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VARIATIONAL INFERENCE FOR PROBABILISTIC
POISSON PCA

By JULIEN CHIQUET, MAHENDRA MARIADASSOU AND STEPHANE ROBIN

AgroParisTech, INRA, Université Paris-Saclay

Many application domains such as ecology or genomics have to
deal with multivariate non Gaussian observations. A typical example
is the joint observation of the respective abundances of a set of species
in a series of sites, aiming to understand the co-variations between
these species. The Gaussian setting provides a canonical way to model
such dependencies, but does not apply in general. We consider here
the multivariate exponential family framework for which we introduce
a generic model with multivariate Gaussian latent variables. We show
that approximate maximum likelihood inference can be achieved via
a variational algorithm for which gradient descent easily applies. We
show that this setting enables us to account for covariates and offsets.
We then focus on the case of the Poisson-lognormal model in the
context of community ecology.

1. Introduction. Principal component analysis (PCA) is among the
oldest and most popular tool for multivariate analysis. It basically aims at
reducing the dimension of a large data set made of continuous variables
(Anderson, 2003; Mardia et al., 1979) in order to ease its interpretation and
visualization. The methodology basically exploits the dependency structure
between the variables to exhibit the few synthetic variables that best sum-
marize the information content of the whole data set: the principal compo-
nents. From a purely algebraic point-of-view, PCA can be seen as a matrix-
factorization problem were the data matrix is decomposed as the product of
a loading matrix with a score matrix (Eckart and Young, 1936a).

For statistical purposes, PCA can also be cast in a probabilistic frame-
work. Probabilistic PCA (pPCA) is a model-based version of PCA originally
defined in a Gaussian setting, in which the principal components are treated
as hidden variables (Tipping and Bishop, 1999; Minka, 2000). It is closely
related to factor analysis and, as it involves hidden variable, maximum-
likelihood estimates (MLE) can be obtained via an EM algorithm (Dempster
et al., 1977). The Gaussian setting is obviously convenient as the dependency
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structure is entirely described by the covariance matrix but pPCA has since
been extended to more general settings.

Indeed, in many applications (Royle and Wikle, 2005; Srivastava and
Chen, 2010) Gaussian pPCA needs to be adapted to handle specific measure-
ment types, such as binary or count data. For count data, the multivariate
Poisson distribution seems a natural counterpart of the multivariate normal.
Still, there is no canonical form (Johnson et al., 1997) and several distribu-
tions have been proposed in the literature including Gamma-Poisson (Nel-
son, 1985) and lognormal-Poisson (Aitchison and Ho, 1989; Izsdk, 2008) as
an alternative. The latter takes advantage of the properties of the Gaussian
distribution to display a larger panel of dependency structure than the for-
mer, but maximum likelihood-based parameter inference raises some issues
as the MLE of the covariance matrix is not always positive definite.

A series of works have considered the extension of PCA to a broader class
of distributions, typically in the exponential family. The matrix factoriza-
tion point-of-view has been adopted to satisfy a positivity constraint of the
parameters (Lafond, 2015), to minimize the Poisson loss function (Cao and
Xie, 2015) or more general losses (Lee and Seung, 2001) consistent with ex-
ponential family noise. Sparse extensions have also been proposed (Witten
et al., 2009; Liu et al., 2016). In a model-based context, Collins et al. (2001)
suggest to minimize a Bregman divergence to get estimates of the principal
components: the divergence is chosen according to the distribution at hand
and a generic alternative minimization scheme is proposed. Salmon et al.
(2014) consider a similar framework and use matrix factorization for the
minimization of Bregman divergence. In both cases, the principal compo-
nents are considered as fixed parameters. Mohamed et al. (2009) cast the
same model in a Bayesian context and use Monte-Carlo sampling for the
inference. Acharya et al. (2015) consider Bayesian inference of the Gamma-
Poisson distribution.

As recalled above, in pPCA, principal components are treated as hid-
den variables. One of the main issue of non-Gaussian pPCA arises from
the fact that their conditional distribution given the observed data is often
intractable, which hampers the use of an Expectation-Minimization (EM)
strategy. Variational approximations (Jaakkola and Jordan, 2000; Wain-
wright and Jordan, 2008) have become a standard tool to approximate such
a conditional distribution. Karlis (2005) use such an approximation for the
inference of the one-dimensional lognormal-Poisson model and derive a vari-
ational EM (VEM) algorithm. Hall et al. (2011) provide a theoretical anal-
ysis of this approximation for the same model and prove the consistency
of the estimators. Li and Tao (2010) also use such an approximation to
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extend pPCA to the simple exponential family, considering both loadings
and scores as random hidden variables. Landgraf and Lee (2015) reframes
exponential family PCA as an optimization problem with rank constraints
and develops both a convex relaxation and a Maximization-Minimization
(MM) algorithm to solve it for binomial and Poisson families. Finally Zhou
(2016); Zhou et al. (2012) consider factor analysis in the more complex set-
ting of negative-binomial families. The main difference between previous
approaches and ours is that we only consider loading as random hidden
variables, whereas we consider the scores as parameter. This has deep con-
sequences on the general properties of the inference algorithm.

Our contribution. In this paper, pPCA is extended to the simple expo-
nential family. We consider the principal components as Gaussian hidden
variables to allow a large panel of dependency structures. We rely on a fre-
quentist setting in order to avoid heavy-computing Monte-Carlo sampling
often required in Bayesian inference. We use a variational approximation of
the conditional distribution of the components given the observed data to
derive a variational lower bound of the likelihood. This bound is biconcave,
i.e. concave in the model parameters and in the variational parameters but
not jointly concave in general. We use a quasi-Newton method with box-
constraints to optimize the objective function and thus estimate the param-
eters, in contrast to the EM algorithm traditionally used in this setting.
Additionally, the model-based framework allows us to introduce covariates
and offsets in the model and to handle missing data at no additional cost.
In practical analyses, this enables us to distinguish between correlations
that are caused by known covariates from those corresponding to unknown
structure and requiring further investigations.

Organization of the paper is as follows: in Section 2 we introduce pPCA for
the exponential family and the variational framework considered. Section 3
generalizes the model in the manner of a generalized linear model, in order to
handle covariates and offsets. Then, Section 4 is dedicated to the inference
and optimization strategy. Section 5 details the special Poisson case and
Section 6 devises the visualization, an important issue for non-Gaussian PCA
methods. Finally, Section 7 considers applications to two examples from
metagenomics: the impact of a pathogenic fungi on microbial communities
from tree leaves, and the impact of weaning on piglets gut microbiota.

2. A variational framework for probabilistic PCA in the expo-
nential family. We start this section by stating the probabilistic frame-
work associated to Gaussian probabilistic PCA. Then we show how it can
be naturally extended to other exponential families. We finally derive vari-
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ational lower bounds for the likelihoods of pPCA which are the building
blocks of our inference strategy.

2.1. Gaussian probabilistic PCA (pPCA). The probabilistic version of
principal component analysis — or pPCA — (Minka, 2000; Mohamed et al.,
2009; Tipping and Bishop, 1999) relates a sample of p-dimensional observa-
tion vectors Y; to a sample of ¢g-dimensional vectors of latent variables W;
in the following way:

(1) Y, =pu+BW,; +e, EiNN(Op,O'QIp).

The parameter p allows the mode to have main effects. The p X ¢ ma-
trix B captures the dependence between latent and observed variables.
Furthermore, the latent vectors are conventionally assumed to have inde-
pendent Gaussian component with unit variance o? = 1, that is to say,
g; ~ N(0g4,1I,). This ensures that there is no structure in the latent space.
Model (1) can thus be restated as Y; ~ N (u, BBT + I,).

In the following, we consider an alternative formulation stated in a hier-
archical framework. Despite its seemingly more complex statement it lends
itself to generalizations. Formally,

latent space W, iid. Wi~ N(0g4,1,)
(2) parameter space Z;|W,; =u+ BW, Z;,~ N(u, BBT)
observation space Yi;j|Zi; indep. YijlZij ~ N(Z;;, o?)

In Equation (2), Z; is a linear transform of W; and the last layer Y;|Z;
simply corresponds to observation noise. The diagonal nature of the covari-
ance matrix of €; in (2) means that, conditionally on Z;, all components of
Y ; are in fact independent. This is why we may consider univariate variables
Yij|Z;; in Formulation (2).

Informally, the latent variables W; (in R?) are mapped to a linear sub-
space of the parameter space RP via the Z; which are then pushed into
the observation space using Gaussian emission laws. The main idea of this
paper is to replace Gaussian emission laws with more general probability
distributions, namely univariate natural exponential families. The focus of
the inference is on the main effects p and the matrix B that captures the
dependence.

Hereafter and unless stated otherwise,

e index i refers to observations and ranges in {1,...,n},
e index j refers to variables and ranges in {1,...,p},
e index k refers to factors and ranges in {1,...,q}.
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2.2. Natural Exponential family (NEF). The work in this study is based
on essential properties of univariate natural exponential families (NEF)
where the parameter is in canonical form. They include normal distribu-
tion with known variance, Poisson distribution, gamma distribution with
known shape parameter (and therefore exponential distribution as a partic-
ular example) and binomial distribution with known number of trials. The
probability density (or mass function) of a NEF can be written

(3) f(@|A) = exp (zA = b(X) — a(x))

where ) is the canonical parameter and b and a are known functions. The
function b is well known to be convex (and analytic) over its domain and
the mean and variance are easily deduced from b as

EA[X]=bH(\) and Vy[X]=b"()).

The canonical link function g is defined such that g(&'(\)) = A. The max-
imum likelihood estimate A of A from a single observation z is given by
A = A(z) = g(x) and satisfics

IE;\(x) [X]=b(\z)) = 2.

2.3. Probabilistic PCA for the exponential family. We now extend pPCA
from the Gaussian setting to more general NEF. The connection between
the two versions is exactly the same as the connection between linear models
and generalized linear models (GLM). Intuitively, we assume that ) there
exists a (low) g-dimensional (linear) subspace in the natural canonical pa-
rameter space where some latent variable Z; lie; and ii) observations Y;
are generated in the data space according to some NEF distribution with
parameter Z. The latter is linked to E[Y;|Z;] through the canonical link
function g. In the Gaussian case, the link function is the identity and the
parameter space can be identified with the data space but this is not the
case in general for other families.

Formally, we extend Model (2) to

W, iid. W;~N(0g41,)
4)  ZJ|Wi=p+BW; Z;~N(u, BB
Yij|Zi; indep. Yij|Zij ~ exp (YijZij — b(Zi;) — a(Yij))
Note in particular that g(E[Y;;|Zi;]) = V/(Z;;) and that an unconstrained

estimate Z;; of Z;; is Z;; = g(Yij). The vector p corresponds to main effects,
B to rescaled loadings in the parameter spaces and W; to scores of the i-th
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observation in the low-dimensional latent subspace of the parameter space.
The model specified in (4) is the same as the one specified in (2) but for the
last data emission layer.

REMARK 1. B suffers from two identifiability limitations. First, it is
only identifiable through BBT and therefore at best up to rotations in RY.
Second, if B is of rank ¢’ < q, the model is degenerate and could be written
using a ¢ -dimensional latent space. Note that the first limitation is shared
with standard PCA where each principal component (PC) can be arbitrarily
flipped without changing the least square criteria. More generally PCA finds
a good approximation subspace but without additional constraints, infinitely
many bases can be used to parametrize this subspace. The second limitation
deprives us from the nestedness properties induced by Eckart and Young’s
theorem in standard PCA: there is no guarantee that the best ¢'-dimensional
model can be built easily from the best q-dimensional model.

2.4. Likelihood. NoteY (resp. W) the nxp (resp. nx q) matrix obtained
by stacking the row-vectors YT (resp. WT). Conversely, for any matrix A,
A; refers to the i-th row of A considered as a column vector. In matrix
expression, Z = 1,uT + W BT. The observation matrix Y only depends on
Z through pu, B and W and the complete log-likelihood is therefore

logp(Y, Wi, B) = logp(Y|Wy; s, B) + log p(W)
i=1

n D q 2
W3, + log(2m)
=D |2 Yiilu + BIWi) = by + BIW,) —a(Yyy) — ) —H—=
=1 |j=1 k=1

which can be stated in the following compact matrix form:

(5) logp(Y,W;pn,B) =11 [Y © (1,u" + WBT) - b(1,uT + WBT)| 1,
_IWIE  ng

5 5 log(2m) — K(Y),

where the function a and b are applied component-wise to vectors and ma-
trices, ® is the Hadamard product and K(Y) = 1}a(Y)1, is a constant
depending only on Y and not scaling with q.

We do not know how to integrate out W and therefore cannot derive
an analytic expression of logp(Y'; u, B). Numerical approximation using
Hermite-Gauss quadrature or MCMC techniques are possible but likely
to become computationally prohibitive as the dimension of the integration
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space increases. A standard EM algorithm relying on Eyy |y [log p(Y', W u, B))]
is also not possible as it would require at least first and second order of
p(W;]Y;) which are unknown in general. We resort instead to a variational
strategy and integrate out W under a tractable approximation of p(W|Y).

2.5. Variational bound of the likelihood. Consider any product distribu-
tion p = ®;_,p; on the Z;. The variational approximation relies on maxi-
mizing the following lower bound over a tractable set for p

logp(Y'; ., B) > Jy(p, b, B)
where
Jq(P; m, B) :=1og p(Y; p, B) — KL(p(W)|[p(WY; v, B))
= Esllogp(Y, W; i, B) — log p(W)]

n

= ZE@' [log p(W;) + log p(Y i|W; , B) — log pi(W )],
i—1

(6)

with term-by-term inequality:

= Ej,[log p(W;) + log p(Y3|Wi; u, B) — log p;(W3)].

In our variational approximation, we choose here the set Q of product
distribution of g-dimensional multivariate Gaussian with diagonal covariance
matrices:

Q= {13 = Ppm,s; p(w) = Hﬁi(wz‘)} ;
(7) i=1
where p; = N (m;, diag(s; © s;)), (m;,s;) € RTx RY.

The n x ¢ matrices M and S are obtained by respectively stacking m]
and s]. Note that by construction p(W|Y') is a product distribution and
that the approximation only stems from the functional form of each p;, i.e.
multivariate normal with diagonal variance-covariance matrix. For such p =
Pm,s, results on first and second order moments of multivariate Gaussian
show that

Jq(p’v Bamiv si) = Jq(ﬁia M, B)

1 1
=Y (p+ Bm;) - 5[\\"%\\3 +[[si13] + 5(2qlog(si) +q)

AT, b+ BW,)] — K(Y).
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Therefore,

n
(8) Jq(y’aBaMa S) = Jq(ﬁM,S»M’B) = Z‘]q(y'vBam’ia Si)
i=1
—11[Y © (LT + MBT) — Egfb (1 + WBT) 1,
1
— 51% MoOM+S6S—2log(S)—1,41, - K(Y).
Depending on the natural exponential family and thus the exact value of
b in (8), we may have a fully explicit variational bound for the complete like-
lihood which paves the way for efficient optimization. In particular, this is
the case with the Poisson distribution that we investigate in further details
in Section 5.

Before moving on to actual inference, we show that the framework that
we introduced above can be extended to account for covariates and offsets.

3. Accounting for covariates and offsets. Multivariate analyses typ-
ically aim at deciphering dependencies between variables. Variations induced
by the effect of covariates may be confounded with these dependencies.
Therefore, it is desirable to account for such effects to focus on the residual
dependencies. The rational of our approach is to postulate the existence of
a model similar to linear regression in the parameter space. We consider
the general framework of linear regression with multivariate outputs, which
encompasses multivariate analysis of variance.

3.1. Model and likelihood. Suppose that each observation ¢ is associated
to a known d-dimensional covariate vector X ;. We assume that the covari-
ates act linearly in the parameter space through a p x d regression matrix
O, i.e. X; is linearly related to Z;. It can be also useful to add an off-
set to model different sampling efforts and/or exposures. There is usually
one known offset parameter O;; per observation Yj; and this offset can be
readily incorporated in our framework. Thus, a natural generalization of (4)
accounting for covariates and offsets is
(9)

W, iid. W;~N(0g4 1)

Zz‘VVZ =0,+0X,+BW, Z,~ N(Oz + @XZ',BBT)
YijlZij indep. Yij|Zij ~ exp (YijZij — b(Zij) — a(Yij))

where a column of ones can be added to the data matrix X to get an intercept
in the model. The log-likelihood can be computed from (9) like before to get
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(10) logp(Y,W;B,0,0)
—11[Y ® (0 +XOT + WBT) — (0O + XOT + WB)]1,
W%

2

where the focus of inference is on B and © while O is known.

— SHlog(2m) — K(Y),

3.2. Variational bound of the likelihood. We can use the variational class
Q previously defined in (7) to lower bound the likelihood from Eq. (10). We
first introduce the instrumental matrix A, which appears in many equations.

A=E;b(O+XOT+WBT)
=Eb(O+XOT+(M+SoU)B")| =Eb(Z)],

where Z = (O + XOT+ (M +S®U)BT) and U is a n x ¢ matrix with

unit variance independent Gaussian components.

Since O is known, we drop it from the arguments of J; and obtain the
following lower bound, which extends the bound from Eq. (8):

(11)

(12) J,(©,B,M,S)=1] (Y ®(0+XOT+ MBT) - A) 1,

- %1,1 M OM+56S—2log(S) — 1oy 1, - K(Y).
4. Inference. As usual in the variational framework, we aim to maxi-
mize the lower bound J, which we call the objective function in an optimiza-
tion perspective. The optimization shall be performed on ®, B, M, S. We
only give results in the most general case (12) with covariates and offsets.
All other case are deduced by setting O = 0,,x, and/or X = 1,, hereafter.

4.1. Inference strategy. We first highlight the biconcavity of the objec-
tive function J;,. The major part of the proof is postponed to Appendix
A.

PROPOSITION 1. The variational objective function J,(©,B,M,S) is
concave in (©, B) for (M, S) fixred and vice-versa.

PRrOOF. Fix (M, S) in (12). The non explicit part of J,, that is to say
—1J,A1,, is concave in (O, B) thanks to Lemma 2 (see Appendix A). By
inspection, the explicit part of J, involves linear, quadratic and concave
functions of (®, B) and is also concave. The objective J, is therefore concave

in (©, B). The same is true for (M, S) when fixing (©, B). O
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A standard approach for maximizing biconcave functions is block coordi-
nate descents, of which the Expectation-Maximization (EM) algorithm is a
popular representative in the latent variable setting. It is especially powerful
when we have access to closed formula for both the optimal (M, S) given
(©, B) (E-step) and the optimal (®, B) given (M, S) (M-step). However,
the non-linear nature of Ez[b(O + X@OT + W BT)| combined with careful
inspection of the objective function J; shows that setting the derivatives of
Jy to 0, even after fixing the variational or model parameters, does not lead
to closed formula neither for (M, S) nor (B, ®). Nevertheless, since we may
derive convenient expressions for the gradient V.J, (see next Section 4.2),
we propose to rely on Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-
Newton updates with box constraints and limited memory (a.k.a L-BFGS-
B) to maximize J; (see, e.g. Press et al., 1989). In the general case (12), the
total number of parameters to optimize J,(®, B, M, S) is p(d+¢q)+2ng. The
box constraints concern the variational parameters S, standing for standard
deviations in (7) and thus only defined on R%. The starting point is chosen
according to the exact value of b.

4.2. Blockwise gradients of J;. The blockwise gradient of J,(®, B, M, S)
can be expressed compactly in matrix notations. We skip the tedious but
straightforward derivation and present only the resulting partial gradients.
We introduce A’ = E[b (Z)], the natural counterpart to matrix A given in
(11). Intuitively, A;j is the conditional expectation of Y;; under p;. On top
of that, we need two other matrices denoted A and A}, defined as follows:

Al =EP (Z)T(SoU), A, =E[(V (Z)B)oU].

With those matrices the derivatives of J, can be expressed compactly as

9y _ (Y — AT X, 9y _ (Y — ATM — A’y
(13) 00 0B
aJ, , aJ, o ,

where the n x ¢ matrix S© is the elementwise inverse of S, i.e. S% = Sigl
foralli=1,...,n,q=1,...,Q.

4.3. About missing data. In the presence of missing data, note Q C
{1,...,n} x {1,...,p} the set of observed data and € the matrix where
Q; = 1if (4,5) € Q and 0 otherwise. The likelihood can be adapted from
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Eq. (10) as follows:

logp(Y,W:B,0,0)
~11((Y © (0 + X0+ WBT) — (0 + XOT + WB")) 0 2)1,

2
- ”W2”F - % log(27) — tr(QTa(Y)).
The corresponding variational bound J,; and its partial derivatives are then
simple adaptations from Equations (12) and (13) where Y (resp. A, A’) is
replaced with Y © © (resp. A® Q, A’ © Q).

Note that it is strictly equivalent for the quasi-Newton method to use
(Y — A’) © Q2 or to impute missing Yj; with A}; before using Eq. (13). Since
A’ is computed as part of the gradient computation at each step, imputation
of missing data is essentially a free by-product of the quasi-Newton method.
Finally, note that A;; = E5[Yj;] so that the imputation makes intuitive
sense: we're imputing Y;; with its conditional expectation under the current
variational parameters.

4.4. Model selection. The dimension g of the latent space itself needs
to be estimated. To this aim, we adopt a penalized-likelihood approach,
replacing the log-likelihood by its lower bound J;. We considered two clas-
sical criteria: BIC (Schwarz, 1978) and ICL (Biernacki et al., 2000). We
remind that ICL uses the conditional entropy of the latent variables given
the observations as an additional penalty with respect to BIC. Because the
true conditional distribution p(W'|Y') is intractable, we replace it with its
variational approximation p(W) to evaluate this entropy. The difference be-
tween BIC and ICL measures the uncertainty of the representation of the
observations in the latent space.

Because the number of parameters in our model is p(¢+d) and the entropy
of each W; under p; is qlog(2me)/2 + 1] log(s;)], we obtain the following
pseudo-BIC and pseudo-ICL criteria:

BIC(q) = Jq — p(d + q) log(n)

(14) ngq
ICL(q) = Jq — p(d + q) log(n) — 5 log(2me) — 1] log(S)1,

5. Poisson Family. Each term of the expectation matrix A in (11)
can be reduced to computing expectations of the form E[b(a + cU)] for a
convex analytic function b, a standard Gaussian U ~ N (0, 1) and arbitrary
scalars (a,c) € R2. It can therefore be computed numerically efficiently
using Gauss-Hermite quadrature (see, e.g., Press et al., 1989). However in
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the special case of Poisson-distributed observations, b(z) = e and most of
the expectations can be computed analytically leading to explicit formulas
for Equations (11), (12) and (13).

5.1. Explicit form of A, J,, and VJ,. In the Poisson-case, the varia-
tional expectation of the non-linear part involving b — the matrix of condi-
tional expectations A — is equal to A’ and can be expressed as

A=A"=exp (O+X@T+MBT+;(S®S)(B®B)T>.

The lower bound J, and matrices A}, A’ appearing in (13) can be expressed
simply from A as

Al =[AT(Se8)]eB, Ah=2A(B0oB)]6S.

5.2. Implementation details. We implemented our inference algorithm
for the Poisson family in the R package PLNmodels, the last version of
which is available on github https://github.com/jchiquet/PLNmodels.
Maximization of variational bound J, is done using the L-BFGS-B imple-
mentation of Byrd et al. (1995) available from the R optim function carefully
tuned (R Development Core Team, 2008). All graphics are produced using
the ggplot2 package (Wickham, 2009).

The choice of a good starting value is crucial in iterative procedures as it
helps the algorithm start in the attractor field of a good local maximum and
can substantially speed-up convergence. Here we initialize (@, B) by fitting
a GLM-Poisson to Y, then extracting the regression coefficients @y s and
the variance-covariance matrix Xy, of the Pearson residuals. We set @y =
Ocryv and By = (ZJ(C?)L]\/I)I/2 where Z(G?)LM is the best rank ¢ approximation
of X, as given by keeping the first g-dimensions of a SVD of 3¥grar. We
set the other starting values as Mo = So = 0y,x4.

6. Visualization.

6.1. Specific issues in non-Gaussian PCA. This section is dedicated to
the visualization of the results of the proposed modeling. Although this prob-
lem has many similarities with visualization in standard PCA, two important
differences exist that make adaptations of the usual procedures necessary.

(1) In the general case, the parameter space defined in (4) is different from
the observation space, as opposed to the special case of Gaussian PCA.
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(7i) The optimal subspaces of dimension ¢ = 1,2,... are not nested. As
a consequence, in a model with ¢ > 1 latent dimensions, there is no
such thing as a ’first axis’. The genuine first axis corresponds to the
optimal subspace of dimension 1, which is provided by the model with
q = 1 latent dimension.

To address point (i), we choose to provide representations in the parame-
ter space as it sets us in the Gaussian (and accompanying Euclidean) space
setting practitioners are most familiar with. We thus focus on the positions
Z; and more specifically on their mferred version O; +G)X —I—BmZ7 gathered
in the n X p matrix Z := O + XO' + BM. Note that Z is most useful to
assess goodness of fit. For visualization of the latent structure remaining af-
ter correction for the offset and the covariates, we consider instead positions
P = BM in the latent subspace of dimension q.

2. Quality of the dimension reduction. A first important criterion in
PCA is the amount of information that is preserved by the g¢-dimensional
reduction. To evaluate this criterion we define the matrix A9 = [)\Z(?)] where

(@)

we use entry )\Z-j = exp(z-j) as an estimate of the canonical parameter \;;
of the distribution of Yj; given in (3). Thus, we can define the log-likelihood
{4 of the observed data with these estimates as

=339\ D) — Vi)l - K(Y).

i=1 j=1

We can compare the log-likelihood of the saturated model ¢y (replacing
A9 with A := ¥;;) and the log-likelihood £y of a GLM for Poisson re-

ij

gression w1th no latent structure, which plays the role of the null model here
(using Amm = 0j; + ©X;, with © estimated using a standard GLM). Then,
sumlarly to the deviance criterion used in GLMs, we define the following

measure of fit:
(15) Rg = (Eq - gmin) /(Emax - Emin) .

Note that, unlike standard PCA, there is no guarantee the Rg is nonde-
creasing in ¢ as ¢4 is not the objective function of the variational inference
algorithm of Section 4.

6.3. Graphical outputs. Because no orthogonality constraint is applied
in the inference step, the (centered) columns of P are not orthogonal in
general, as opposed to standard PCA. Furthermore, because of point (i),



14 CHIQUET, MARIADASSOU, ROBIN

the order of the columns of B have no specific meaning as only the subspace
spanned by P is identifiable.

To provide a representation of the observations in a series of 2D-plots, we
simply apply PCA to P. As in regular PCA, we use the associated relative
squared singular value d? / ( ) dz) to measure the contribution of com-
ponent j. Note that this measures the contribution of the component to the
g-dimensional representation of the data and that it needs to be combined
with the global measure of fit provided by Rg. The variational variances s;
can be used to draw confidence ellipsoids. Following the same line, we may
plot the correlations between the columns of P and the components arising

from its PCA, to help with the interpretation of these components.
7. Illustrations.

7.1. Oak powdery mildew pathobiome.

Description of the experiment. We considered the metagenomic dataset
introduced in Jakuschkin et al. (2016), which consists in abundance measures
of 66 bacterial species and 48 fungal species (p = 114) collected on the
surface of n = 116 oak leaves. One aim of this experiment is to understand
the association between the abundance of the fungal pathogenic species E.
alphitoides, responsible for the oak powdery mildew, and the other species.
The leaves were collected on three different trees and the species abundances
were measured via metabarcoding.

Importance of the offset. The abundances Y;; (where i denotes the leaf
and j the species) were measured separately for fungi and bacteria resulting
in different sampling efforts for the two types of species: the median total
abundance were respectively 668 for bacteria and 2166 for fungi. To account
for this we define an offset o0;; term as the log-total count of each species
type (fungal or bacteria) for each leaf.

Model selection. The three trees from which the leafs where collected were
respectively susceptible, intermediately resistant (hereafter “intermediate”)
and resistant to mildew. We first fitted a null lognormal-Poisson model M as
defined in (9) only with an offset term. Alternatively, we considered model
M involving two covariates: the tree from which each leaf was collected
from, and the orientation (O=south-east, 1=north-west) of its branch.
Figure 1a displays the lower bound J, the BIC and the ICL for model M
(left) and M; (right) as a function of the number of axes ¢ considered. We
observe that the J, is always increasing and that the BIC and ICL criteria
behave similarly. According to the ICL criterion, we selected go = 24 (ICL =
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Fig 1: Dataset from Jakuschkin et al. (2016). (a) model selection criteria
Jq, BIC, and ICL, for model My (left) and M; (right); (b) RZ criterion
and entropy of p(W); (c) scatter plot of the leaves on the first two principal

components (left: My, right: Mj).
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—45377) latent dimensions for model My and ¢ = 21 (ICL = —45430) for
model M;. This suggest that the two models (with their respective optimal
dimension) provide a very similar fit.

We looked at the approximate posterior entropy in panel left of Figure 1b:
we observed that it is minimal near to the respective optimum in terms of
model selection. This indicates that the selected dimensions are also optimal
in terms of uncertainty on the latent variables.

Effect of the covariates. The choice between model My and M; is mostly a
matter of the type of dependency we analyze with each of them, as the former
does not account for the covariates whereas the later does. This is illustrated
in Figure lc, when plotting the first principal plane. In model M (left), the
leafs collected on each tree are clearly separated. As expected, taking the
tree as a covariate (right) removes the tree effect from the principal plane.

The effect of covariates on the abundance of E. alphitoides were also
consistent: the estimates parameters 6;; associated with the intermediate
and resistant trees were —4.53 and —8.83, respectively, taking the susceptible
tree as a reference. R

We compared the respective estimates of 3 under My (denoted %) and
under M; (f)l)Afocusing on the correlation between E. alphitoides and the
other species. X contains correlations between species, that are either due
to marginal co-variations between them or to the effects of the covariates,
whereas as the correlations in X1 are corrected from the effects of covariates.
We first observed a reduction of the variances (mean=8.96, median=2.73 in
20; mean=3.72, median=1.53 in 21), which proves the strong effect of the
covariates on the abundance of the different species. Then we considered the
correlations and found a low similarity between their rankings under model
My and M; (Kendall’s 7 = .40), showing that the covariates drastically
change the apparent relationship between species abundances.

Percentage of variance. We now comment on use of the Rg criterion defined
in Section 6 to evaluate the proportion of variability captured by a model
with ¢ latent dimensions. RS compares the pseudo-likelihood /" obtained
with ¢ latent dimensions under model M, (m = 0,1) with the likelihoods
m and (M . We know that £, = (L = whereas 0. < (1. because
Komin only relies on the offsets whereas Erlnin accounts for both the offsets
and the covariates. As a consequence, Rg tends to be higher under My than
under M; for a given ¢. Right panel of Figure 1b compares the genuine
Rg under models My and M7 and the corrected version of RZ under model
M using E?nin in place of KIlnin. As expected, the corrected version of Rg

is always higher under M; than under My. We also observe that, for both
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models, the proportion of variability captured by the latent space is quite
high: R3, = 95.8% for My and R3, = 95.5% for M;. We remind that gy = 24
and g; = 21 should both be compared with p = 114.

Variance of the variational posterior. We remind that S;; is the approxi-
mate conditional variance of W;; given the data. This parameter measures
the precision of the location of individual 7 along the j-th latent dimension.
We can derive from them the approximate conditional variance of each Z;;
as [Bdiag(s; ® s;)BT];;. Figure 2, shows that this variance is much higher
when the corresponding abundance Yj; is low. Indeed, any large negative
negative values of Z;; yields in a Poisson parameter close to zero and, so,
to a null Yj;. As a consequence, large negative Z;; can not be predicted
accurately.

approximate conditional standard error of Z;;

Now s

E1 3

500
1000
1500
2000

Yi; (log scale)

Fig 2: Variational approximate conditional standard of the Z;; (y axis) as a
function of the abundance Yj; (x axis).

7.2. Impact of weaning on piglet microbiome.

Description of the experiment. We considered the metagenomic dataset
introduced in Mach et al. (2015), which consists in abundance measures of
p = 4031 bacterial species collected from the feces of 31 piglets at 5 times
points after birth (n = 155). One aim of this experiment is to understand
the impact of weaning on gut microbiota. The species abundances were
measured via metabarcoding (see Mach et al. (2015) for details). We mostly
use this example to illustrate of the the proposed methodology behaves when
the number of variable p increases.

Numerical Experiments. To test the impact of the number of variables on
the dimension of the latent subspace, we inferred ¢ on nested subsets of the
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count table. We selected only the 3000, 2000, 1000, 500 and 100 most abun-
dant species and fitted a model with appropriate offset to each subset. The
offsets were chosen as log-total count of each sample. For context, the 2500
least abundant species each have total abundance lower than 5, and more
than half (1287) are even seen only once in one sample. As expected, Fig-
ure 4 shows that removing low-counts and low-information species increases
the dimension of the latent subspace (¢ going up from 4 to 23) and the R?
(up from 53% to 93%). We are thus able to explain a larger fraction of the
variability when considering only the most abundant species rather than all
of them. Figure 3 shows that running times increase sublinearly with ¢ and
linearly with p.

running time (seconds)

2000

1500
number of axes
2

/ /
9% 4 yd 3
g -5
1000 / —10

/ A 20

500 Sz

0 1000 2000 3000

number of variables

Fig 3: Dataset from Mach et al. (2015). Running times averaged over 4
replicates of the PLNPCA function in R PLNModels package. Single core
Intel i7-4600U CPU 2.33GHz, R 3.3.3, Linux Ubuntu 16.04.

Impact of Weaning. We focus on results obtained on the 500 most abun-
dant species, which account for 90.3% of the total counts. The ICL criteria
on this subset selects ¢ = 19 (R? = 86%). The main structure present in
the latent subspace is the strong and systematic impact of weaning (Fig. 5,
left), almost entirely captured by Axis 1. The variable factor map highlights
species from two specific bacterial families: Lactobacillaceae (red) and Pre-
votellaceae (blue). The former are typically found in dairy products and
thought to be transmitted to the piglets via breast milk. As expected, they
are enriched in suckling piglets and negatively correlated with Axis 1. The
latter produce enzymes that are essential to degrade cereals introduced in
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number of variables

Fig 4: Dataset from Mach et al. (2015). The minimum overall abundance
of included species (left panel), quality of approximation Rg (central panel)
and selected value ¢ (right panel) decrease when species with low abundance
are added to the dataset.

the diet after weaning. As reported in Mach et al. (2015), they are enriched
after weaning and positively correlated with Axis 1. There is no system-
atic effect of weaning on Axes 3 and 4 and neither Lactobacillaceae nor
Prevotellaceae are highly correlated with those axes.

Acknowledgement. We thank C. Vacher and N. Mach for providing the
data and discussing the results. This work was funded by ANR Hydrogen
(project ANR-14-CE23-0001).

References.

A. Acharya, J. Ghosh, and M. Zhou. Nonparametric bayesian factor analysis for dynamic
count matrices. In AISTATS, 2015.

J. Aitchison and C. H Ho. The multivariate Poisson-log normal distribution. Biometrika,
76(4):643-653, 1989.

T. W. Anderson. An introduction to multivariate statistical analysis. Series in Probability
and Statistics. Wiley, 3 edition, 2003.

C. Biernacki, G. Celeux, and G. Govaert. Assessing a mixture model for clustering with
the integrated completed likelihood. IEEE Trans. Pattern Anal. Machine Intel., 22(7):
719-25, 2000.

Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algorithm
for bound constrained optimization. SIAM Journal on Scientific Computing, 16(5):
1190-1208, 1995.

Y. Cao and Y. Xie. Poisson matrix completion. In 2015 IEEFE International Symposium
on Information Theory (ISIT), pages 1841-1845. IEEE, 2015.

M. Collins, S. Dasgupta, and R. E Schapire. A generalization of principal components
analysis to the exponential family. In Advances in neural information processing sys-
tems, pages 617-624, 2001.



20 CHIQUET, MARIADASSOU, ROBIN

Individual Factor Map Variable Factor Map

1.04 //—\

100

=g y

—~ 50 o~ ,(

S y < /

IS IS i

2 SF2 2 7896 / :

= o = o2 —_

N N 1w -

o @ e

3 <BE 3 A 19t
-0.54

SF2801
-100
104
—4‘00 —3‘00 —2‘00 —1‘00 6 160 —1l 0 —0‘.5 0.0 0?5 110
axis 1 (66.4%) axis 1 (66.4%)

1.0
0.59 /
00 }m
1889
4.4
~054
-1.04

-100 -50 0 50 100 -1.0 -0.5 0.0 0.5 1.0

axis 4 (3%)
axis 4 (3%)

axis 3 (4.8%) axis 3 (4.8%)
Weaned FALSE a TRUE Family = Lactobacillaceae  Other & Prevotellaceae

Fig 5: Individual (left) and variable (right) maps corresponding to the first
(top, Axes 1 and 2) and second (bottom, Axes 3 and 4) principal plane.
Weaning has a strong and systematic effect on gut microbiota composition,
well captured by axis 1. Bacterial families Prevotellaceae (red) and the Lac-
tobacillaceae (blue) are two families well known to be affected by weaning
and have a high correlation with Axis 1. The latent structure seen in Axes
2, 3 and 4 does not correspond to weaning.



VARIATIONAL INFERENCE FOR PROBABILISTIC POISSON PCA 21

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. J. R. Statist. Soc. B, 39:1-38, 1977.

C. Eckart and G. Young. The approximation of one matrix by another of lower rank.
Psychometrika, 1(3):211-218, 1936a.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank.
Psychometrika, 1(3):211-218, 1936b. ISSN 1860-0980. . URL http://dx.doi.org/10.
1007/BF02288367.

P. Hall, J. T Ormerod, and MP Wand. Theory of gaussian variational approximation for
a Poisson mixed model. Statistica Sinica, pages 369-389, 2011.

R. Izsak. Maximum likelihood fitting of the Poisson log-normal distribution. Environmen-
tal and Ecological Statistics, 15(2):143-156, 2008.

T. S. Jaakkola and M. I. Jordan. Bayesian parameter estimation via variational methods.
Statistics and Computing, 10(1):25-37, 2000.

B. Jakuschkin, V. Fievet, L. Schwaller, T. Fort, C. Robin, and C. Vacher. Deciphering
the pathobiome: Intra-and interkingdom interactions involving the pathogen Erysiphe
alphitoides. Microbial ecology, pages 1-11, 2016.

N. L. Johnson, S. Kotz, and N. Balakrishnan. Discrete multivariate distributions, volume
165. Wiley New York, 1997.

D. Karlis. EM algorithm for mixed Poisson and other discrete distributions. Astin bulletin,
35(01):3-24, 2005.

J. Lafond. Low rank matrix completion with exponential family noise. arXiv preprint
arXiw:1502.06919, 2015.

A. J Landgraf and Y. Lee. Dimensionality reduction for binary data through the projection
of natural parameters. arXiv preprint 1510.06112, 2015.

D. D Lee and H S. Seung. Algorithms for non-negative matrix factorization. In Advances
in neural information processing systems, pages 556—562, 2001.

J. Li and D. Tao. Simple exponential family PCA. In AISTATS, pages 453-460, 2010.

L. T. Liu, E. Dobriban, and A. Singer. ePCA: High Dimensional Exponential Family
PCA. ArXiv e-prints arXiv:1611.05550, 2016.

N. Mach, M. Berri, J. Estellé, F. Levenez, G. Lemonnier, C. Denis, J.-J. Leplat, C. Cheva-
leyre, Y. Billon, J. Dor, and et al. Early-life establishment of the swine gut microbiome
and impact on host phenotypes. Environmental Microbiology Reports, 7(3):554-569,
May 2015. ISSN 1758-2229. . URL http://dx.doi.org/10.1111/1758-2229.12285.

K.V. Mardia, J.T. Kent, and J.M. Bibby. Multivariate analysis. Academic press, 1979.

T. P Minka. Automatic choice of dimensionality for PCA. In NIPS, volume 13, pages
598-604, 2000.

S. Mohamed, Z. Ghahramani, and K. A Heller. Bayesian exponential family PCA. In
Advances in neural information processing systems, pages 1089-1096, 2009.

J. F Nelson. Multivariate gamma-poisson models. Journal of the American Statistical
Association, 80(392):828-834, 1985.

William H Press, Brian P Flannery, Saul A Teukolsky, William T Vetterling, et al. Nu-
merical recipes. cambridge University Press, cambridge, third edition edition, 1989.

R Development Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2008. URL http://www.
R-project.org. ISBN 3-900051-07-0.

J A. Royle and C. K Wikle. Efficient statistical mapping of avian count data. Enwviron-
mental and Ecological Statistics, 12(2):225-243, 2005.

J. Salmon, Z. Harmany, C.-A. Deledalle, and R. Willett. Poisson noise reduction with
non-local PCA. Journal of mathematical imaging and vision, 48(2):279-294, 2014.

G. Schwarz. Estimating the dimension of a model. Ann. Statist., 6:461-4, 1978.


http://dx.doi.org/10.1007/BF02288367
http://dx.doi.org/10.1007/BF02288367
http://dx.doi.org/10.1111/1758-2229.12285
http://www.R-project.org
http://www.R-project.org

292 CHIQUET, MARIADASSOU, ROBIN

S. Srivastava and L. Chen. A two-parameter generalized Poisson model to improve the
analysis of RNA-seq data. Nucleic acids research, 38(17):e170—e170, 2010.

M. E Tipping and C. M Bishop. Probabilistic principal component analysis. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 61(3):611-622, 1999.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and varia-
tional inference. Found. Trends Mach. Learn., 1(1-2):1-305, 2008.

Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York,
2009. ISBN 978-0-387-98140-6. URL http://ggplot2.org.

D. M Witten, R. Tibshirani, and T. Hastie. A penalized matrix decomposition, with appli-
cations to sparse principal components and canonical correlation analysis. Biostatistics,
page kxp008, 2009.

M. Zhou. Nonparametric bayesian negative binomial factor analysis. arXiv preprint
arXi:1604.07464, 2016.

M. Zhou, L. Hannah, D. B Dunson, and L. Carin. Beta-negative binomial process and
poisson factor analysis. In AISTATS, volume 22, pages 1462-1471, 2012.

APPENDIX A: CONVEXITY LEMMAS

LEMMA 1. For any vectors 0, x, m, s and b (with matching dimensions)
and convez function f, if u ~ N(0,I) and w =m+s®u ~ N(m,diag(s®
8)), then the map g : (0, m,s,b) — E[f(0Tx + bTw)] is convez in (0,b) for
(m, s) fized and vice-versa.

PROOF. Note Z =0Tz +b"w = (0Tx+b"m)+bT(s ®u). The first order
derivative of g is

V(6.b,m,s)=E[f(Z)[x m+sou b bou|].

The second order partial derivatives of g are:

U,(0,b) =FE [f”(z) [( v ey )T”

m+sOu)zt (m+sOu)(m+soOu
— " bbT b(bQu)T
Yy(m,s)=E [f (2) [(b@ wb’ (bou)(bo u)T”

And the associated quadratic form @4 (v,w) = (v, w)"¥;(0,b)(v, w) and
Oy (v, w) = (v,w)TWa(m, s)(v,w) can be simplified to

(v, w) = E[f"(Z)(2Tv + (m + 5 © u) w)?] > 0

2 (v, w) = E[f"(Z)(bTv + (b© u)Tw)?] > 0

The Hessians W, and Wy are thus semidefinite positive, which ends the
proof. O
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LEMMA 2. For any matrices ®, X, M, S and B (with matching di-
mensions) and convex function f, if U = [Uy,...,U,]T where the U; are
ivi.d andU; ~ N(0,I) and W = M+SoU. The mapg: (©,M,S,B) —
1E[f(XOT+W BT)]1,, is convez in (©, B) for (M, S) fized and vice-versa.

ProOF. The function g is a sum of functions of the form g;; : (®, M, S, B) —

E[f(X{©; + B} (M;+ S; ®U)]. The result follows from Lemma 1. O
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