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Abstract

Rift Valley fever (RVF) is a major zoonotic and arboviral hemorrhagic fever. The conditions

leading to RVF epidemics are still unclear, and the relative role of climatic and anthropo-

genic factors may vary between ecosystems. Here, we estimate the most likely scenario

that led to RVF emergence on the island of Mayotte, following the 2006–2007 African epi-

demic. We developed the first mathematical model for RVF that accounts for climate, animal

imports and livestock susceptibility, which is fitted to a 12-years dataset. RVF emergence

was found to be triggered by the import of infectious animals, whilst transmissibility was

approximated as a linear or exponential function of vegetation density. Model forecasts indi-

cated a very low probability of virus endemicity in 2017, and therefore of re-emergence in a

closed system (i.e. without import of infected animals). However, the very high proportion of

naive animals reached in 2016 implies that the island remains vulnerable to the import of

infectious animals. We recommend reinforcing surveillance in livestock, should RVF be

reported is neighbouring territories. Our model should be tested elsewhere, with ecosystem-

specific data.

Author summary

Rift Valley fever (RVF) is an arboviral hemorrhagic fever affecting primarily livestock in

Africa and in the Arabian Peninsula. The conditions leading to RVF emergence are not

fully understood, mainly because of data scarcity. Applied to the island of Mayotte (our
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ecosystem under study), for which 12 years RVF serological dataset are available, and by

using a mechanistic model, we demonstrate that RVF epidemics related mainly to the

introduction of infectious animals. Our work confirms that anthropogenic factors, such as

livestock movements, need to be accounted for in order to understand the epidemiology

of this disease. Our model should be tested elsewhere, with ecosystem-specific data.

Introduction

Rift Valley fever (RVF) is a major vector-borne, zoonotic, and hemorrhagic fever (Phlebovirus,
Family Bunyaviridae) that severely affects human health, animal health and livestock produc-

tion mainly in Sub-Saharan Africa [1–3]. Its potential for spread and emergence in current dis-

ease-free areas (e.g. Europe, United States of America) is of growing global concern. The

emergence (or re-emergence) of a disease has been defined by Woolhouse and Dye (2001) [4]

as an “increase [in its incidence] following first introduction into a new host population, or [an
increase in its incidence] in an existing host population” following specific ecological changes,

e.g. in anthropological factors, agricultural practices or climate [4–6]. Theoretically, the

conditions leading to RVF emergence may result from a sudden increase in vector density, the

availability of susceptible animals, and the presence of the virus. The virus could be newly

introduced or already present locally; maintained in the mosquito population, or circulating at

a low level in livestock or wild animal populations, although little evidence exists on the latter

[7–9]. Due to little existing data on RVF, those mechanisms have not been fully quantified.

Previous work on RVF emergence conducted for the Horn of Africa using ecological statistical

modelling showed that above-average rainfall and vegetation density (Normalized Vegetation

Difference Index, NDVI) over 3 to 4 months could lead to RVF re-emergence [10], but it did

not seem to be always the case, especially in Madagascar and Southern Africa, where other fac-

tors, such as the movements of animals or the level of livestock susceptibility may also play a

role [11,12]. Finally, although a range of mathematical models have been developed to study

RVF, they looked mainly at RVF spread, that is once the virus is introduced [13] or they

assessed the impact of vaccination strategies [14], and only few were fitted to data [15–17].

A large RVF epidemic started in Kenya in December 2006, affecting humans and animals,

and subsequently spread to East and Southern Africa over the following months, including

Somalia, Tanzania, Sudan, Mozambique, the Union of Comoros [10, 18–23]. In September

2007, RVF virus was detected in humans on the island of Mayotte (in the Mozambique Chan-

nel, Fig 1), about 500km away from the African continent. Two Mayotte 2008 RVF virus iso-

lates were sequenced and the results showed that they were related to the Kenyan 2006–2007

clade [20,24]. Subsequent serological studies carried out in Mayotte in livestock (2004–2016)

showed that RVF had been present at least since 2004, and re-emerged in 2008–10, despite no

symptoms in animals being detected [25,26]. Because of its proximity to the Kenyan 2006–

2007 clade, the Mayotte 2008 isolates may have been introduced onto the island by animal

trade from the African mainland through the Union of Comoros [6,27]; and very likely

resulted in the re-emergence observed in livestock in 2008–10 [25].

Quantifying the main factors driving pathogen emergence can be approached using mathe-

matical models, but accounting for the diversity of the processes underlying emergence

remains a challenge due to the lack of existing data [28]. Because of its insular nature, its epide-

miological connections to the African mainland and its 12-year (2004–2016) RVF serological

dataset [25], Mayotte offers an ideal setting to attempt to disentangle the impact of environ-

mental and anthropogenic factors driving RVF dynamics in the livestock population. Here, we
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developed the first mathematical model for RVF emergence that accounts for livestock suscep-

tibility, climate factors, and the import of infectious animals, while fitting serological data in a

Bayesian framework. It allowed an estimate of (i) the most likely emergence scenario that

could explain the past observed epidemic, and (ii) the likelihood of a future re-emergence,

under different animal import scenarios.

Methods

Study area

Mayotte is a small island (374 km2), with an estimated livestock population size of about

30,000 heads [29] (17,000 cattle, 12,000 goats and 1,000 sheep). The production system is agro-

pastoral; animals are raised for family consumption or ceremonies. No official export or

import of animals exists. The movements of people on small boats (named "kwassa-kwassa")

between Mayotte (French overseas département) and the nearest island of Anjouan (Union of

Comoros), 70 km apart, became illegal since the installation of French visa requirements to

enter Mayotte in 1995. Nevertheless, people attempt the journey with livestock on board [30].

Although the maritime border authorities attempt to control those entrants, they seize only a

fraction of them (estimated 16,000 people entering per year in 2007 [31]), allowing the intro-

duction of potentially infected animals.

The climate of Mayotte is marine tropical. The annual temperature varies between 25˚C

and 35˚C, with a high annual rainfall (1500 mm) and a peak rainy season (December-March)

[32]. Despite rainfall seasonality, the normalized difference vegetation index NDVI (a mea-

sure of vegetation density) is high and shows little annual variation (average Mayotte range

0.65–0.82, NDVI ranges 0–1) [33] (S1 Fig). A continually high NDVI potentially would allow

the sustenance of mosquito breeding and therefore vector transmission even during the dry

season [34,35]. Apart from RVF, other arboviral diseases reported are Dengue and Chikun-

gunya [6].

Fig 1. Location of the island of Mayotte. Mayotte is a small island located in the Mozambique Channel,

between Madagascar and the African continent. Mayotte is a French department, while Grande Comore,

Mohéli and Anjouan belong to the Union of the Comoros.

https://doi.org/10.1371/journal.pntd.0005767.g001
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Model: Natural history of disease and demographics

The livestock population (cattle, sheep and goats) was modelled with an animal as a unit but

without differentiating animals according to their species (one livestock population consid-

ered), or their spatial location. Animals could pass through four successive and mutually-

exclusive infection states of RVF infection: Susceptible (S), Latent (E), Infectious (I) and

Immune (R). Once infected, we assumed that animals remained in the (R) compartment, as

natural infection is assumed to provide life-long immunity [14]. We accounted for deaths and

births and assumed a constant population size (N) for the study period (October 2004-June

2016). The model was deterministic and discrete-time (weekly time step). While we assumed

homogeneous mixing, the livestock population was purposively stratified in 10 yearly age

groups a (a ∊[1–10]) to allow fitting the model to age-specific IgG prevalence data (see model

fitting paragraph and S1 Text for details). The model is presented in S2 Fig, and in Eqs (1) to

(7). Indexing the state variables and parameters by yearly age-group a (see S1 Text, methods

section for the definition of age-groups), and time, t, we have the following equations:

For� 12 months-old animals (i.e. age group a = 1):

S1;tþ1 ¼ ð1 � ltÞð1 � dÞaS1;t þ bt ð1aÞ

E1;tþ1 ¼ ltð1 � dÞaS1;t ð1bÞ

I1;tþ1 ¼ ð1 � dÞaE1;t þ Iimp 1;t ð1cÞ

R1;tþ1 ¼ ð1 � dÞaR1;t þ ð1 � dÞaI1;t ð1dÞ

For > 12 months-old to� 108 months-old animals (i.e. age groups a ∊[2–9]):

Sa;tþ1 ¼ ð1 � ltÞð1 � dÞaSa;t þ ð1 � ltÞdaSa� 1;t ð2aÞ

Ea;tþ1 ¼ ltð1 � dÞaSa;t þ ltdaSa� 1;t ð2bÞ

Ia;tþ1 ¼ ð1 � dÞaEa;t þ daEa� 1;t þ Iimp a;t ð2cÞ

Ra;tþ1 ¼ ð1 � dÞaRa;t þ daRa� 1;t þ ð1 � dÞaIa;t þ daIa� 1;t ð2dÞ

For > 108 months-old animals (i.e. age group a = 10):

S10;tþ1 ¼ ð1 � ltÞa10S10;t þ ð1 � ltÞdaS9;t ð3aÞ

E10;tþ1 ¼ lta10S10;t þ ltdaS9;t ð3bÞ

I10;tþ1 ¼ a10E10;t þ daE9;t þ Iimp 10;t ð3cÞ

R10;tþ1 ¼ a10R10;t þ daR9;t þ a10I10;t þ daI9;t ð3dÞ

Rift Valley fever emergence in Mayotte
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With:

lt ¼ 1 � expð� bt

X10

a¼1

Ia;tÞ ð4aÞ

bt ¼ ð1 � aÞ
X10

a¼1

ðSa;t þ Ea;t þ Ia;t þ Ra;tÞ �
X10

a¼1

Iimp a;t ð4bÞ

Where Sa, Ea, Ia, Ra, Iimp_a, Na are the age-specific number of Susceptible, Latent, Infectious,

Immune, imported Infectious, and total number of animals in the ath yearly age group, with

their sum over all ages denoted by St, Et, It, Rt, Iimpt and Nt, respectively. λt is the force of infec-

tion, and βt is the per-capita effective contact rate. The rate at which latent (E) become infec-

tious (I), and infectious (I) become immune (R) were fixed and equal to one, so that animals

stay one time step (i.e. one week) in the (E) and (I) compartments. In the absence of vector

data, the time spent in (E) is assumed to account for the extrinsic incubation period in the vec-

tor (3 days) and the latent (1–6 days) stage in the animal without explicitly modelling these

processes, and the time spent in (I) accounted for the infectious stage in the host (3–6 days)

[34,36,37]. This was chosen because we were interested in fitting the model to the Immune (R)

compartment only, whilst allowing the serial interval (defined as the average time of infection

between two consecutive cases, as perWallinga and Lipstich [38] definition), at the animal

level, being 2 weeks; which aligns with the 3 weeks estimated in South Africa at the farm level

[39,40]. The rate at which animals are ageing at each time-step is noted δ; α is the survival rate

for the age-groups 1–9, and α10 for the age-group 10; and finally bt is the birth rate. No dis-

ease-related mortality was accounted for because such symptoms were not reported at that

time in Mayotte, neither in the neighbouring Comoros and Mozambique RVF affected areas

[23,41–43]. In addition, since the animal population was not fully susceptible at the beginning

of our study period (October 2004), a proportion of immune animals (imm_t0) was specified

at t0, such as:

Rt¼0 ¼ N � imm t0 ð5aÞ

St¼0 ¼ N � ðRt¼0 þ Et¼0 þ It¼0Þ ð5bÞ

Climate-dependent transmission scenarios

We used NDVI as a proxy for climate conditions favouring mosquito habitat commonly used

in RVF studies [10,11,44–46], as no data on vector dynamics was available. NDVI data for

Mayotte did not show any three-months NDVI anomaly over the study period as measured

for the Horn of Africa [10] therefore it was not used in this model (S1 Fig). Instead, we esti-

mated the transmission parameter βt that varied over time as a function of the observed NDVI

value at time t (NDVIt) [33]. In the absence of a known quantified relationship between βt and

NDVI for RVF, or other vector-borne diseases, two models were tested. Model 1a assumed a

linear relationship between βt and NDVIt, and Model 1b an exponential relationship, such as:

bt ¼
Rst
N

ð6aÞ

Model 1a:

Rst ¼ aðNDVIt � NDVIminÞ þ b ð6bÞ

Rift Valley fever emergence in Mayotte
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and Model 1b:

Rst ¼ expðaNDVIt þ bÞ ð6cÞ

Where Rst is the seasonal reproduction number, a and b are the coefficients of the linear

and exponential functions. The linear function is defined such that Rs,t reaches its minimum

value Rsmin = bwhen NDVIt is at its minimum (NDVImin).

Virus introduction through animal imports

Following the RVF outbreak in the Horn of Africa in 2006–2007, it was assumed that infec-

tious animals entered Mayotte in kwassa-kwassa, from a starting date timp and for a duration

P. Those imported animals Iimp were added directly into the infectious compartments Ia (Eqs

(1c), (2c) and (3c)), and at a constant flow at each time-step t, for the length of the period P,

such as:

For

timp < t < timp þ 48P; Iimp ¼ ðnseizedpikwÞ=ð48pseizedÞ ð7Þ

Where nseized is the number of animals seized by the maritime patrol per year, pikw is the pro-

portion of these that tested positive to RVF recent infection (S2 Table IgM positive), pseized is

the proportion of kwassa-kwassas seized, and finally P the duration of importation, expressed

in year fraction. In addition, to facilitate the aggregation of monthly estimates, a month was

modelled as 4 weeks, and therefore a year was 48 weeks. A time step (week) corresponded to

1.08 calendar week.

Parameters

The parameters of the model were related to the natural history of disease and demographics,

the climate-dependent transmission scenarios, or the viral introduction through animal

import (Table 1). However, whilst some parameters were fixed input values, others were esti-

mated by fitting the model predictions to the serological IgG prevalence data. Table 1 presents

which parameters were fixed input values and which were estimated by fitting the model. Spe-

cifically, the fixed input parameters were the demographics parameters Na, α and α10 derived

from demographic data [29,47,48] (S1 Text, S1 Table and S3 Fig), as well as the number of ani-

mals seized per year by the maritime patrol (nseized = 100), and the proportion of them being

infectious (pkiw = 15%) (S2 Table). The proportion of imported animals that had been recently

infected by RVF virus (IgM positive, S2 Table) was used as a proxy for pkiw. The other six

parameters were estimated by fitting the model to the serological data (Table 1) using a Bayes-

ian framework. Each prior distribution of these parameters was a uniform function with the

following lower and upper bounds: (i) the proportion of immune animals at t0, imm_t0, could

be estimated between 5 and 20%, (ii) a and (iii) b, the parameters defining the functional rela-

tionship between βt (and therefore Rst) and NDVI were set to allow estimating Rs between 0.5

and 6, (iv) the proportion of kwassa-kwassas seized pseized could take any value between 2.5%

and 20%; and (v) the duration of import P varied from 1 month to 2 years. Finally, the date of

the first import of infectious animals, (vi) timp, could be any time between January 2007 (First

report of RVF outside its initial confinement, i.e. in Kenya) and September 2007 (RVF detected

in Mayotte), and was estimated from the data.

Rift Valley fever emergence in Mayotte
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Model fitting and parameter estimation

Parameter estimation was done by fitting the age-specific simulated proportion of immune (R)

animals, for each epidemiological year i, to RVF IgG prevalence (Oct 2004-Jun 2016), as pre-

sented in Metras et al. 2016 [25]. Note that for Oct 2004-Jun 2008, age data was not available

Table 1. Input fixed parameters and parameters to estimate with their input values range.

Parameter description Notation Values/distribution of the prior Source

Natural history of disease & demographics

Total population size N 30,000 [29]

Prop. of immune animals at t0 imm_t0 Uniform [0.05,0.20] to estimate by fitting the model to data

No. latent animals at t0 E0 5 -

No. infectious animals at t0 I0 5 -

Weekly ageing factor δ 0.021 (1/48)/week 1month = 4 weeks in model

Survival rate for age-groups 1 to 9 α 0.9912/week [47,48] and S1 Text

Survival rate for age-group 10 α10 0.9938/week [47,48] and S1 Text

Climate-dependent transmission scenarios

Model 1a: Linear model

Slope a Uniform [1,6] to estimate by fitting the model to data

Rs value at the minimum NDVIt value b Uniform [0,1]

Model 1b: Exponential model

Multiplying factor a Uniform [1,20] to estimate by fitting the model to data

Scaling factor b Uniform [–20,–1]

Viral introduction through animal import

No. of animals seized nseized 100/year S2 Table

Prop. imported infectious animals pikw 0.15/year S2 Table

Starting date of animal import t_imp Uniform [Jan-Sept 07] to estimate by fitting the model to data

Duration of import in years P Uniform [0.1,2]

Prop. of kwassa-kwassas seized by the maritime border authorities pseized Uniform [0.025, 0.20]

https://doi.org/10.1371/journal.pntd.0005767.t001

Fig 2. Model fit of the exponential model (Model 1b): Median (green line) and 95% CrI (green shaded

area). Observed monthly (blue dots) and annual (black dots) IgG prevalence are shown, together with their

95% CI. For the period October 2004-June 2008 (before the vertical black line), the model was fitted to the

monthly IgG prevalence (blue dots). For the period July 2008-June 2016, see Fig 3A–3H. The grey shaded

area represents the estimated import period.

https://doi.org/10.1371/journal.pntd.0005767.g002
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so we fitted to monthly prevalence (blue dots on Fig 2, S4 and S5 Figs). We sampled from the

posterior distribution of all six parameters θ = {imm_t0,a,b,timp,P,pseized} using a Monte Carlo

Markov Chain Metropolis-Hastings algorithm [49], assuming uniform priors (Table 1).

Parameters were estimated for both exponential and linear models (Models 1a and 1b), and

the best model had the lowest deviance information criterion value (DIC) [50]. For details on

parameter estimation, model fitting, and comparison see S1 Text.

Model forecasting

To estimate the probability of re-emergence, we simulated 5000 stochastic trajectories of the

exponential model, sampling randomly from the posterior distribution. The simulations were

done for Oct 2004-Jun 2020, adding 48 months (Jul 2016-Jun 2020) to the original model,

additional time for which the long-term NDVI monthly average values were used (however

keeping a seasonal pattern). In “Forecast 1” infectious animals were only imported in 2007–09.

To estimate the impact of future infectious imports and their seasonal timing on RVF re-emer-

gence, we simulated the import of 1, 10, 20, 30 and 40 infectious animals in October 2016 (low

NDVI values, Forecasts 2–6), and in April 2017 (high NDVI values, Forecasts 7–11).

Sensitivity analysis

To test for the effects of animal imports on the probability of emergence, we fitted both linear

(Model 2a) and exponential (Model 2b) models, without animal imports, therefore sampling

from the posterior distribution of three parameters only θ = {imm_t0,a,b}. Finally, to assess the

impact of NDVI seasonality on transmission, we fitted Model 3, a model with animal imports,

but with a constant transmission parameter β, such as:

b ¼
R0

N
ð8Þ

In other words, we sampled from the posterior distribution of five parameters

θ = {imm_t0,β,timp,P,pic}. All models were compared using the DIC [50].

Ethics statement

The data were collected under the under a national disease surveillance system (Système d’Epi-

démiosurveillance Animale à Mayotte—SESAM) with the approval of the Direction of Agri-

culture, Food and Forestry (DAAF) of Mayotte. Before 2015, consent for blood sampling on a

herd was obtained from its owner verbally after information in French (official language) or

Shimaore (local language) was given. The animals were bled without suffering. No endangered

or protected species were involved in the survey. From 2015, all procedures were approved by

the London School of Hygiene Animal Welfare and Ethical Review Board.

Results

Both linear and exponential models with seasonal variations of the NDVI including animal

imports (Models 1a and 1b) fitted equally well the data (Table 2, DICmodel1a = 522.8 and

DICmodel1b = 523.7) and showed a good agreement with the IgG serological data (Fig 2 and Fig

3A–3H). When transmission was not dependent on NDVI seasonality (Model 3), the IgG

prevalence peak was also captured (S4 Fig, black solid line), but the model did not fit the

data as well as the NDVI seasonality-dependent models, the DIC being higher (Table 2,

DICmodel3 = 543.6). Models without any animal import (Models 2a and 2b) had the worst fit

(Table 2), and failed to capture the IgG prevalence peak (S4 Fig, blue and green solid lines),

Rift Valley fever emergence in Mayotte

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005767 July 21, 2017 8 / 19

https://doi.org/10.1371/journal.pntd.0005767


suggesting that the re-emergence of RVF virus in 2008–10 may have been due to the import of

infectious animals.

Since both models 1a and 1b with animal imports exhibited a similar fit, we present in the

main manuscript the fitting and forecasts using the exponential model (results obtained with

the linear model are similar and provided in S5 Fig and S6A–S6H Fig). Fig 2 and Fig 3A–3H

show the median and the 95% CrI of the 5000 stochastic trajectories of the proportion of IgG

positive animals. The main discrepancies among model trajectories were observed for the first

part of the study period (Oct 2004-Jun 2008, before the peak, Fig 2), when the model was fitted

to serological estimates supported by a smaller sample size. In contrast, in July 2008-June 2016

Table 2. Deviance Information Criterions (DIC) for the five models tested, ordered from the best to the worst fit.

Model number DIC Model assumptions on

Animal imports Transmission

Model 1a 522.8 Yes seasonal NDVI, linear function

Model 1b 523.7 Yes seasonal NDVI, exponential function

Model 3 543.6 Yes no seasonal variation of NDVI (beta constant)

Model 2b 753.5 No seasonal NDVI, exponential function

Model 2a 768.9 No seasonal NDVI, linear function

https://doi.org/10.1371/journal.pntd.0005767.t002

Fig 3. (A-H) Model fit of the exponential model (Model 1b) for (A-H) each epidemiological year

between July 2008 and June 2016: Median (green line) and 95% CrI (green shaded area). The black dots

are the observed annual age-stratified IgG prevalence (vertical dashed lines are the 95% CI).

https://doi.org/10.1371/journal.pntd.0005767.g003
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the model was fitted to age-specific IgG prevalence (Fig 3A–3H), and simulations showed little

variation.

In the best models (Models 1a and 1b), the import of infectious animals was estimated to

have started in timp = June 2007 (IQR [May 2007-Jul 2007], or month number 33), when 94.1%

(IQR [85.6–96.5]) of the livestock population was estimated to be susceptible. The import sce-

nario also estimated that 43 (IQR [39–46]) infectious animals were imported per month, dur-

ing 23 months (IQR [22–24]), which corresponded to 2.9% (IQR [2.7–3.1]) of the animals

illegally imported caught by the maritime border (Table 3). Rst values ranged between 0.36 and

1.90 for the linear model, and 0.52–2.19 for the exponential model (Fig 4A and S7 Fig), reflect-

ing the seasonal variation of NDVI (NDVImin = 0.59 and NDVImax = 0.85). Finally, under

those conditions, the proportion of immune animals at t0 (imm_t0), that is in October 2004,

was 12.9% (IQR [11.7–14.1]).

The seasonal variation of Rst over time reflected the seasonal NDVI values, and was com-

pared to Rst values under the average-NDVI conditions (Fig 4A). The effective reproduction

number Re (range 0.42–1.84), and the monthly incidence (monthly number of infectious

cases) are presented in Fig 4B. The incidence started to rise slightly in April-May 2007, that is

before the import of infectious animals, and despite the imports starting in June 2007, the inci-

dence remained stable and slightly decreased due to substantially below-average NDVI values.

The highest incidence peak was reached the following year, in June 2008 (1558 cases, 95%CrI

[707–2684]), and very likely resulted from the combination of infectious imports with above-

average NDVI seasonal values; similarly to what is observed for the 2009 peak (Fig 4A). Fol-

lowing that import period in 2007–2009, the model predicted a very low probability of

endemicity (Fig 4B, Forecast 1), with 99.74% of the trajectories indicating extinction in 2016

in a closed ecosystem. As of October 2016, 97.9% (95%CrI [97.6–98.2]) of the Mayotte live-

stock is estimated to be susceptible to RVF, such that the import of 40 infectious animals at

that date (low NDVI values, Fig 4C, Forecast 6) or in April 2017 (high NDVI values, Fig 4D,

Forecast 11) would result in an incidence peak similar to 2008 (Forecast 6: Jul 2017: 1063 cases

95%CrI [242–2385]; Forecast 11: Jul 2018: 936 cases 95%CrI [297–1696]). However, if the

number of infectious animals introduced into Mayotte is less than 40, then the incidence peak

Table 3. Median, interquartile range and 95% credibility interval of the six parameters estimated, and Deviance Information Criterions (DIC) for the

two climate-dependent model scenarios (linear and exponential).

Scenario Linear Exponential

DIC 522.8 523.7

Parameters estimated Notation Median IQR* 95%CrI† Median IQR* 95%CrI†

Climate-dependent transmission scenarios

slope (linear) or multiplying factor (exponential) a 3.41 3.02–3.80 2.28–4.56 3.15 2.75–3.57 2.05–4.41

Rsmin (linear) or scaling factor (exponential) b 0.67 0.62–0.72 0.52–0.81 -2.19 -2.50– -1.89 -3.11 – -1.38

Rs for maximum NDVI value (0.85) 1.55 1.30–1.90 1.91 1.39–2.19

Rs for minimum NDVI value (0.59) 0.67 0.36–0.91 0.62 0.53–0.90

Initial conditions

Percentage of immune at t0 imm_t0 12.89 11.69–14.13 9.51–16.88 12.98 11.75–14.26 9.58–16.95

Viral introduction through animal imports

Import starting date (month number) t_imp 33.57 32.47–34.66 30.91–35.84 33.47 32.30–34.63 30.85–35.83

Import duration (year fraction) P 1.88 1.79–1.94 1.59–1.99 1.88 1.78–1.94 1.58–1.99

Percentage of animals caught pseized 2.86 2.66–3.14 2.51–3.82 2.99 2.72–3.37 2.52–4.42

* IQR: Interquartile range;
† CrI: Credibility Interval

https://doi.org/10.1371/journal.pntd.0005767.t003
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remains substantially higher if importations take place in April, compared to importations tak-

ing place in October (April: Forecasts 2–5 in S8A–S8D Fig and October: Forecasts 6–10 in

S9A–S9D Fig).

Discussion

Our work is the first dynamic mathematical model on RVF that accounts for climate and ani-

mal imports, and which is fitted to long-term epidemiological data [13]. The importance of

livestock import was characterized as a major driver for RVF emergence, similarly to what has

been described for Madagascar [9]. Our model narrowed the virus entry window in Mayotte

to May-July 2007, which represents a plausible 6 to 4-months delay following the first RVF

report in Kenya and Tanzania (Dec 2006 and Feb 2007) [10,18,19]. We also estimated the

import of about 40 infectious animals per month over 23 months, which is possible back in

2007–10. In the absence of animal movement data and epidemic curve in neighbouring terri-

tories, we assumed constant entrant flows of animals. While the actual entrant flows may have

varied with time, due to climatic or anthropogenic factors (such as political or economic fac-

tors), the proportion of boats seized may have also varied for the same reasons. Therefore,

Fig 4. (A-D) Exponential model (Model 1b), (A) Seasonal variation of Rst (green area), reflecting the actual

NDVI values and variation of Rst using long-term NDVI average values (red area). The period between the two

vertical lines is the estimated import window. (B-D): Results of the stochastic forecasts: (B) Forecast 1:

Effective reproduction number Re over time (green lines, Rst*proportion of susceptibles), and RVF incidence

(solid black line) expressed as the number of newly infectious animals per month, together with their 95%CrI

(grey shaded area), without import of infectious animals in 2016–17. (C) Forecast 6: with the import of 40

infectious animals in Oct 2016. (D) Forecast 11: with the import of 40 infectious animals in April 2017.

https://doi.org/10.1371/journal.pntd.0005767.g004

Rift Valley fever emergence in Mayotte

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005767 July 21, 2017 11 / 19

https://doi.org/10.1371/journal.pntd.0005767.g004
https://doi.org/10.1371/journal.pntd.0005767


choosing a constant import flow was the least biased and most parsimonious option, that

could be improved should better data be available.

Rainfall and temperatures are known to have an impact on the dynamics of vector popula-

tions, and RVF virus can be transmitted by a large range of vectors species with different bio-

ecologies [2, 14]. The dynamics of rainfall and temperature may therefore result in a complex

RVF vector multi-population dynamics for which no data are available in our case; and

attempting to account for this without data would only increase the model uncertainty. In

addition, studies on RVF vectors (Culex pipiens and Aedes taeniorhynchus) showed that tem-

perature above 26˚C increased virus transmission rates [51,52], while in Mayotte the average

temperature varies between 25˚C and 35˚C [32], potentially allowing transmission year-

round. If data on vector population dynamics were available, and if the ecosystem studied

could bear cooler temperatures, both temperature and rainfall should be accounted for. Here,

we used NDVI as a proxy for vector habitat and therefore vector density in common with

many previous RVF studies did [10,11,44–46,53]. Since Mayotte has not reported any NDVI

anomalies as in the Horn of Africa [10], using monthly NDVI was the most relevant parameter

to use. Furthermore, no previous dynamic models have used RVF transmission as a direct

function of NDVI [13], although NDVI is used in most spatial modelling works [10,11,44–

46,53]. Our model allowed quantifying of a functional relationship between NDVI and trans-

missibility for RVF, with the highest Rs value being 2.19, falling within the range of previously

estimated R0 at 1.19 (95%CI [1.18–1.21]) [54] in a theoretical endemic setting; or 1.18 (range

0.5–2.1) [55], and 1.17 (range [0–3.68]) [17] in an epidemic context. Finally, our model offers

a benchmark for exploring RVF transmissibility without vector data, and should be tested in

ecosystems with different NDVI dynamics.

The credibility intervals of the estimated parameters were relatively narrow, and impacted

only on the variability of the trajectories observed in 2004–08, when monthly prevalence esti-

mates were informed by a small number of sampled animals, generating large confidence

intervals. Little information was available on how these samples were collected [25], which

could bias the model results. However, these samples retrospectively analyzed were randomly

selected from a bank of sera collected under the annual veterinary services prophylaxis cam-

paign, which attempted to be representative of the livestock population. Both models did not

reach the peak prevalences in 2008–09, and since these points corresponded indeed to recent

infections (IgM positive animals) [25], a biased serological sample in the data collected

remains the most plausible explanation. From July 2008 onwards, trajectories showed only

very little variability, and indicated a very low probability of a future re-emergence in the

absence of new viral introductions; which is consistent with previous modelling conducted for

Mayotte [34]. Finally, after 2008, the model is fitted to the age-stratified IgG prevalence and is

in good agreement with the observed IgG prevalence, even in the latest years (2015–2016). The

overall observed IgG prevalence in 2016 which appears higher than the simulated one is an

artefact which can be explained by a high number of animals sampled in the oldest age-group.

We assumed that animals were at equal risk of acquiring infection and becoming seroposi-

tive across species and age-groups. Indeed, in Mayotte all animals regardless of age and species

are raised outdoors, and we therefore assumed that they were at equal risk of being exposed to

mosquito bites. In addition, while some studies found differences in serological prevalence

between livestock species [56,57], a number of serological studies conducted in different study

areas across Africa, such as Mozambique, Senegal, Tanzania, Kenya and Madagascar, did not

show any difference in seroprevalence between livestock species during an epidemic or inter-

epidemic period [23,41,58–64]. Finally, due to the island’s small size and the limited spatial

variation of the ecosystem [65]; but also since herds are small (about 5–7 animals) [25,29], and

herds from all communes had been affected by RVF, we did not need to account for spatial

Rift Valley fever emergence in Mayotte

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005767 July 21, 2017 12 / 19

https://doi.org/10.1371/journal.pntd.0005767


heterogeneity. This also allowed implementing model fitting in a data-scarce environment.

Stratifying per location would have resulted in data points supported by fewer samples,

increasing uncertainty and precluding model fitting. In addition, since our livestock popula-

tion did not experience the classical symptoms of RVF (waves of abortions and high mortality

in newborn), disease-induced mortality was not explicitly modelled. Sub-clinical forms were

common for RVF in Mayotte, as well as in the neighbouring Union of Comoros and Mozam-

bique [23,41–43]. Also, sheep, the most susceptible species to clinical symptoms, only repre-

sents 3–4% of the livestock population of the island. Finally, in the absence of vector data, nor

evidence on human-to-animals RVF transmission, we assumed that the import of infectious

animals was the most likely virus introduction pathway, although the introduction through

infectious vectors and infectious humans cannot be ruled out.

Model forecasts indicated a very low probability of RVF virus endemicity and therefore of

re-emergence in a closed system. With a very high proportion of naive animals as reached in

2016, the livestock population remains vulnerable to the introduction of infectious animals.

Since 2011, few RVF infections in Mayotte have been reported (few young RVF IgG positive

animals, or IgM positive animals in 2013–15 [25], and no IgM positive in 2016), whilst the sur-

veillance system has been strengthened over years, giving weight to our model results. Ongo-

ing surveillance including both active (annual serological surveys), passive surveillance

activities (reports of animal mortality and abortions by farmers), but also the strict control

measures for illegally introduced animals (immediate euthanasia) are still currently in place in

Mayotte. Given that the animal population is naïve, our results suggest that such surveillance

must be maintained, and reinforced should RVF be reported in neighbouring territories. This

includes raising farmers’ awareness to report mortality and abortion events, and mitigating the

risk of human exposure through communication and preventive messages (best practices for

abortion and raw meat handling, since most animals are still slaughtered at the farm with no

individual protection equipment). Finally, assuming the availability of RVF, NDVI and animal

movement data, our model framework could be adapted to other ecosystems to refine the eco-

system-specific relative role of livestock susceptibility, animal movements and NDVI-related

transmissibility on RVF dynamics.
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S5 Fig. Model fit (linear model 1a). Mean (solid blue line) and 95% CrI (blue shaded area).
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S7 Fig. Results of Models 1a and 1b: Linear (blue shaded area) and exponential (green

shaded area) relationships between NDVI (x-axis) and Rs (y-axis). Rs values range from 0.36

to 1.90 for the linear model, and 0.52 to 2.19 for the exponential model; for NDVI values vary-
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S8 Fig. (A-D) Additional forecasts for Model 1b (exponential model), assuming infectious

imports in April 2017. Effective reproduction number Re over time (green solid lines,

Rs
�proportion of susceptibles), and median monthly incidence (solid black line) expressed

as the number of newly infectious animals per month, with their 95%CrI (grey shaded

area). (A) Forecast 2: import of 1 infectious animals, (B) Forecast 3: import of 10 infectious

animals, (C) Forecast 4: import of 20 infectious animals, and (D) Forecast 5: import of 30

infectious animals.

(TIFF)

S9 Fig. (A-D) Additional forecasts for Model 1b (exponential model), assuming infectious

imports in October 2016. Effective reproduction number Re over time (green solid lines,

Rs
�proportion of susceptibles), and median monthly incidence (solid black line) expressed

as the number of newly infectious animals per month, with their 95%CrI (grey shaded

area). (A) Forecast 7: import of 1 infectious animals, (B) Forecast 8: import of 10 infectious

animals, (C) Forecast 9: import of 20 infectious animals, and (D) Forecast 10: import of 30

infectious animals.
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(for Model 1b). (A) multiplying factor a, (B) scaling factor b, (C) proportion of immune at t0

imm_t0, (D) date of import t_imp, (E) proportion of boats seized p_seized, (F) duration of

imports P.
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