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Introduction

The persistence probability of a stochastic process X is defined as the probability that the process X remains positive for a long interval. The study of persistence probability has gained much interest in both mathematical and physical literatures, see more in [START_REF] Adler | Random fields and Geometry[END_REF][START_REF] Aurzada | Persistence probabilities and exponents[END_REF][START_REF] Bharucha-Reid | Random polynomials. Probability and Mathematical Statistics[END_REF][START_REF] Bray | Persistence and First-Passage Properties in Non-equilibrium Systems[END_REF][START_REF] Farahmand | Topics in random polynomials[END_REF][START_REF] Poplavskyi | Exact persistence exponent for the 2d-diffusion equation and related Kac polynomials[END_REF][START_REF] Schehr | Statistics of the number of zero crossings: From random polynomials to the diffusion equation[END_REF][START_REF] Schehr | Real roots of random polynomials and zero crossing properties of diffusion equation[END_REF]. However, up to now, most of existed results just deal with stationary Gaussian processes with summable and nonnegative autocorrelation function. In general, understanding the persistence decay is still a big challenge, see [START_REF] Feldheim | Long gaps between sign-changes of Gaussian stationary processes[END_REF]. Recently, some new lights have been shed in [START_REF] Dembo | Persistence of Gaussian processes: non-summable correlations[END_REF] for processes with non-summable autocorrelation function or in [START_REF] Feldheim | Persistence of Gaussian stationary processes: a spectral perspective[END_REF] for processes with special spectral properties.

In this paper, we are interested in the persistence probability of random polynomials, a special class of Gaussian processes. Let us consider a polynomial defined as Q n (x) = c 0 a 0 + c 1 a 1 x + . . . + c n a n x n , where c i 's are real deterministic coefficients and a i 's are i.i.d. standard Gaussian random variables. Among various models (choices of the coefficients c i 's), the three classes being studied most extensively include -Kac polynomials: c 0 = c 1 = . . . = c n = 1, -Elliptic polynomials: c i = n i , ∀ i = 0, 1, . . . , n, -Weyl polynomials:

c i = 1 √ i! .
For more information and results on random polynomial theory, we refer the reader to two standard monographs [START_REF] Bharucha-Reid | Random polynomials. Probability and Mathematical Statistics[END_REF][START_REF] Farahmand | Topics in random polynomials[END_REF] and recent papers [START_REF] Do | Roots of random polynomials with coefficients of polynomial growth[END_REF][START_REF] Do | Central limit theorems for the real zeros of Weyl polynomials[END_REF][START_REF] Nguyen | On the number of real roots of random polynomials[END_REF][START_REF] Tao | Local universality of zeroes of random polynomials[END_REF].

The first motivation to study the persistence probability for random polynomials arises from Large deviations theory or Extreme value theory to estimate the rare event that the random polynomials have many fewer real zeroes than expected. In particular, the persistence probability is a half of the probability that the random polynomials have no real zero, see [START_REF] Basu | Exponential concentration for zeroes of stationary Gaussian processes[END_REF]. The second motivation comes from some applications in statistical physics to understand the magnetization of spin glass, see [START_REF] Bray | Persistence and First-Passage Properties in Non-equilibrium Systems[END_REF][START_REF] Schehr | Statistics of the number of zero crossings: From random polynomials to the diffusion equation[END_REF]. Recently, the connection between persistence probability of random polynomials and the semi-infinite Ising chain with Glauber dynamics has been unveiled, see [START_REF] Poplavskyi | Exact persistence exponent for the 2d-diffusion equation and related Kac polynomials[END_REF].

A very first result given by Littewood and Offord [START_REF] Littlewood | On the number of real roots of a random algebraic equation[END_REF][START_REF] Littlewood | On the distribution of the zeros and a-values of a random integral function[END_REF] in the 1940's states that for Kac polynomials, if n is even, then the persistence probability is small, in fact P(N Kac,n = 0) = O(1/ log n). In 2002, the first breakthrough result was given by Dembo et al [START_REF] Dembo | Random polynomials having few or no real zeros[END_REF]. They provided a precise asymptotic formula for the persistence probability of Kac polynomials of even degree as ( 1) 1) , where b 0 = -lim t→∞ t -1 log P(Y s > 0, ∀s ∈ [0, t]), with Y the centered stationary Gaussian process with correlation E(Y 0 Y t ) = 1/ cosh(t/2). Their main observation is that on some small main intervals the random Kac polynomial can be approximated by the Gaussian process Y above. More strikingly, a universal result for any distribution having finite moments of all orders was achieved by using the strong Komlos-Major-Tusnady approximation. It follows an interesting question to provide good estimates for the constant b 0 above, see [START_REF] Li | A normal comparison inequality and its applications[END_REF]. Recently, in [START_REF] Poplavskyi | Exact persistence exponent for the 2d-diffusion equation and related Kac polynomials[END_REF], the exact value of b 0 is given to be 3/16.

P(Q Kac,n (x) > 0, ∀x ∈ R) = n -4b 0 +o(
In [START_REF] Schehr | Real roots of random polynomials and zero crossing properties of diffusion equation[END_REF], Schehr and Majumdar proposed a mean-field approximation (based on the asymptotic behavior of autocorrelation function) to revisit the persistence probability of Kac polynomials and also to predict an asymptotic formula for elliptic and Weyl models.

-For elliptic polynomials of even degree,

lim n→∞ log P (Q Elliptic,n (x) > 0, ∀x ∈ R) √ n = -πb, (2) 
where b is a positive constant defined as

(3) b = -lim T →∞ log P(inf 0≤t≤T Z(t) > 0) T ,
with Z(t) a centered stationary Gaussian process with correlation E(Z 0 Z t ) = e -t 2 /2 . -For Weyl polynomials of even degree, [START_REF] Bharucha-Reid | Random polynomials. Probability and Mathematical Statistics[END_REF] lim

n→∞ log P (Q W eyl,n (x) > 0, ∀x ∈ R) √ n = -2b,
with the same constant b as above. In particular, for Weyl model, Schehr and Majumdar divided the real axis into two parts: the interval [-√ n, √ n] and its complement. Due to the phase transition of the autocorrelation function on these two parts, the persistence exponents are expected to be different. Indeed, the authors guessed that persistence probability on

[- √ n, √ n] is of order exp(-2b
√ n) and the one on the complement is of order n -2b 0 , where b 0 is the same as in Kac model. Assuming the independence of real zeroes, they proposed the following approximation for the persistence probability of Weyl polynomials on the whole real axis ( 5)

P (Q W eyl,n (x) > 0, ∀x ∈ R) ∼ n -2b 0 e -2b √ n .
In [START_REF] Dembo | No zero-crossings for random polynomials and the heat equation[END_REF], Dembo and Mukherjee gave a powerful method to obtain rigorously the persistence exponent of Gaussian processes. Given a sequence of Gaussian processes converging weakly to a stationary Gaussian process, they provided some necessary conditions on the autocorrelation functions of the Gaussian processes (see Lemma 2.1) to ensure the continuity of persistence exponents (defined as (3)). Using the criteria, they gave a rigorous basis to [START_REF] Aurzada | Persistence probabilities and exponents[END_REF]. For generalized Kac plolynomials where the coefficients c i 's satisfy some regularly varying conditions (see [START_REF] Dembo | No zero-crossings for random polynomials and the heat equation[END_REF]Theorem 1.3]), they also proved that the persistence probability in this case has the same form as [START_REF] Adler | Random fields and Geometry[END_REF].

For Weyl polynomials, Dembo and Mukherjee found that the persistence exponent considered on the intervals

J n = [0, √ n -α n ] with α n = o( √ n) is -b, which is a half
of the exponent in (4). Naturally, they believed that the interval J n contributes the main term to persistence probability on the nonnegative axis and they left it as an open question.

In this paper, we would like to complete the picture of the persistence probability of Weyl polynomials in both cases: the nonnegative axis and the whole real axis. Here is our main result which confirms the predictions of Schehr and Majumdar [START_REF] Schehr | Real roots of random polynomials and zero crossing properties of diffusion equation[END_REF], and also of Dembo and Mukherjee [START_REF] Dembo | No zero-crossings for random polynomials and the heat equation[END_REF].

Theorem 1.1. Consider the Weyl random polynomial defined by

f n (x) = n i=0 a i √ i! x i ,
where a i 's are i.i.d. standard normal random variables. The following statements hold.

(a) As n tends to infinity,

lim n→∞ log P (f n (x) > 0, ∀x ∈ [0, ∞)) √ n = -b,
where b is the positive constant defined as in (3). (b) Assume that that n is even, then

lim n→∞ log P (f n (x) > 0, ∀x ∈ R) √ n = -2b,
with the same constant b as above.

The idea of the proof is as follows. First, using the method of Dembo and Mukherjee, we obtain the persistence exponents for the intervals [0, √ n -α n ] (and

[- √ n + α n , √ n -α n ],
respectively) with a suitable sequence (α n ). While the exponent for [0, √ n -α n ] has been already mentioned in [START_REF] Dembo | No zero-crossings for random polynomials and the heat equation[END_REF], the one for [-√ n + α n , √ n -α n ] needs a more careful verification, see the proof of Lemma 4.2. Secondly, we show that the contribution from the complement intervals is negligible in the sense that the persistence probability on the complement decays much slower. To do that, instead of considering the persistence of the given process f n (x), we deal with the persistence of f n (x)R n (x) for a suitable positive non random function R n (x), see Lemma 2.2 and Proof of claim (c2). Finally, to join the persistence probabilities on the intervals, we use the celebrated Slepian's inequality.

It would be interesting to give a rigorous proof for [START_REF] Bray | Persistence and First-Passage Properties in Non-equilibrium Systems[END_REF]. Unfortunately, our method is not sharp enough to do that and we leave the question for future research.

The paper is organized as follows. In Section 2, we recall two key lemmas in [START_REF] Dembo | No zero-crossings for random polynomials and the heat equation[END_REF]. The detailed proofs of Part (a) and Part (b) will be presented respectively in Section 3 and Section 4.

Preliminaries

Since a i 's are i.i.d. random variables of standard normal distribution, the Weyl random polynomial f n (x) is a Gaussian process with autocorrelation function

(6) A n (x, y) = corr(f n (x), f n (y)) = n i=0 (xy) i i! n i=0 x 2i i! × n i=0 y 2i i!
.

If x and y are fixed, then A n (x, y) converges to e -(x-y) 2 /2 as n tends to infinity. It means that the sequence of Weyl random polynomials converges weakly to the centered stationary Gaussian process Z(t) with covariance function R(t) = e -t 2 /2 . Then by heuristic arguments, the persistence probability of Weyl random polynomials might tend to the corresponding one of Z(t). However, in general, the limit implied by heuristic arguments is not true, see [7, p. 89] for a counterexample. To ensure the continuity of persistence exponents, we need some restrictive conditions on the autocorrelation function. The following result combining Theorem 1.6, Remark 1.7 and Lemma 1.8 in [START_REF] Dembo | No zero-crossings for random polynomials and the heat equation[END_REF] gives us such criteria.

Lemma 2.1. Let S + be the class of all non-negative stationary autocorrelation functions.

Then the following assertions hold.

(a) For any centered stationary Gaussian process {Z t } t≥0 of autocorrelation A(s, t) = A(0, t -s) ∈ S + , the nonnegative limit

b(A) = -lim T →∞ log P(inf 0≤t≤T Z(t) > 0) T , exists. (b) Let {Z (k) t } t≥0 , 1 ≤ k ≤ ∞
be a sequence of centered Gaussian processes of unit variance and nonnegative autocorrelation functions A k (s, t), such that A ∞ (s, t) ∈ S + . Suppose that the following three conditions hold. (b0) For all η > 0, lim sup

M →∞ 1 M log P sup t∈[0,M ] Z ∞ t < M -η = -b(A ∞ ). (b1) We have lim sup k,τ →∞ sup s≥0 log A k (s, s + τ ) log τ < -1.
(b2) There exists a nonnegative autocorrelation function D ∈ S + corresponding to some stationary Gaussian process such that for any finite M, there exist positive ǫ k → 0 satisfying

(1 -ǫ k )A ∞ (0, τ ) + ǫ k D(0, τ ) ≤ A k (s, s + τ ) ≤ (1 -ǫ k )A ∞ (0, τ ) + ǫ k ,
for all s, τ such that τ ∈ [0, M] and both s, s + τ belong to the considering interval. Then lim

k,T →∞ 1 T log P Z (k) t > 0, ∀t ∈ [0, T ] = -b(A ∞ ).
The next lemma provides a lower bound on the persistence probability of a differentiable Gaussian process Z(t), assuming a simple condition that the variances of Z(t) and Z ′ (t) are comparable.

Lemma 2.2.

There is an universal constant µ ∈ (0, 1), such that the following statements hold.

(i) Suppose that

(Z t ) t∈[a,b] is a centered C 1 Gaussian process satisfying (7) 2(b -a) 2 sup t∈[a,b] E(Z ′2 t ) ≤ sup t∈[a,b] E(Z 2 t ). Then P inf t∈[a,b] Z t > 0 ≥ µ.
(ii) Let I ⊂ R be an interval and r : I → R be a continuous function. Suppose that (Z t ) t∈I is a centered C 1 Gaussian process with nonnegative autocorrelation satisfying for all t ∈ I,

(8) 2∆ 2 E (Z ′ t -r(t)Z t ) 2 ≤ E Z 2 t , for some positive constant ∆. Then P inf t∈I Z t > 0 ≥ µ ⌈ |I| ∆ ⌉ .
Proof. Part (i) is exactly Lemma 4.1 in [START_REF] Dembo | No zero-crossings for random polynomials and the heat equation[END_REF]. We now prove (ii). Let us define a new centered Gaussian process as

X t = R(t)Z t , where R(t) = exp - t 0 r(s)ds .
Since R(t) > 0 for all t ∈ I,

(9) P inf t∈I Z t > 0 = P inf t∈I X t > 0 .
Since R(t) is differentiable, (X t ) t∈I is also a centered C 1 Gaussian process. Moreover,

X ′ t = R(t)[Z ′ t -r(t)Z t ].
Hence, the assumption [START_REF] Dembo | Persistence of Gaussian processes: non-summable correlations[END_REF] implies that for all t ∈ I,

2∆ 2 E(X ′2 t ) ≤ E(X 2 t ). Now, we divide I into ⌈ |I|
∆ ⌉ small intervals of length ∆. Then the condition [START_REF] Dembo | No zero-crossings for random polynomials and the heat equation[END_REF] holds for all the small intervals. Thus using Slepian's inequality and (i), we obtain [START_REF] Do | Roots of random polynomials with coefficients of polynomial growth[END_REF] P inf t∈I

X t > 0 ≥ µ ⌈ |I| ∆ ⌉ .
Combining this estimate with (9), we get the desired result.

Persistence probability on the nonnegative axis

Before proving Part (a) of Theorem 1.1, we recall the following lemma given by Dembo and Mukherjee [START_REF] Dembo | No zero-crossings for random polynomials and the heat equation[END_REF] that provides the persistence exponent on suitable intervals. Lemma 3.1. [7, Remark 1.11] For any sequence (α n ) such that the ratio αn √ n tends to 0, we have lim

n→∞ 1 √ n log P f n (x) > 0, ∀x ∈ [0, √ n -α n ] = -b,
with the constant b defined as in [START_REF] Basu | Exponential concentration for zeroes of stationary Gaussian processes[END_REF].

Throughout this paper, we always consider the sequence (α n ) defined as

α n = √ n log n .
Part (a) of Theorem 1.1 follows from the following upper bound and lower bound on the persistence probability [START_REF] Do | Central limit theorems for the real zeros of Weyl polynomials[END_REF] lim sup

n→∞ 1 √ n log P (f n (x) > 0, ∀x ∈ [0, ∞)) ≤ -b, and 
(12) lim inf n→∞ 1 √ n log P (f n (x) > 0, ∀x ∈ [0, ∞)) ≥ -b,
with b as in [START_REF] Basu | Exponential concentration for zeroes of stationary Gaussian processes[END_REF].

Proof of [START_REF] Do | Central limit theorems for the real zeros of Weyl polynomials[END_REF]. The upper bound [START_REF] Do | Central limit theorems for the real zeros of Weyl polynomials[END_REF] follows from Lemma 3.1 and a simple observation that

P (f n (x) > 0, ∀x ∈ [0, ∞)) ≤ P f n (x) > 0, ∀x ∈ [0, √ n -α n ] .
Proof of [START_REF] Farahmand | Topics in random polynomials[END_REF]. By using Slepian's inequality (see [1, Theorem 2.2.1]),

P n = P(f n (x) > 0 ∀ x ≥ 0) ≥ P(f n (x) > 0 ∀ 0 ≤ x ≤ √ n -α n ) × P(f n (x) > 0 ∀ √ n -α n < x < √ n + α n ) ×P(f n (x) > 0 ∀ x ≥ √ n + α n ) =: A n × B n × C n . (13) 
Thanks to the inequality [START_REF] Feldheim | Long gaps between sign-changes of Gaussian stationary processes[END_REF], the lower bound [START_REF] Farahmand | Topics in random polynomials[END_REF] follows from the following claims (c1)

lim inf n→∞ log A n √ n = -b, (c2) 
lim inf n→∞ log B n √ n ≥ 0, (c3) 
lim inf n→∞ log C n √ n ≥ 0.
Proof of Claim (c1). This claim is a consequence of Lemma 3.1.

Proof of Claim (c3). We first notice that for all 0 ≤ i ≤ n -1,

x i √ i! = √ i + 1 x x i+1 (i + 1)! ≤ √ n x x i+1 (i + 1)!
Hence, for all 0 ≤ i ≤ n -1,

x i √ i! ≤ √ n x n-i x n √ n! . Therefore, if x ≥ √ n + α n then n-1 i=0 x i √ i! ≤ x n √ n! n k=1 √ n x k ≤ x n √ n! √ n x - √ n ≤ x n √ n! √ n α n = x n √ n! log n.
Consequently, for all x ≥ √ n + α n , ( 14) [START_REF] Feldheim | Persistence of Gaussian stationary processes: a spectral perspective[END_REF] we get

|f n-1 (x)| = n-1 i=0 a i x i √ i! ≤ max 0≤i≤n-1 |a i | × n-1 i=0 x i √ i! ≤ max 0≤i≤n-1 |a i | × log n x n √ n! . Since f n (x) = f n-1 (x) + a n x n / √ n!, using
P(f n (x) > 0 ∀x ≥ √ n + α n ) ≥ P a n x n √ n! ≥ 2|f n-1 (x)| ∀x ≥ √ n + α n ≥ P a n ≥ 2 log n max 0≤i≤n-1 |a i | ≥ P a n ≥ 2 log 2 n P max 0≤i≤n-1 |a i | ≤ log n = P a n ≥ 2 log 2 n P (|a 0 | ≤ log n) n ≥ exp -4 log 4 n ,
for all n large enough. This estimate implies (c3).

For the proof of Claim (c2), to apply Lemma 2.2 (ii), we will find a non random function

r n such that E [(f ′ n (x) -r n (x)f n (x)) 2 ] is comparable to E [f n (x) 2 ] for all x ∈ ( √ n -α n , √ n + α n ). To minimize E [(f ′ n (x) -r n (x)f n (x)) 2 ],
we should choose r n as close to f ′ n /f n as possible. Since f n (also f ′ n ) is random and its expectation is zero, a natural and computable candidate for r n is the following

(15) r n (x) ≈ E[f ′ n (x) 2 ] E[f n (x) 2 ] 1/2 . We observe that E[f n (x) 2 ] = n 0 x 2i i! and E[f ′ n (x) 2 ] = n 0 i 2 x 2i-2 i!
. Moreover, the sequences

( x 2i i! ) i≥0 and ( i 2 x 2i-2 i!
) i≥0 are increasing when i ≤ x 2 and decreasing when i > x 2 . Thus the two sequences ( x 2i i! ) 0≤i≤n and ( i 2 x 2i-2 i!

) 0≤i≤n attain the maximum values at i max = [x 2 ] ∧ n. Furthermore, we will see later that

E[f ′ n (x) 2 ] E[f n (x) 2 ] 1/2 ≈ i 2 max x 2imax-2 i max ! x 2imax i max ! 1/2 ≈ i max x .
Hence a promising candidate for r n (x) is (x 2 ∧ n)/x. The detail computations are carried below. The choice of r n (x) as in ( 15) is quite natural and robust. This strategy may be applied to other persistence problems, specially for the case of centered C 1 Gaussian processes, to discard intervals which do not contribute to the persistence exponent. In particular, we use the same method to study the persistence probability of a random polynomial arising from evolutionary game theory, see [START_REF] Can | Persistence probability of a random polynomial arising from evolutionary game theory[END_REF].

Proof of Claim (c2). Let us define a continuous function

r n (x) = x ∧ n x .
We claim that there exists a positive constant ∆, such that for all

x ∈ ( √ n-α n , √ n+α n ), 2∆ 2 E (f ′ n (x) -r n (x)f n (x)) 2 ≤ E f n (x) 2 . ( 16 
)
Combining this claim with Lemma 2.2 (ii), we get

P f n (x) > 0 ∀x ∈ ( √ n -α n , √ n + α n ) ≥ µ ⌈2αn/∆⌉ ,
which implies (c2), by noting that α n = o( √ n). Now it remains to prove [START_REF] Littlewood | On the distribution of the zeros and a-values of a random integral function[END_REF]. Let us define

k = [x 2 ] ∧ n ∈ [n -2 √ nα n , n].
We observe that

E[f n (x) 2 ] = n i=0 x 2i i! ≥ k i=k-[ √ k] x 2i i! = x 2k k! k i=k-[ √ k] x 2i-2k k! i! = x 2k k! [ √ k] j=0 x -2j k! (k -j)! ≥ x 2k k! [ √ k] j=0 x -2j (k -j) j = x 2k k! [ √ k] j=0 k x 2 j k -j k j ≥ x 2k 3k! [ √ k] j=0 k x 2 j , (17) 
where we used the inequality that 1 -

j k j ≥ 1 -1 √ k √ k ≥ 1/3, for k large enough and j ≤ √ k. We also have E (f ′ n (x) -r n (x)f n (x)) 2 = n i=0 i x -r n (x) 2 x 2i i! = n i=0 i -(n ∧ x 2 ) x 2 x 2i i! (use k = [x 2 ] ∧ n) ≤ 2 n i=0 (i -k) 2 + 1 x 2 x 2i i! = 2x 2k-2 k! n i=0 [(i -k) 2 + 1] x 2i-2k k! i! = 2x 2k-2 k! k j=1 (j 2 + 1) x -2j k! (k -j)! + n-k j=0 (j 2 + 1) x 2j k! (k + j)! = 2x 2k-2 k! [S 1 + S 2 ] . ( 18 
)
The first term can be written as

S 1 = k j=1 (j 2 + 1) k x 2 j k! (k -j)!k j . (19) Moreover, k! (k -j)!k j = j i=1 1 - j -i k ≤ ⌈j/2⌉ i=1 1 - j -i k ≤ 1 - [j/2] 2k ⌈j/2⌉ ≤ exp - [j/2]⌈j/2⌉ k ≤ exp 1 - j 2 4k .
Therefore,

S 1 ≤ e k j=1 (j 2 + 1) k x 2 j exp - j 2 4k ≤ e   [ √ k] j=1 (j 2 + 1) k x 2 j + k j=[ √ k] (j 2 + 1) k x 2 j exp - j 2 4k   . ( 20 
)
For the first sum,

[ √ k] j=1 (j 2 + 1) k x 2 j ≤ 2k [ √ k] j=1 k x 2 j . ( 21 
)
For the second sum, using k ≤ x 2 we obtain that

k j=[ √ k] (j 2 + 1) k x 2 j exp - j 2 4k ≤ 2 k x 2 [ √ k] k j=[ √ k] j 2 exp - j 2 4k ≤ 2 k x 2 [ √ k] [ √ k] t=1 √ k[(t + 1) √ k] 2 exp - t 2 4 = 2 k x 2 [ √ k] k √ k ∞ t=1 (t + 1) 2 exp(-t 2 /4) ≤ C k x 2 [ √ k] k √ k ≤ Ck × [ √ k] j=1 k x 2 j , (22) 
for some C > 0. Combining ( 20), ( 21) and ( 22), we get

S 1 ≤ Ck [ √ k] j=1 k x 2 j , (23) 
for some positive constant C. We now estimate the second term

S 2 . If x ≥ √ n, then k = n and thus S 2 = 1. Assume that x ≤ √ n, then k = [x 2 ] ≥ x 2 -1. Hence x 2j ≤ (k +1) j ≤ 3k j for all j ≤ n -k ≤ k. Using the fact that k!k j (k + j)! = j i=1 k k + i ≤ k k + j/2 j/2 = 1 - j 2k + j j/2 ≤ exp -j 2 2(2k + j) ≤ e -j 2 /6k
and the same argument for [START_REF] Schehr | Real roots of random polynomials and zero crossing properties of diffusion equation[END_REF], we have

S 2 = n-k j=0 (j 2 + 1) x 2j k! (k + j)! ≤ C ′ n-k j=0 j 2 k!k j (k + j)! ≤ C ′ n-k j=0 j 2 e -j 2 /6k ≤ Ck √ k, for some constants C > C ′ > 0. Since k ≤ x 2 ≤ k + 1, [ √ k] j=0 k x 2 j ≥ [ √ k] k x 2 [ √ k] ≥ [ √ k] k k + 1 [ √ k] ≥ [ √ k] 2 .
It follows from the last two estimates that

(24) S 2 ≤ Ck [ √ k] j=0 k x 2 j ,
for some positive constant C. Combining ( 18), ( 23) and ( 24), we obtain

(25) E (f ′ n (x) -r n (x)f n (x)) 2 ≤ 4Cx 2k-2 k! k [ √ k] j=0 k x 2 j ≤ 4Cx 2k k! [ √ k] j=0 k x 2 j , since k ≤ x 2 .
In conclusion, [START_REF] Littlewood | On the distribution of the zeros and a-values of a random integral function[END_REF] follows from ( 17) and ( 25) and this completes the proof of Part (a).

Persistence probability on the whole real axis

We first recall the autocorrelation function

A n (x, y) = corr(f n (x), f n (y)) = n i=0 (xy) i i! n i=0 x 2i i! × n i=0 y 2i i! .
Let us define

g n (x) = e -x n i=0
x i i! .

Then (26)

A n (x, y) = g n (xy)

g n (x 2 )g n (y 2 ) e -(x-y) 2 /2 .
In the following lemma, we study the asymptotic behavior of g n (x).

Lemma 4.1. The following statements hold.

(i) If n ∈ 2N, then g n (x) is nonnegative for all x, and thus A n (x, y) is nonnegative for all x, y. (ii) For any fixed M ≥ 0,

lim n→∞ sup -M 2 ≤x≤n- √ nαn |g n (x) -1| = 0.
(iii) For all n ∈ 2N large enough and

√ nα n -n ≤ x ≤ 0, g n (x) ≤ 1 + e 2|x| e -α 2 n /4 √ 2πn .
(iv) For any fixed M ≥ 0, define

θ n (M) := sup 2M ≤s≤ √ n-αn (s 2 + s + 1) sup s(s-2M )≤x≤s(s+2M ) (|g ′ n (x)| + |g ′′ n (x)|) + (4M 2 + 2M + 1) sup -M 2 ≤x≤9M 2 (|g ′′ n (x)| + |g ′ n (x)|).
Then θ n (M) → 0 as n → ∞.

Proof. It is obvious that g n (x) ≥ 0 for x ≥ 0. Let us consider x ≤ 0. We have

(27) g ′ n (x) = -e -x x n n! .
If n is even, g ′ n (x) ≤ 0 for all x ∈ R. Thus the function g n (x) is decreasing, so g n (x) ≥ g n (0) = 1 for all x ≤ 0. Therefore, g n (x) ≥ 0 for all x ∈ R, and (i) holds.

We turn to prove (ii). Since g n (x) converges uniformly to

1 for -M 2 ≤ x ≤ 0, (28) 
lim n→∞ sup -M 2 ≤x≤0
|g n (x) -1| = 0.

For 0 ≤ x ≤ n - √ nα n , we observe that 0 ≤ 1 -g n (x) = P(Poi(x) > n) ≤ 1 -g n (k) = P(Poi(k) > n),
where Poi(µ) stands for the Poisson distribution with intensity µ and

k = ⌈n - √ nα n ⌉. Let λ n = α n / √ n. Using Markov's inequality, P(Poi(k) > n) = P e λnPoi(k) > e λnn
≤ e -λnn E e λnPoi(k) = exp -λ n n + k(e λn -1) .

Since λ n → 0 as n → ∞, for all n large enough e λn ≤ 1 + λ n + 3λ 2 n /4. Therefore,

log P(Poi(k) > n) ≤ -λ n (n -k) + 3nλ 2 n 4 ≤ - α 2 n 4 . Hence as n → ∞, (29) sup 0≤x≤n 
- √ nαn |g n (x) -1| ≤ exp(-α 2 n /4) → 0.
Combining (28) and (29) yields (ii). We now prove (iii). Define for t ≥ 0,

ℓ n (t) = e t n i=0 (-t) i i! .
Since n is even, ℓ ′ n (t) = e t t n n! . By Stirling formula and noting that log(1 -x) ≤ -x - 

-M 2 ≤x≤9M 2 (|g ′′ n (x)| + |g ′ n (x)|) = 0.
For x ≥ 0, define 

G n (x) = e -x x n-1 (n -1)! . Then G ′ n (x) = e -x x n-2 (n -1 -x)/(n -
(s 2 + s + 1)G n (s(s + 2M)) = 0.
Combining (32) -( 35), we get (iv).

As in Lemma 3.1, the following lemma shows the interval providing the main contribution to the persistence probability on the whole real axis. Lemma 4.2. As n ∈ 2N tends to infinity,

lim n→∞ 1 √ n log P f n (x) > 0, ∀x ∈ [- √ n + α n , √ n -α n ] = -2b.
To prove Lemma 4.2, we shall verify the conditions on the sequence of correlation functions given in Lemma 2.1. Assume that n is even. We consider the Weyl polynomial as a Gaussian process on the interval [-√ n+α n , √ n-α n ], whose size is equal to 2( √ n-α n ).

To recover the exact form in the statements of Lemma 2.1, one should make the change of variable to transform the interval [-

√ n + α n , √ n -α n ] to [0, 2( √ n -α n )].
However, for the simplicity of notation, we work directly with the interval [-

√ n + α n , √ n -α n ].
Proof. By Lemma 2.1, it is sufficient to prove that Conditions (b0)-(b2) hold.

Verification of (b0). This condition is relatively mild and is shown to be hold for A ∞ (0, t) = e -t 2 /2 in [7, Lemma 1.11].

Verification of (b1). Let us denote

h n (s, τ ) = g n (s(s + τ )) g n (s 2 )g n ((s + τ ) 2 ) .
Then A n (s, s + τ ) = h n (s, τ )e -τ 2 /2 . Using Lemma 4.1 (ii), we have 1 2 ≤ g n (x) ≤ 2 for all n large enough and 0 ≤ x ≤ n -√ nα n . Therefore, (36)

A n (s, s + τ ) ≤ 2g n (s(s + τ ))e -τ 2 /2 .
In addition, if s(s + τ ) ≥ 0 then g n (s(s + τ )) ≤ 2, and thus 

A n (s, s + τ ) ≤ 4e -τ 2 /2 , so ( 
A n (s, s + τ ) ≤ 2e -τ 2 /2 1 + e 2a e -α 2 n /4 √ 2πn ≤ 4e -τ 2 /2 1 + e τ 2 /2 e -α 2 n /4 √ 2πn ≤ τ -2 , since 0 < τ ≤ 2( √ n -α n ). Hence, (b1) is verified.
Verification of (b2). We claim that for any fixed number M as n → ∞,

(38) δ n = δ n (M) := sup τ ∈[0,M ] sup s:|s|,|s+τ |≤ √ n-αn 2|h n (s, τ ) -1| τ 2 → 0.
Assuming (38), we can prove (b2). Indeed, let (D t ) be the centered Gaussian process corresponding to the autocorrelation e -t 2 and ǫ n = δ n /κ, where

κ = κ(M) = inf |x|≤M 2 /2 |e x -1| |x| .
Then for all τ ∈ [0, M] and s such that |s|, |s + τ | ≤ √ n -α n , we have

A n (s, s + τ ) = h n (s, τ )e -τ 2 /2 = (1 -ǫ n )e -τ 2 /2 + ǫ n + e -τ 2 /2 (h n (s, τ ) -1) -ǫ n (e τ 2 /2 -1) = (1 -ǫ n )e -τ 2 /2 + ǫ n + τ 2 e -τ 2 /2 2 2(h n (s, τ ) -1) τ 2 -ǫ n (e τ 2 /2 -1) τ 2 /2 ≤ (1 -ǫ n )e -τ 2 /2 + ǫ n + τ 2 e -τ 2 /2 2 [δ n -ǫ n κ] = (1 -ǫ n )e -τ 2 /2 + ǫ n , (39) 
and

A n (s, s + τ ) = h n (s, τ )e -τ 2 /2 = (1 -ǫ n )e -τ 2 /2 + ǫ n e -τ 2 + e -τ 2 /2 (h n (s, τ ) -1) + ǫ n (1 -e -τ 2 /2 ) = (1 -ǫ n )e -τ 2 /2 + ǫ n e -τ 2 + τ 2 e -τ 2 /2 2 2(h n (s, τ ) -1) τ 2 + ǫ n (1 -e -τ 2 /2 ) τ 2 /2 ≥ (1 -ǫ n )e -τ 2 /2 + ǫ n e -τ 2 + τ 2 e -τ 2 /2 2 [-δ n + ǫ n κ] = (1 -ǫ n )e -τ 2 /2 + ǫ n e -τ 2 . ( 40 
)
Hence Condition (b2) is verified and it remains to show (38).

We first notice that if

1 2 ≤ A, B, C ≤ 2, then B √ AC -1 = |B 2 -AC| √ AC(B + √ AC) ≤ 2|B 2 -AC| = 2|(B -A)(C -B) + B[(B -A) -(C -B)]| ≤ 4[|(B -A)(C -B)| + |(B -A) -(C -B)|]. (41) 
Let us consider A = g n (s 2 ), B = g n (s(s + τ )) and C = g n ((s + τ ) 2 ). Observe that s(s + τ ) ≥ -τ 2 /4 ≥ -M 2 /4. Therefore, -M 2 < s 2 , s(s + τ ), (s + τ is as on the interval [ √ n -α n , ∞). Thus Claim (d1) is equivalent to Claim (d2). On the other hand, (d2) follows from Claims (c2) and (c3) as in Section 3.

  )2 ≤ n -√ nα n . Hence by Lemma (4.1) (ii),1 2 ≤ A, B, C ≤ 2 for all n large enough. Now, we notice thatB -A = sτ 0 g ′ n (u + s 2 )du, C -B = sτ +τ 2 0 g ′ n (u + s(s + τ ))du.Therefore,|(B -A) -(C -B)| = sτ 0 [g ′ n (u + s 2 ) -g ′ n (u + s(s + τ ))]du + sτ +τ 2 sτ g ′ n (u + s(s + τ ))du ≤ (sτ ) 2 sup x∈[s 2 ,s(s+2τ )] |g ′′ n (x)| + τ 2 sup x∈[s(s+2τ ),(s+τ ) 2 ] |g ′ n (x)| = τ 2 s 2 sup x∈[s 2 ,s(s+2τ )] |g ′′ n (x)| + sup x∈[s(s+2τ ),(s+τ ) 2 ] |g ′ n (x)| =: τ 2 F n (s). (42) Observe that s(s + 2τ ) ≥ -τ 2 ≥ -M 2 for all s ∈ R and τ ∈ [0, M]. Therefore, if |s| ≤ 2M then -M 2 ≤ s 2 , s(s + 2τ ), (s + τ ) 2 ≤ 9M 2 . Thus (43) sup |s|≤2M F n (s) ≤ (4M 2 + 1) sup -M 2 ≤x≤9M 2 (|g ′′ n (x)| + |g ′ n (x)|).If |s| ≥ 2M, then s(s + 2τ ) ≥ 0, since τ ∈ [0, M]. In addition, we can prove that|s|(|s| -2M) ≤ s 2 , s(s + 2τ ), (s + τ ) 2 ≤ |s|(|s| + 2M).Hence for |s| ≥ 2M,(44) F n (s) ≤ (s 2 + 1) sup |s|(|s|-2M )≤x≤|s|(s+2M ) (|g ′′ n (x)| + |g ′ n (x)|).Combining (43) and (44), we getsup s:|s|,|s+τ |≤ √ n-αn F n (s) ≤ θ n (M),with θ n (M) as in Lemma 4.1 (iv). Combining this with (42), we obtain(45) |(B -A) -(C -B)| ≤ τ 2 θ n (M).Similarly, we can prove that|(B -A)(C -B)| ≤ τ 2 |s| sup x∈[s 2 ,s(s+τ )] |g ′ n (x)| |s + τ | sup x∈[s(s+τ ),(s+τ ) 2 ] |g ′ n (x)| ≤ θ 2 n (M)τ 2 . (46) It follows from (41), (45) and (46) that |h n (s, τ ) -1| ≤ 4[θ 2 n (M) + θ n (M)]τ 2 . Hence (38) holds, since θ n (M) → 0 as n → ∞ by Lemma 4.1 (iv).

  Proof of Theorem 1.1 (b). Using Lemma 4.2 and the same arguments for[START_REF] Do | Central limit theorems for the real zeros of Weyl polynomials[END_REF], we get(47) lim sup n→∞ 1 √ n log P (f n (x) > 0, ∀x ∈ R) ≤ -2b.On the other hand, by analogous arguments for[START_REF] Farahmand | Topics in random polynomials[END_REF], the lower bound that(48) lim inf n→∞ 1 √ n log P (f n (x) > 0, ∀x ∈ R) ≥ -2bfollows from Lemma 4.2 and the following claims (d1)lim inf n→∞ 1 √ n log P f n (x) > 0, ∀x ∈ (-∞, -√ n + α n ] ≥ 0, P f n (x) > 0, ∀x ∈ [ √ n -α n , ∞) ≥ 0.By symmetry, the law of the random Weyl polynomial on the interval (-∞, -√ n + α n ]

  1)!. Hence the function G n is increasing on (0, n -1). Therefore, for all 2M ≤ s ≤ √ n -α n ,

	(34)	sup s(s-2M )≤x≤s(s+2M )	G n (x) ≤ G n (s(s + 2M)),
	and following the same argument as in (30), we can prove that
	(35)	lim n→∞	sup 2M ≤s≤ √ n-αn

  b1) is verified. Assume that s(s + τ ) < 0. Then s < 0 and s + τ > 0, so (37) a := |s(s + τ )| = |s|(τ -|s|) ≤ τ 2 /4.

	Moreover, τ ≤ 2( (iii), for n and τ large enough √ n -α n ), since |s|, |s + τ | ≤	√ n -α n . Using (36), (37) and Lemma 4.1
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