Variational inference for probabilistic Poisson PCA - Archive ouverte HAL
Rapport Année : 2017

Variational inference for probabilistic Poisson PCA

Résumé

Many application domains such as ecology or genomics have to deal with multivariate non Gaussian observations. A typical example is the joint observation of the respective abundances of a set of species in a series of sites, aiming to understand the co-variations between these species. The Gaussian setting provides a canonical way to model such dependencies, but does not apply in general. We consider here the multivariate exponential family framework for which we introduce a generic model with multivariate Gaussian latent variables. We show that approximate maximum likelihood inference can be achieved via a variational algorithm for which gradient descent easily applies. We show that this setting enables us to account for covariates and offsets. We then focus on the case of the Poisson-lognormal model in the context of community ecology.
Fichier principal
Vignette du fichier
variational_{CE66C6D5-8A36-4981-BF8A-04F537890B08}.pdf (1.2 Mo) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01608912 , version 1 (03-10-2017)

Identifiants

Citer

Julien Chiquet, Mahendra Mariadassou, Stephane Robin. Variational inference for probabilistic Poisson PCA. [University works] auto-saisine. 2017. ⟨hal-01608912⟩
211 Consultations
311 Téléchargements

Altmetric

Partager

More