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PERSISTENCE PROBABILITY OF RANDOM WEYL POLYNOMIAL

VAN HAO CAN AND VIET-HUNG PHAM

Abstract. In this paper, we obtain the persistence exponents of random Weyl polyno-
mials in both cases: the nonnegative axis and the whole real axis. Our result confirms
the predictions given by Schehr and Majumdar [22]. In the nonnegative axis case, Dembo
and Mukherjee [7] gave an upper bound for the persistence exponent by considering the
persistence probability on a suitable interval. Our main contribution is to prove this
upper bound is the exact exponent and to extend to the whole real axis case.

1. Introduction

The persistence probability of a stochastic process X is defined as the probability that
the process X remains positive for a long interval. The study of persistence probability
has gained much interest in both mathematical and physical literatures, see more in
[1, 2, 4, 5, 12, 20, 21, 22]. However, up to now, most of existed results just deal with
stationary Gaussian processes with summable and nonnegative autocorrelation function.
In general, understanding the persistence decay is still a big challenge, see [13]. Recently,
some new lights have been shed in [8] for processes with non-summable autocorrelation
function or in [14] for processes with special spectral properties.

In this paper, we are interested in the persistence probability of random polynomials,
a special class of Gaussian processes. Let us consider a polynomial defined as

Qn(x) = c0a0 + c1a1x+ . . .+ cnanx
n,

where ci’s are real deterministic coefficients and ai’s are i.i.d. standard Gaussian random
variables. Among various models (choices of the coefficients ci’s), the three classes being
studied most extensively include

- Kac polynomials: c0 = c1 = . . . = cn = 1,

- Elliptic polynomials: ci =
√

(

n
i

)

, ∀ i = 0, 1, . . . , n,

- Weyl polynomials: ci =
1√
i!
.

For more information and results on random polynomial theory, we refer the reader to
two standard monographs [4, 12] and recent papers [10, 11, 19, 24].

The first motivation to study the persistence probability for random polynomials arises
from Large deviations theory or Extreme value theory to estimate the rare event that
the random polynomials have many fewer real zeroes than expected. In particular, the
persistence probability is a half of the probability that the random polynomials have
no real zero, see [3]. The second motivation comes from some applications in statistical
physics to understand the magnetization of spin glass, see [5, 21]. Recently, the connection
between persistence probability of random polynomials and the semi-infinite Ising chain
with Glauber dynamics has been unveiled, see [20].
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A very first result given by Littewood and Offord [15, 16] in the 1940’s states that for
Kac polynomials, if n is even, then the persistence probability is small, in fact P(NKac,n =
0) = O(1/ logn). In 2002, the first breakthrough result was given by Dembo et al [9]. They
provided a precise asymptotic formula for the persistence probability of Kac polynomials
of even degree as

(1) P(QKac,n(x) > 0, ∀x ∈ R) = n−4b0+o(1),

where b0 = − limt→∞ t−1 logP(Ys > 0, ∀s ∈ [0, t]), with Y the centered stationary Gauss-
ian process with correlation E(Y0Yt) = 1/ cosh(t/2). Their main observation is that on
some small main intervals the random Kac polynomial can be approximated by the Gauss-
ian process Y above. More strikingly, a universal result for any distribution having finite
moments of all orders was achieved by using the strong Komlos-Major-Tusnady approx-
imation. It follows an interesting question to provide good estimates for the constant b0
above, see [17]. Recently, in [20], the exact value of b0 is given to be 3/16.

In [22], Schehr and Majumdar proposed a mean-field approximation (based on the
asymptotic behavior of autocorrelation function) to revisit the persistence probability of
Kac polynomials and also to predict an asymptotic formula for elliptic and Weyl models.

- For elliptic polynomials of even degree,

(2) lim
n→∞

log P (QElliptic,n(x) > 0, ∀x ∈ R)√
n

= −πb,

where b is a positive constant defined as

(3) b = − lim
T→∞

log P(inf0≤t≤T Z(t) > 0)

T
,

with Z(t) a centered stationary Gaussian process with correlation E(Z0Zt) =

e−t2/2.
- For Weyl polynomials of even degree,

(4) lim
n→∞

logP (QWeyl,n(x) > 0, ∀x ∈ R)√
n

= −2b,

with the same constant b as above.

In particular, for Weyl model, Schehr and Majumdar divided the real axis into two parts:
the interval [−√

n,
√
n] and its complement. Due to the phase transition of the auto-

correlation function on these two parts, the persistence exponents are expected to be
different. Indeed, the authors guessed that persistence probability on [−√

n,
√
n] is of

order exp(−2b
√
n) and the one on the complement is of order n−2b0 , where b0 is the same

as in Kac model. Assuming the independence of real zeroes, they proposed the following
approximation for the persistence probability of Weyl polynomials on the whole real axis

(5) P (QWeyl,n(x) > 0, ∀x ∈ R) ∼ n−2b0e−2b
√
n.

In [7], Dembo and Mukherjee gave a powerful method to obtain rigorously the persis-
tence exponent of Gaussian processes. Given a sequence of Gaussian processes converging
weakly to a stationary Gaussian process, they provided some necessary conditions on the
autocorrelation functions of the Gaussian processes (see Lemma 2.1) to ensure the conti-
nuity of persistence exponents (defined as (3)). Using the criteria, they gave a rigorous
basis to (2). For generalized Kac plolynomials where the coefficients ci’s satisfy some
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regularly varying conditions (see [7, Theorem 1.3]), they also proved that the persistence
probability in this case has the same form as (1).

For Weyl polynomials, Dembo and Mukherjee found that the persistence exponent
considered on the intervals Jn = [0,

√
n − αn] with αn = o(

√
n) is −b, which is a half

of the exponent in (4). Naturally, they believed that the interval Jn contributes the
main term to persistence probability on the nonnegative axis and they left it as an open
question.

In this paper, we would like to complete the picture of the persistence probability of
Weyl polynomials in both cases: the nonnegative axis and the whole real axis. Here is
our main result which confirms the predictions of Schehr and Majumdar [22], and also of
Dembo and Mukherjee [7].

Theorem 1.1. Consider the Weyl random polynomial defined by

fn(x) =
n
∑

i=0

ai√
i!
xi,

where ai’s are i.i.d. standard normal random variables. The following statements hold.

(a) As n tends to infinity,

lim
n→∞

logP (fn(x) > 0, ∀x ∈ [0,∞))√
n

= −b,

where b is the positive constant defined as in (3).
(b) Assume that that n is even, then

lim
n→∞

log P (fn(x) > 0, ∀x ∈ R)√
n

= −2b,

with the same constant b as above.

The idea of the proof is as follows. First, using the method of Dembo and Mukherjee, we
obtain the persistence exponents for the intervals [0,

√
n−αn] (and [−√

n+αn,
√
n−αn],

respectively) with a suitable sequence (αn). While the exponent for [0,
√
n − αn] has

been already mentioned in [7], the one for [−√
n + αn,

√
n − αn] needs a more careful

verification, see the proof of Lemma 4.2. Secondly, we show that the contribution from
the complement intervals is negligible in the sense that the persistence probability on the
complement decays much slower. To do that, instead of considering the persistence of
the given process fn(x), we deal with the persistence of fn(x)Rn(x) for a suitable positive
non random function Rn(x), see Lemma 2.2 and Proof of claim (c2). Finally, to join the
persistence probabilities on the intervals, we use the celebrated Slepian’s inequality.

It would be interesting to give a rigorous proof for (5). Unfortunately, our method is
not sharp enough to do that and we leave the question for future research.

The paper is organized as follows. In Section 2, we recall two key lemmas in [7]. The
detailed proofs of Part (a) and Part (b) will be presented respectively in Section 3 and
Section 4.
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2. Preliminaries

Since ai’s are i.i.d. random variables of standard normal distribution, the Weyl random
polynomial fn(x) is a Gaussian process with autocorrelation function

(6) An(x, y) = corr(fn(x), fn(y)) =

∑n
i=0

(xy)i

i!
√

∑n
i=0

x2i

i!
×
√

∑n
i=0

y2i

i!

.

If x and y are fixed, then An(x, y) converges to e−(x−y)2/2 as n tends to infinity. It means
that the sequence of Weyl random polynomials converges weakly to the centered station-
ary Gaussian process Z(t) with covariance function R(t) = e−t2/2. Then by heuristic
arguments, the persistence probability of Weyl random polynomials might tend to the
corresponding one of Z(t). However, in general, the limit implied by heuristic arguments
is not true, see [7, p. 89] for a counterexample. To ensure the continuity of persistence
exponents, we need some restrictive conditions on the autocorrelation function. The fol-
lowing result combining Theorem 1.6, Remark 1.7 and Lemma 1.8 in [7] gives us such
criteria.

Lemma 2.1. Let S+ be the class of all non-negative stationary autocorrelation functions.
Then the following assertions hold.

(a) For any centered stationary Gaussian process {Zt}t≥0 of autocorrelation A(s, t) =
A(0, t− s) ∈ S+, the nonnegative limit

b(A) = − lim
T→∞

logP(inf0≤t≤T Z(t) > 0)

T
,

exists.
(b) Let {Z(k)

t }t≥0, 1 ≤ k ≤ ∞ be a sequence of centered Gaussian processes of unit
variance and nonnegative autocorrelation functions Ak(s, t), such that A∞(s, t) ∈
S+. Suppose that the following three conditions hold.
(b0) For all η > 0,

lim sup
M→∞

1

M
logP

(

sup
t∈[0,M ]

Z∞
t < M−η

)

= −b(A∞).

(b1) We have

lim sup
k,τ→∞

sup
s≥0

{

logAk(s, s+ τ)

log τ

}

< −1.

(b2) There exists a nonnegative autocorrelation function D ∈ S+ corresponding
to some stationary Gaussian process such that for any finite M , there exist
positive ǫk → 0 satisfying

(1− ǫk)A∞(0, τ) + ǫkD(0, τ) ≤ Ak(s, s+ τ) ≤ (1− ǫk)A∞(0, τ) + ǫk,

for all s, τ such that τ ∈ [0,M ] and both s, s + τ belong to the considering
interval.

Then

lim
k,T→∞

1

T
log P

(

Z
(k)
t > 0, ∀t ∈ [0, T ]

)

= −b(A∞).

The next lemma provides a lower bound on the persistence probability of a differentiable
Gaussian process Z(t), assuming a simple condition that the variances of Z(t) and Z ′(t)
are comparable.
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Lemma 2.2. There is an universal constant µ ∈ (0, 1), such that the following statements
hold.

(i) Suppose that (Zt)t∈[a,b] is a centered C1 Gaussian process satisfying

(7) 2(b− a)2 sup
t∈[a,b]

E(Z ′2
t ) ≤ sup

t∈[a,b]
E(Z2

t ).

Then

P

(

inf
t∈[a,b]

Zt > 0

)

≥ µ.

(ii) Let I ⊂ R be an interval and r : I 7→ R be a continuous function. Suppose
that (Zt)t∈I is a centered C1 Gaussian process with nonnegative autocorrelation
satisfying for all t ∈ I,

(8) 2∆2
E
[

(Z ′
t − r(t)Zt)

2
]

≤ E
[

Z2
t

]

,

for some positive constant ∆. Then

P

(

inf
t∈I

Zt > 0

)

≥ µ⌈ |I|
∆

⌉.

Proof. Part (i) is exactly Lemma 4.1 in [7]. We now prove (ii). Let us define a new
centered Gaussian process as

Xt = R(t)Zt,

where

R(t) = exp

(

−
∫ t

0

r(s)ds

)

.

Since R(t) > 0 for all t ∈ I,

(9) P

(

inf
t∈I

Zt > 0

)

= P

(

inf
t∈I

Xt > 0

)

.

Since R(t) is differentiable, (Xt)t∈I is also a centered C1 Gaussian process. Moreover,
X ′

t = R(t)[Z ′
t − r(t)Zt]. Hence, the assumption (8) implies that for all t ∈ I,

2∆2
E(X ′2

t ) ≤ E(X2
t ).

Now, we divide I into ⌈ |I|
∆
⌉ small intervals of length ∆. Then the condition (7) holds for

all the small intervals. Thus using Slepian’s inequality and (i), we obtain

(10) P

(

inf
t∈I

Xt > 0

)

≥ µ⌈ |I|
∆

⌉.

Combining this estimate with (9), we get the desired result. �

3. Persistence probability on the nonnegative axis

Before proving Part (a) of Theorem 1.1, we recall the following lemma given by Dembo
and Mukherjee [7] that provides the persistence exponent on suitable intervals.

Lemma 3.1. [7, Remark 1.11] For any sequence (αn) such that the ratio αn√
n

tends to 0,

we have

lim
n→∞

1√
n
log P

(

fn(x) > 0, ∀x ∈ [0,
√
n− αn]

)

= −b,

with the constant b defined as in (3).
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Throughout this paper, we always consider the sequence (αn) defined as

αn =

√
n

log n
.

Part (a) of Theorem 1.1 follows from the following upper bound and lower bound on
the persistence probability

(11) lim sup
n→∞

1√
n
logP (fn(x) > 0, ∀x ∈ [0,∞)) ≤ −b,

and

(12) lim inf
n→∞

1√
n
log P (fn(x) > 0, ∀x ∈ [0,∞)) ≥ −b,

with b as in (3).

Proof of (11). The upper bound (11) follows from Lemma 3.1 and a simple observation
that

P (fn(x) > 0, ∀x ∈ [0,∞)) ≤ P
(

fn(x) > 0, ∀x ∈ [0,
√
n− αn]

)

.

Proof of (12). By using Slepian’s inequality (see [1, Theorem 2.2.1]),

Pn = P(fn(x) > 0 ∀ x ≥ 0)

≥ P(fn(x) > 0 ∀ 0 ≤ x ≤
√
n− αn)× P(fn(x) > 0 ∀

√
n− αn < x <

√
n+ αn)

×P(fn(x) > 0 ∀ x ≥
√
n+ αn) =: An ×Bn × Cn.(13)

Thanks to the inequality (13), the lower bound (12) follows from the following claims

(c1)

lim inf
n→∞

logAn√
n

= −b,

(c2)

lim inf
n→∞

logBn√
n

≥ 0,

(c3)

lim inf
n→∞

logCn√
n

≥ 0.

Proof of Claim (c1). This claim is a consequence of Lemma 3.1. �

Proof of Claim (c3). We first notice that for all 0 ≤ i ≤ n− 1,

xi

√
i!
=

√
i+ 1

x

xi+1

√

(i+ 1)!
≤

√
n

x

xi+1

√

(i+ 1)!

Hence, for all 0 ≤ i ≤ n− 1,

xi

√
i!
≤
(√

n

x

)n−i
xn

√
n!
.

Therefore, if x ≥ √
n+ αn then

n−1
∑

i=0

xi

√
i!
≤ xn

√
n!

n
∑

k=1

(√
n

x

)k

≤ xn

√
n!

√
n

x−√
n
≤ xn

√
n!

√
n

αn
=

xn

√
n!

logn.



PERSISTENCE PROBABILITY OF RANDOM WEYL POLYNOMIAL 7

Consequently, for all x ≥ √
n+ αn,

(14) |fn−1(x)| =
∣

∣

∣

n−1
∑

i=0

ai
xi

√
i!

∣

∣

∣
≤ max

0≤i≤n−1
|ai| ×

n−1
∑

i=0

xi

√
i!
≤ max

0≤i≤n−1
|ai| × logn

xn

√
n!
.

Since fn(x) = fn−1(x) + anx
n/
√
n!, using (14) we get

P(fn(x) > 0 ∀x ≥
√
n+ αn) ≥ P

(

an
xn

√
n!

≥ 2|fn−1(x)| ∀x ≥
√
n+ αn

)

≥ P

(

an ≥ 2 logn max
0≤i≤n−1

|ai|
)

≥ P
(

an ≥ 2 log2 n
)

P

(

max
0≤i≤n−1

|ai| ≤ log n

)

= P
(

an ≥ 2 log2 n
)

P (|a0| ≤ log n)n

≥ exp
(

−4 log4 n
)

,

for all n large enough. This estimate implies (c3). �

For the proof of Claim (c2), to apply Lemma 2.2 (ii), we will find a non random
function rn such that E [(f ′

n(x)− rn(x)fn(x))
2] is comparable to E [fn(x)

2] for all x ∈
(
√
n−αn,

√
n+αn). To minimize E [(f ′

n(x)− rn(x)fn(x))
2], we should choose rn as close

to f ′
n/fn as possible. Since fn (also f ′

n) is random and its expectation is zero, a natural
and computable candidate for rn is the following

(15) rn(x) ≈
(

E[f ′
n(x)

2]

E[fn(x)2]

)1/2

.

We observe that E[fn(x)
2] =

∑n
0

x2i

i!
and E[f ′

n(x)
2] =

∑n
0

i2x2i−2

i!
. Moreover, the sequences

(x
2i

i!
)i≥0 and ( i

2x2i−2

i!
)i≥0 are increasing when i ≤ x2 and decreasing when i > x2. Thus the

two sequences (x
2i

i!
)0≤i≤n and ( i

2x2i−2

i!
)0≤i≤n attain the maximum values at imax = [x2]∧ n.

Furthermore, we will see later that
(

E[f ′
n(x)

2]

E[fn(x)2]

)1/2

≈
(

i2maxx
2imax−2

imax!

/x2imax

imax!

)1/2

≈ imax

x
.

Hence a promising candidate for rn(x) is (x2 ∧ n)/x. The detail computations are carried
below. The choice of rn(x) as in (15) is quite natural and robust. This strategy may
be applied to other persistence problems, specially for the case of centered C1 Gaussian
processes, to discard intervals which do not contribute to the persistence exponent. In
particular, we use the same method to study the persistence probability of a random
polynomial arising from evolutionary game theory, see [6].

Proof of Claim (c2). Let us define a continuous function

rn(x) = x ∧ n

x
.

We claim that there exists a positive constant ∆, such that for all x ∈ (
√
n−αn,

√
n+αn),

2∆2
E
[

(f ′
n(x)− rn(x)fn(x))

2
]

≤ E
[

fn(x)
2
]

.(16)

Combining this claim with Lemma 2.2 (ii), we get

P
(

fn(x) > 0 ∀x ∈ (
√
n− αn,

√
n+ αn)

)

≥ µ⌈2αn/∆⌉,
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which implies (c2), by noting that αn = o(
√
n).

Now it remains to prove (16). Let us define

k = [x2] ∧ n ∈ [n− 2
√
nαn, n].

We observe that

E[fn(x)
2] =

n
∑

i=0

x2i

i!
≥

k
∑

i=k−[
√
k]

x2i

i!
=

x2k

k!

k
∑

i=k−[
√
k]

x2i−2kk!

i!

=
x2k

k!

[
√
k]

∑

j=0

x−2jk!

(k − j)!
≥ x2k

k!

[
√
k]

∑

j=0

x−2j(k − j)j

=
x2k

k!

[
√
k]

∑

j=0

(

k

x2

)j (
k − j

k

)j

≥ x2k

3k!

[
√
k]

∑

j=0

(

k

x2

)j

,(17)

where we used the inequality that
(

1− j
k

)j ≥
(

1− 1√
k

)

√
k

≥ 1/3, for k large enough and

j ≤
√
k.

We also have

E
[

(f ′
n(x)− rn(x)fn(x))

2
]

=
n
∑

i=0

(

i

x
− rn(x)

)2
x2i

i!
=

n
∑

i=0

(

i− (n ∧ x2)

x

)2
x2i

i!

(use k = [x2] ∧ n) ≤ 2

n
∑

i=0

(i− k)2 + 1

x2

x2i

i!
=

2x2k−2

k!

n
∑

i=0

[(i− k)2 + 1]
x2i−2kk!

i!

=
2x2k−2

k!

[

k
∑

j=1

(j2 + 1)
x−2jk!

(k − j)!
+

n−k
∑

j=0

(j2 + 1)
x2jk!

(k + j)!

]

=
2x2k−2

k!
[S1 + S2] .(18)

The first term can be written as

S1 =
k
∑

j=1

(j2 + 1)

(

k

x2

)j
k!

(k − j)!kj
.(19)

Moreover,

k!

(k − j)!kj
=

j
∏

i=1

(

1− j − i

k

)

≤
⌈j/2⌉
∏

i=1

(

1− j − i

k

)

≤
(

1− [j/2]

2k

)⌈j/2⌉

≤ exp

(

− [j/2]⌈j/2⌉
k

)

≤ exp

(

1− j2

4k

)

.
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Therefore,

S1 ≤ e
k
∑

j=1

(j2 + 1)

(

k

x2

)j

exp

(

− j2

4k

)

≤ e





[
√
k]

∑

j=1

(j2 + 1)

(

k

x2

)j

+

k
∑

j=[
√
k]

(j2 + 1)

(

k

x2

)j

exp

(

− j2

4k

)



 .(20)

For the first sum,

[
√
k]

∑

j=1

(j2 + 1)

(

k

x2

)j

≤ 2k

[
√
k]

∑

j=1

(

k

x2

)j

.(21)

For the second sum, using k ≤ x2 we obtain that

k
∑

j=[
√
k]

(j2 + 1)

(

k

x2

)j

exp

(

− j2

4k

)

≤ 2

(

k

x2

)[
√
k] k
∑

j=[
√
k]

j2 exp

(

− j2

4k

)

≤ 2

(

k

x2

)[
√
k] [

√
k]

∑

t=1

√
k[(t+ 1)

√
k]2 exp

(

−t2

4

)

= 2

(

k

x2

)[
√
k]

k
√
k

∞
∑

t=1

(t+ 1)2 exp(−t2/4)

≤ C

(

k

x2

)[
√
k]

k
√
k ≤ Ck ×

[
√
k]

∑

j=1

(

k

x2

)j

,(22)

for some C > 0. Combining (20), (21) and (22), we get

S1 ≤ Ck

[
√
k]

∑

j=1

(

k

x2

)j

,(23)

for some positive constant C. We now estimate the second term S2. If x ≥ √
n, then k = n

and thus S2 = 1. Assume that x ≤ √
n, then k = [x2] ≥ x2−1. Hence x2j ≤ (k+1)j ≤ 3kj

for all j ≤ n− k ≤ k. Using the fact that

k!kj

(k + j)!
=

j
∏

i=1

k

k + i
≤
(

k

k + j/2

)j/2

=

(

1− j

2k + j

)j/2

≤ exp

( −j2

2(2k + j)

)

≤ e−j2/6k

and the same argument for (22), we have

S2 =

n−k
∑

j=0

(j2 + 1)
x2jk!

(k + j)!
≤ C ′

n−k
∑

j=0

j2
k!kj

(k + j)!
≤ C ′

n−k
∑

j=0

j2e−j2/6k ≤ Ck
√
k,

for some constants C > C ′ > 0. Since k ≤ x2 ≤ k + 1,

[
√
k]

∑

j=0

(

k

x2

)j

≥ [
√
k]

(

k

x2

)[
√
k]

≥ [
√
k]

(

k

k + 1

)[
√
k]

≥ [
√
k]

2
.
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It follows from the last two estimates that

(24) S2 ≤ Ck

[
√
k]

∑

j=0

(

k

x2

)j

,

for some positive constant C.
Combining (18), (23) and (24), we obtain

(25) E
[

(f ′
n(x)− rn(x)fn(x))

2
]

≤ 4Cx2k−2

k!
k

[
√
k]

∑

j=0

(

k

x2

)j

≤ 4Cx2k

k!

[
√
k]

∑

j=0

(

k

x2

)j

,

since k ≤ x2. In conclusion, (16) follows from (17) and (25) and this completes the proof
of Part (a). �

4. Persistence probability on the whole real axis

We first recall the autocorrelation function

An(x, y) = corr(fn(x), fn(y)) =

∑n
i=0

(xy)i

i!
√

∑n
i=0

x2i

i!
×
√

∑n
i=0

y2i

i!

.

Let us define

gn(x) = e−x

n
∑

i=0

xi

i!
.

Then

(26) An(x, y) =
gn(xy)

√

gn(x2)gn(y2)
e−(x−y)2/2.

In the following lemma, we study the asymptotic behavior of gn(x).

Lemma 4.1. The following statements hold.

(i) If n ∈ 2N, then gn(x) is nonnegative for all x, and thus An(x, y) is nonnegative
for all x, y.

(ii) For any fixed M ≥ 0,

lim
n→∞

sup
−M2≤x≤n−√

nαn

|gn(x)− 1| = 0.

(iii) For all n ∈ 2N large enough and
√
nαn − n ≤ x ≤ 0,

gn(x) ≤ 1 + e2|x|
e−α2

n/4

√
2πn

.

(iv) For any fixed M ≥ 0, define

θn(M) := sup
2M≤s≤√

n−αn

[

(s2 + s+ 1) sup
s(s−2M)≤x≤s(s+2M)

(|g′n(x)|+ |g′′n(x)|)
]

+ (4M2 + 2M + 1) sup
−M2≤x≤9M2

(|g′′n(x)| + |g′n(x)|).

Then θn(M) → 0 as n → ∞.
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Proof. It is obvious that gn(x) ≥ 0 for x ≥ 0. Let us consider x ≤ 0. We have

(27) g′n(x) = −e−xx
n

n!
.

If n is even, g′n(x) ≤ 0 for all x ∈ R. Thus the function gn(x) is decreasing, so gn(x) ≥
gn(0) = 1 for all x ≤ 0. Therefore, gn(x) ≥ 0 for all x ∈ R, and (i) holds.

We turn to prove (ii). Since gn(x) converges uniformly to 1 for −M2 ≤ x ≤ 0,

(28) lim
n→∞

sup
−M2≤x≤0

|gn(x)− 1| = 0.

For 0 ≤ x ≤ n−√
nαn, we observe that

0 ≤ 1− gn(x) = P(Poi(x) > n) ≤ 1− gn(k) = P(Poi(k) > n),

where Poi(µ) stands for the Poisson distribution with intensity µ and

k = ⌈n−
√
nαn⌉.

Let λn = αn/
√
n. Using Markov’s inequality,

P(Poi(k) > n) = P
(

eλnPoi(k) > eλnn
)

≤ e−λnnE
(

eλnPoi(k)
)

= exp
(

−λnn + k(eλn − 1)
)

.

Since λn → 0 as n → ∞, for all n large enough eλn ≤ 1 + λn + 3λ2
n/4. Therefore,

log P(Poi(k) > n) ≤ −λn(n− k) +
3nλ2

n

4
≤ −α2

n

4
.

Hence as n → ∞,

(29) sup
0≤x≤n−√

nαn

|gn(x)− 1| ≤ exp(−α2
n/4) → 0.

Combining (28) and (29) yields (ii).
We now prove (iii). Define for t ≥ 0,

ℓn(t) = et
n
∑

i=0

(−t)i

i!
.

Since n is even, ℓ′n(t) =
ettn

n!
. By Stirling formula and noting that log(1 − x) ≤ −x − x2

4
for positive x small enough,

ettn

n!
≤ et+n

√
2πn

(

t

n

)n

=
et+n

√
2πn

exp

[

n log

(

1− n− t

n

)]

≤ et+n

√
2πn

exp

[

n

(

t− n

n
− (t− n)2

4n2

)]

≤ e2t√
2πn

e−α2
n/4,(30)

for t ≤ n− αn

√
n and n large enough. Hence, for

√
nαn − n ≤ x ≤ 0,

gn(x) = ℓn(|x|) = 1 +

∫ |x|

0

ettn

n!
dt ≤ 1 +

e−α2
n/4

√
2πn

∫ |x|

0

e2tdt ≤ 1 + e2|x|
e−α2

n/4

√
2πn

,

thus (iii) follows.
For (iv), we observe that by (27),

(31) g′′n(x) = −e−x xn−1

(n− 1)!

(

n− x

n

)

.
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Using (27) and (31), for all |x| ≤ n,

(32) |g′n(x)|+ |g′′n(x)| ≤ 3e−x |x|n−1

(n− 1)!
.

Therefore, by Stirling’s approximation,

(33) lim
n→∞

(4M2 + 2M + 1) sup
−M2≤x≤9M2

(|g′′n(x)|+ |g′n(x)|) = 0.

For x ≥ 0, define

Gn(x) = e−x xn−1

(n− 1)!
.

Then G′
n(x) = e−xxn−2(n − 1 − x)/(n − 1)!. Hence the function Gn is increasing on

(0, n− 1). Therefore, for all 2M ≤ s ≤ √
n− αn,

(34) sup
s(s−2M)≤x≤s(s+2M)

Gn(x) ≤ Gn(s(s+ 2M)),

and following the same argument as in (30), we can prove that

(35) lim
n→∞

sup
2M≤s≤√

n−αn

(s2 + s+ 1)Gn(s(s+ 2M)) = 0.

Combining (32) – (35), we get (iv). �

As in Lemma 3.1, the following lemma shows the interval providing the main contribu-
tion to the persistence probability on the whole real axis.

Lemma 4.2. As n ∈ 2N tends to infinity,

lim
n→∞

1√
n
log P

(

fn(x) > 0, ∀x ∈ [−
√
n + αn,

√
n− αn]

)

= −2b.

To prove Lemma 4.2, we shall verify the conditions on the sequence of correlation
functions given in Lemma 2.1. Assume that n is even. We consider the Weyl polynomial as
a Gaussian process on the interval [−√

n+αn,
√
n−αn], whose size is equal to 2(

√
n−αn).

To recover the exact form in the statements of Lemma 2.1, one should make the change
of variable to transform the interval [−√

n + αn,
√
n − αn] to [0, 2(

√
n − αn)]. However,

for the simplicity of notation, we work directly with the interval [−√
n + αn,

√
n− αn].

Proof. By Lemma 2.1, it is sufficient to prove that Conditions (b0)–(b2) hold.

Verification of (b0). This condition is relatively mild and is shown to be hold for

A∞(0, t) = e−t2/2 in [7, Lemma 1.11].

Verification of (b1). Let us denote

hn(s, τ) =
gn(s(s+ τ))

√

gn(s2)gn((s+ τ)2)
.

Then An(s, s+ τ) = hn(s, τ)e
−τ2/2. Using Lemma 4.1 (ii), we have 1

2
≤ gn(x) ≤ 2 for all

n large enough and 0 ≤ x ≤ n−√
nαn. Therefore,

(36) An(s, s+ τ) ≤ 2gn(s(s+ τ))e−τ2/2.

In addition, if s(s+ τ) ≥ 0 then gn(s(s+ τ)) ≤ 2, and thus

An(s, s+ τ) ≤ 4e−τ2/2,
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so (b1) is verified.
Assume that s(s+ τ) < 0. Then s < 0 and s + τ > 0, so

(37) a := |s(s+ τ)| = |s|(τ − |s|) ≤ τ 2/4.

Moreover, τ ≤ 2(
√
n− αn), since |s|, |s+ τ | ≤ √

n−αn. Using (36), (37) and Lemma 4.1
(iii), for n and τ large enough

An(s, s+ τ) ≤ 2e−τ2/2

(

1 + e2a
e−α2

n/4

√
2πn

)

≤ 4e−τ2/2

(

1 + eτ
2/2 e

−α2
n/4

√
2πn

)

≤ τ−2,

since 0 < τ ≤ 2(
√
n− αn). Hence, (b1) is verified.

Verification of (b2). We claim that for any fixed number M as n → ∞,

(38) δn = δn(M) := sup
τ∈[0,M ]

sup
s:|s|,|s+τ |≤√

n−αn

2|hn(s, τ)− 1|
τ 2

→ 0.

Assuming (38), we can prove (b2). Indeed, let (Dt) be the centered Gaussian process

corresponding to the autocorrelation e−t2 and ǫn = δn/κ, where

κ = κ(M) = inf
|x|≤M2/2

|ex − 1|
|x| .

Then for all τ ∈ [0,M ] and s such that |s|, |s+ τ | ≤ √
n− αn, we have

An(s, s+ τ) = hn(s, τ)e
−τ2/2

= (1− ǫn)e
−τ2/2 + ǫn + e−τ2/2

[

(hn(s, τ)− 1)− ǫn(e
τ2/2 − 1)

]

= (1− ǫn)e
−τ2/2 + ǫn +

τ 2e−τ2/2

2

[

2(hn(s, τ)− 1)

τ 2
− ǫn

(eτ
2/2 − 1)

τ 2/2

]

≤ (1− ǫn)e
−τ2/2 + ǫn +

τ 2e−τ2/2

2
[δn − ǫnκ]

= (1− ǫn)e
−τ2/2 + ǫn,(39)

and

An(s, s+ τ) = hn(s, τ)e
−τ2/2

= (1− ǫn)e
−τ2/2 + ǫne

−τ2 + e−τ2/2
[

(hn(s, τ)− 1) + ǫn(1− e−τ2/2)
]

= (1− ǫn)e
−τ2/2 + ǫne

−τ2 +
τ 2e−τ2/2

2

[

2(hn(s, τ)− 1)

τ 2
+ ǫn

(1− e−τ2/2)

τ 2/2

]

≥ (1− ǫn)e
−τ2/2 + ǫne

−τ2 +
τ 2e−τ2/2

2
[−δn + ǫnκ]

= (1− ǫn)e
−τ2/2 + ǫne

−τ2 .(40)

Hence Condition (b2) is verified and it remains to show (38).
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We first notice that if 1
2
≤ A,B,C ≤ 2, then

∣

∣

∣

B√
AC

− 1
∣

∣

∣
=

|B2 − AC|√
AC(B +

√
AC)

≤ 2|B2 − AC|

= 2|(B −A)(C − B) +B[(B −A)− (C − B)]|
≤ 4[|(B −A)(C −B)|+ |(B − A)− (C − B)|].(41)

Let us consider A = gn(s
2), B = gn(s(s + τ)) and C = gn((s + τ)2). Observe that

s(s+ τ) ≥ −τ 2/4 ≥ −M2/4. Therefore, −M2 < s2, s(s+ τ), (s+ τ)2 ≤ n−√
nαn. Hence

by Lemma (4.1) (ii), 1
2
≤ A,B,C ≤ 2 for all n large enough. Now, we notice that

B − A =

∫ sτ

0

g′n(u+ s2)du, C − B =

∫ sτ+τ2

0

g′n(u+ s(s+ τ))du.

Therefore,

|(B − A)− (C −B)|

=
∣

∣

∣

∫ sτ

0

[g′n(u+ s2)− g′n(u+ s(s+ τ))]du+

∫ sτ+τ2

sτ

g′n(u+ s(s+ τ))du
∣

∣

∣

≤ (sτ)2 sup
x∈[s2,s(s+2τ)]

|g′′n(x)|+ τ 2 sup
x∈[s(s+2τ),(s+τ)2]

|g′n(x)|

= τ 2

[

s2 sup
x∈[s2,s(s+2τ)]

|g′′n(x)|+ sup
x∈[s(s+2τ),(s+τ)2]

|g′n(x)|
]

=: τ 2Fn(s).(42)

Observe that s(s+2τ) ≥ −τ 2 ≥ −M2 for all s ∈ R and τ ∈ [0,M ]. Therefore, if |s| ≤ 2M
then −M2 ≤ s2, s(s+ 2τ), (s+ τ)2 ≤ 9M2. Thus

(43) sup
|s|≤2M

Fn(s) ≤ (4M2 + 1) sup
−M2≤x≤9M2

(|g′′n(x)|+ |g′n(x)|).

If |s| ≥ 2M , then s(s+ 2τ) ≥ 0, since τ ∈ [0,M ]. In addition, we can prove that

|s|(|s| − 2M) ≤ s2, s(s+ 2τ), (s+ τ)2 ≤ |s|(|s|+ 2M).

Hence for |s| ≥ 2M ,

(44) Fn(s) ≤ (s2 + 1) sup
|s|(|s|−2M)≤x≤|s|(s+2M)

(|g′′n(x)|+ |g′n(x)|).

Combining (43) and (44), we get

sup
s:|s|,|s+τ |≤√

n−αn

Fn(s) ≤ θn(M),

with θn(M) as in Lemma 4.1 (iv). Combining this with (42), we obtain

(45) |(B −A)− (C − B)| ≤ τ 2θn(M).

Similarly, we can prove that

|(B − A)(C −B)| ≤ τ 2

(

|s| sup
x∈[s2,s(s+τ)]

|g′n(x)|
)(

|s+ τ | sup
x∈[s(s+τ),(s+τ)2]

|g′n(x)|
)

≤ θ2n(M)τ 2.(46)

It follows from (41), (45) and (46) that |hn(s, τ)− 1| ≤ 4[θ2n(M) + θn(M)]τ 2. Hence (38)
holds, since θn(M) → 0 as n → ∞ by Lemma 4.1 (iv). �
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Proof of Theorem 1.1 (b). Using Lemma 4.2 and the same arguments for (11), we get

(47) lim sup
n→∞

1√
n
logP (fn(x) > 0, ∀x ∈ R) ≤ −2b.

On the other hand, by analogous arguments for (12), the lower bound that

(48) lim inf
n→∞

1√
n
log P (fn(x) > 0, ∀x ∈ R) ≥ −2b

follows from Lemma 4.2 and the following claims

(d1)

lim inf
n→∞

1√
n
log P

(

fn(x) > 0, ∀x ∈ (−∞,−
√
n+ αn]

)

≥ 0,

(d2)

lim inf
n→∞

1√
n
log P

(

fn(x) > 0, ∀x ∈ [
√
n− αn,∞)

)

≥ 0.

By symmetry, the law of the random Weyl polynomial on the interval (−∞,−√
n + αn]

is as on the interval [
√
n− αn,∞). Thus Claim (d1) is equivalent to Claim (d2). On the

other hand, (d2) follows from Claims (c2) and (c3) as in Section 3. �
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