to decide which configuration to use in spe-
cific applications. The achieved acceleration was sufficient
to justify the use of the implementation. There is space
for improvement though, as some parameters defined at660

runtime can be fixed at compilation time, aligned to a
particular task. This modification contributes to decrease
global memory accesses, thus improving the computation-
to-memory access ratio and consequently, improving the

10

processing acceleration and is a good candidate for further665

investigation.
Future work will consider testing the substitution of

the floating point operations by fixed point ones, which
generally grants performance improvement against a com-
promise in precision. For many applications, this precision670

reduction does not represent a significant loss, considering
that the achieved acceleration can be very attractive, or
even the viable solution for a hard real-time embedded
system. The parallel implementation shall be studied using
alternative devices in a future work, in order to validate675

the proposed architecture to different application demands.

Acknowledgment

This work is supported by the PDSE program of Co-
ordination for Improvement of High Education Person-
nel (CAPES) of Brazilian Ministry of Education, process680

nº13077/2013-09 and carried out in the framework of the
Labex MS2T, funded by the French Government through
the program “Investments for the future” managed by the
National Agency for Research (Reference ANR-11-IDEX-
0004-02).685

References

[1] M. Parker, June 2014 Altera Corporation Understanding Peak
Floating-Point Performance Claims, Tech. Rep., 2014.

[2] A. Corporation, Leveraging HyperFlex Architecture in Stratix
10 Devices to Achieve Maximum Power Reduction, Tech. Rep., ,690

2015.
[3] J. P. Papa, A. X. Falcão, C. T. N. Suzuki, Supervised pattern

classification based on optimum-path forest, Int. J. Imaging Syst.
Technol. 19 (2) (2009) 120–131, ISSN 08999457, doi:, .

[4] J. P. Papa, A. X. Falcão, V. H. C. de Albuquerque, J. M. R.695

Tavares, Efficient supervised optimum-path forest classification
for large datasets, Pattern Recognit. 45 (1) (2012) 512–520, ISSN
00313203, doi:, .

[5] A. A. Spadotto, J. C. Pereira, R. C. Guido, J. P. Papa, A. X.
Falcao, A. R. Gatto, P. C. Cola, A. O. Schelp, Oropharyngeal700

dysphagia identification using wavelets and optimum path forest,
in: 2008 3rd Int. Symp. Commun. Control Signal Process., IEEE,
ISBN 978-1-4244-1687-5, 735–740, doi:, , 2008.

[6] R. C. Guido, J. C. Pereira, J. F. W. Slaets, A. I. Iliev, M. S.
Scordilis, J. P. Papa, A. X. Falcão, Spoken emotion recognition705

through optimum-path forest classification using glottal features,
Comput. Speech Lang. 24 (3) (2010) 445–460, .

[7] G. Chiachia, A. A. N. A. Marana, J. P. Papa, A. X. Falcao,
Infrared Face Recognition by Optimum-Path Forest, in: 2009
16th Int. Conf. Syst. Signals Image Process., IEEE, ISBN 978-1-710

4244-4530-1, 1–4, doi:, , 2009.
[8] R. Pisani, P. Riedel, M. Ferreira, M. Marques, R. Mizobe,

J. Papa, Land use image classification through Optimum-Path
Forest Clustering, in: 2011 IEEE Int. Geosci. Remote Sens.
Symp., IEEE, ISBN 978-1-4577-1003-2, 826–829, doi:, , 2011.715

[9] A. Culquicondor, C. Castelo-Fernandez, J. P. Papa, A New
Parallel Training Algorithm for Optimum-Path Forest-based
Learning, in: XXI Iberoam. Congr. Pattern Recognit. CIARP’
2016, November, IAPR, Lima, , 2016.

[10] M. V. T. Romero, A. S. Iwashita, L. P. Papa, A. N. Souza,720

J. P. Papa, Fast optimum-path forest classification on graphics
processors, VISAPP 2014 - Proceedings of the 9th International
Conference on Computer Vision Theory and Applications 2
(2014) 627–631, .

[11] A. S. Iwashita, M. V. T. Romero, A. Baldassin, K. A. P. Costa,725

J. P. Papa, Training Optimum-Path Forest on Graphics Pro-
cessing Units, in: 2014 International Conference on Computer
Vision Theory and Applications (VISAPP), 581 – 588, , 2014.

[12] Khronos Group, OpenCL Specification, , 2009.
[13] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kin-730

sner, D. Neto, J. Wong, P. Yiannacouras, D. P. Singh, From
opencl to high-performance hardware on FPGAS, in: 22nd Int.
Conf. F. Program. Log. Appl., IEEE, ISBN 978-1-4673-2256-0,
531–534, doi:, , 2012.

[14] A. X. Falcão, J. Stolfi, R. De Alencar Lotufo, The Image Forest-735

ing Transform: Theory, Algorithms, and Applications, IEEE
Trans. Pattern Anal. Mach. Intell. 26 (1) (2004) 19–29, ISSN
01628828, doi:, .

[15] D. Lowe, Object recognition from local scale-invariant features,
in: Proc. Seventh IEEE Int. Conf. Comput. Vis., vol. 2, IEEE,740

ISBN 0-7695-0164-8, ISSN 0-7695-0164-8, 1150–1157 vol.2, doi:,
, 1999.

[16] P. Viola, M. Jones, Rapid object detection using a boosted
cascade of simple features, in: Proc. 2001 IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognition. CVPR 2001, vol. 1,745

IEEE Comput. Soc, ISBN 0-7695-1272-0, ISSN 1063-6919, I–511–
I–518, doi:, , 2001.

[17] J. Cloutier, E. Cosatto, S. Pigeon, F. Boyer, P. Simard, VIP: an
FPGA-based processor for image processing and neural networks,
in: Proc. Fifth Int. Conf. Microelectron. Neural Networks, IEEE750

Comput. Soc. Press, ISBN 0-8186-7373-7, 330–336, doi:, , 1996.
[18] C. Farabet, C. Poulet, Y. LeCun, An FPGA-based stream pro-

cessor for embedded real-time vision with Convolutional Net-
works, 2009 IEEE 12th Int. Conf. Comput. Vis. Work. ICCV
Work. (2009) 878–885doi:, .755

[19] J. Javier Mart́ınez, J. Garrigós, J. Toledo, J. Manuel Ferrández,
An efficient and expandable hardware implementation of mul-
tilayer cellular neural networks, Neurocomputing 114 (2013)
54–62, ISSN 09252312, doi:.

[20] J. Manikandan, B. Venkataramani, V. Avanthi, FPGA Imple-760

mentation of Support Vector Machine Based Isolated Digit Re-
cognition System, in: 2009 22nd Int. Conf. VLSI Des., IEEE,
ISBN 978-0-7695-3506-7, ISSN 1063-9667, 347–352, doi:, , 2009.

[21] J. Gimeno Sarciada, H. Lamel Rivera, M. Jiménez, CORDIC
algorithms for SVM FPGA implementation, in: H. H. Szu, F. J.765

Agee (Eds.), SPIE Defense, Secur. Sens., International Society
for Optics and Photonics, 77030G–77030G–8, doi:, , 2010.

[22] S. Bauer, S. Kohler, K. Doll, U. Brunsmann, FPGA-GPU ar-
chitecture for kernel SVM pedestrian detection, in: 2010 IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit. - Work.,770

IEEE, ISBN 978-1-4244-7029-7, 61–68, doi:, , 2010.
[23] M. Papadonikolakis, C. Bouganis, Novel Cascade FPGA Accel-

erator for Support Vector Machines Classification, IEEE Trans.
Neural Networks Learn. Syst. 23 (7) (2012) 1040–1052, ISSN
2162-237X, doi:, .775

[24] D. Mulligan, Implementation of real-time pedestrian detection
on FPGA, in: 2008 23rd Int. Conf. Image Vis. Comput. New
Zeal., IEEE, ISBN 978-1-4244-2582-2, 1–6, doi:, , 2008.

[25] M. Hahnle, F. Saxen, M. Hisung, U. Brunsmann, K. Doll, FPGA-
Based Real-Time Pedestrian Detection on High-Resolution Im-780

ages, in: 2013 IEEE Conf. Comput. Vis. Pattern Recognit. Work.,
IEEE, ISBN 978-0-7695-4990-3, 629–635, doi:, , 2013.

[26] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, E. Cu-
lurciello, Hardware accelerated convolutional neural networks for
synthetic vision systems, Proc. 2010 IEEE Int. Symp. Circuits785

Syst. (2010) 257–260doi:, .
[27] J. Jin, V. Gokhale, A. Dundar, B. Krishnamurthy, B. Martini,

E. Culurciello, An efficient implementation of deep convolutional
neural networks on a mobile coprocessor, in: 2014 IEEE 57th
International Midwest Symposium on Circuits and Systems790

(MWSCAS), IEEE, ISBN 978-1-4799-4132-2, 133–136, doi:, ,
2014.

[28] V. Gokhale, J. Jin, A. Dundar, B. Martini, E. Culurciello, A 240
G-ops/s Mobile Coprocessor for Deep Neural Networks, in: 2014
IEEE Conference on Computer Vision and Pattern Recognition795

11

Workshops, IEEE, ISBN 978-1-4799-4308-1, 696–701, doi:, ,
2014.

[29] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature
521 (7553) (2015) 436–444, ISSN 0028-0836, doi:, .

[30] J. P. Papa, F. a.M. Cappabianco, A. X. Falcao, Optimizing800

Optimum-Path Forest Classification for Huge Datasets, in: 2010
20th Int. Conf. Pattern Recognit., Ieee, ISBN 978-1-4244-7542-1,
ISSN 1051-4651, 4162–4165, doi:, , 2010.

[31] K. Hill, S. Craciun, A. George, H. Lam, Comparative analysis
of OpenCL vs. HDL with image-processing kernels on Stratix-805

V FPGA, in: 2015 IEEE 26th Int. Conf. Appl. Syst. Archit.
Process., vol. 2015-Septe, IEEE, ISBN 978-1-4799-1925-3, ISSN
10636862, 189–193, doi:, , 2015.

[32] J. Papa, C. Suzuki, A. Falcao, LibOPF A library for the design
of optimum path forest classifiers, , 2014.810

[33] M. Sokolova, G. Lapalme, A systematic analysis of performance
measures for classification tasks, Inf. Process. Manag. 45 (4)
(2009) 427–437, ISSN 03064573, doi:, .

[34] M. Lichman, {UCI} Machine Learning Repository, , 2013.
[35] W. F. S. Diniz, V. Fremont, I. Fantoni, E. G. O. Nóbrega, Eval-815

uation of optimum path forest classifier for pedestrian detection,
in: 2015 IEEE Int. Conf. Robot. Biomimetics, Ml, IEEE, Zhuhai,
ISBN 978-1-4673-9675-2, 899–904, doi:, , 2015.

12

	Introduction
	Related works
	Optimum-path Forest theory and applications
	FPGA accelerated machine learning

	Optimum-path Forest Classifier
	Training stage
	Classification stage

	Proposed FPGA architecture for OPF classification
	High level system design
	System implementation details
	OpenCL workflow for FPGA programming
	Host Processor code organization
	Parallel Processor code organization

	Results and performance analysis
	Hardware and software specifications
	Metrics and key performance indicators
	Dataset descriptions
	Performance analysis

	Conclusions

