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QUASI STEADY STATE APPROXIMATION OF THE SMALL

CLUSTERS IN BECKER-DÖRING EQUATIONS LEADS TO

BOUNDARY CONDITIONS IN THE LIFSHITZ-SLYOZOV LIMIT

JULIEN DESCHAMPS† , ERWAN HINGANT‡ , AND ROMAIN YVINEC§

Abstract. This papers addresses the connection between two classical models of phase transi-
tion phenomena describing different stages of the growth of clusters. The Becker-Döring model (BD)
describes discrete-sized clusters through an infinite set of ordinary differential equations. The Lifshitz-
Slyozov equation (LS) is a transport partial differential equation on the continuous half-line x∈ (0,+∞).
We introduce a scaling parameter ε>0, which accounts for the grid size of the state space in the BD
model, and recover the LS model in the limit ε→0. The connection has been already proven in the
context of outgoing characteristic at the boundary x=0 for the LS model, when small clusters tend to
shrink. The main novelty of this work resides in a new estimate on the growth of small clusters, which
behave at a fast time scale. Through a rigorous quasi steady state approximation, we derive boundary
conditions for the incoming characteristic case, when small clusters tend to grow.

Key words. Becker-Döring system, Lifshitz-Slyozov equation, Boundary value for transport equa-
tion, quasi-steady state approximation, hydrodynamic limit.

AMS subject classifications. 34E13, 35F31, 82C26, 82C70

1. Introduction

This papers addresses the mathematical connection between two classical models
of phase transition phenomena describing different stages of the growth of clusters (or
polymers, or aggregates). The first one is the Becker-Döring model (BD), first intro-
duced in [3], that describes the earlier stages of cluster growth, at a small scale. Cluster
of particles may increase or decrease their size one-by-one, capturing (aggregation pro-
cess) or shedding (fragmentation process) one particle, according to the set of chemical
reactions

C1+Ci−⇀↽−Ci+1 i≥ 1 ,

where Ci stands for the clusters consisting of i particles, C1 being the single free particle.
In its mean-field version, the BD model is an infinite set of ordinary differential equations
for the time evolution of each concentrations (numbers per unit of volume) of clusters
made of i particles. In this works we focus on a dimensionless BD model that involves a
small parameter ε> 0. The standard scaling procedure is detailed in Appendix A. We
denote by cεi (t) the concentration at time t≥ 0 of clusters consisting of i≥ 2 particles
and uε for the concentration of free particles (clusters of size 1), where we make explicit
the dependence on ε> 0. The dimensionless system reads

d

dt
uε = −εJε

1 −ε
∑

i≥1

Jε
i , t≥ 0 ,

d

dt
cεi =

1

ε

[
Jε
i−1−Jε

i

]
, i≥ 2 , t≥ 0 ,

(1.1)
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where the fluxes are defined by

Jε
1 =α

ε(uε)2−εηβεcε2 , and Jε
i =a

ε
iu

εcεi −bεi+1c
ε
i+1 , i≥ 2 . (1.2)

Here, coefficients aεi and bεi+1, for i≥ 2, denote respectively the rate of aggregation
and fragmentation (ε-dependent), while αε and βε denote respectively the first rate of
aggregation (i=1) and the first rate of fragmentation (i=2). Finally, η is an exponent
that stands for the strength of the first fragmentation rate, on which strongly depends
our results (see also Section 7 for discussions). Observe that such model (at least
formally) preserves the total number of particles (no source nor sink), that is

uε(t)+
∑

i≥2

ε2icεi (t)=m
ε , ∀t≥ 0 . (1.3)

The constant mε is entirely determined by the initial conditions at t=0 given by uin,ε

and (cin,εi )i≥2, non-negatives and ε-dependent. For theoretical studies on the well-
posedness and long-time behaviour of the deterministic Becker-Döring model (with ε=
1), we refer the interested reader to [22, 26, 16] among many others.

The second model of phase transition is the Lifshitz-Slyozov model (LS) introduced
in [17]. It classically describes the late phase of cluster growth, at a “macroscopic scale”.
The LS model consists in a partial differential equation (of nonlinear transport type)
for the time evolution of the size distribution function f(t,x) of clusters of (continuous)
size x> 0 at time t≥ 0, together with an equation stating the conservation of matter,

∂f

∂t
+
∂[(a(x)u(t)−b(x))f(t,x)]

∂x
=0 , t≥ 0 , x> 0 ,

u(t)+

∫ ∞

0

xf(t,x)=m, t≥ 0 ,

(1.4)

where a and b are functions of the size, respectively for the aggregation and fragmen-
tation rates. The constant m plays the same role as in the BD model. Various authors
studied this equation when the flux point outward at x=0 (when small clusters tends
to fragment), namely if a condition like a(0)u(t)−b(0)< 0 holds, see [15, 9, 19] among
other for theoretical studies and technical assumptions. Indeed, in that case, unique-
ness of weak solution to the limit system (1.4) holds. But, recent applications in biology
have raised this problem to include nucleation in this equation (small clusters tends to
aggregate), for instance in [23, 11, 2]. These cases consider fluxes that point inward
at x=0, and it lacks a boundary condition to (1.4) to be well-defined. Remark, some
boundary conditions was conjectured e.g. in [8, 7, 23] but never rigorously proved.

In this works we aim to recover a solution of the LS equation and construct proper
boundary condition, departing from the BD equation (1.1) as the parameter ε goes
to 0. This connection has been proved in [8, 16] for the classical case of outgoing
characteristic. The authors represent the dynamics of the BD model by a density
function on a continuous size space. Accordingly, the size of the clusters are represented
by a continuous variable x> 0, and we let, for all ε> 0,

f ε(t,x)=
∑

i≥2

cεi (t)1Λε
i
(x), x≥ 0 , t≥ 0 , (1.5)
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where for each i≥ 2, Λε
i =[(i−1/2)ε,(i+1/2)ε). We denote for the remainder f in,ε :=

f ε(0,x). Hence, each cluster of (discrete) size initially i≥ 2 is seen as a cluster of
size roughly iε∈R+. This scaling consists in an acceleration of the fluxes (by 1/ε) in
Eq. (1.1) so that it can reach an (asymptotically) infinite size i=x/ε in finite time.
Then, an appropriate scaling of the initial conditions, with a large excess of particles,
together with the rate functions entails that {f ε} converges to a solution of the LS
model, Eq. (1.4). Here we use the same strategy to construct solutions to (1.4) and we
derive appropriate flux conditions at x=0 when the reaction rates behave near 0 as a
power-law, that is

a(x)∼0+ ax
ra and b(x)∼0+ bx

rb ,

with a and b positives, and the exponents 0≤ ra< 1, ra≤ rb which corresponds to entrant
characteristic. Note, if ra= rb we suppose moreover that u(t)>b/a.

Remark 1. Another scaling approach considers the large time behavior of the Becker-
Döring model, and relates the dynamics of large clusters to solutions of various version
of Lifshitz-Slyozov equations. It is the so-called theory of Ostwald ripening, see [21, 18,
24].

We emphasize that the novelty of our work resides in the rigorous derivation of a
boundary condition at x=0 for the LS model, Eq. (1.4), which is needed in the case of
entrant characteristic. Thanks to new estimates on the BD model (Proposition 2), we
identify the limit of quantities related to the (finite size) cεi ’s by a quasi steady state
approximation. From this, we were able to found various possible boundary conditions
depending on different scaling hypotheses on the first fragmentation rate, i.e. according
to the value of η in (1.2), with respect to ra and rb. Namely, we found three distinct
cases for slow de-nucleation rate (η>ra) in Theorem 1, compensated one (η= ra) in
Theorem 2 and fast one (η<ra) in Theorem 3. We obtained these main results for
measure-valued solution to the LS equation, in Section 3. But in Section 6, we improve
this result to obtain density solution when a and b are exact power law. Let us give an
example of our result to illustrate it.

Illustrating result. Assume, for all x≥ 0, a(x)=axra and b(x)= bxrb with ra<rb
and η= rb. We found the limit of {f ε} is a solution of Eq. (1.4), with the boundary
value given by, for all t≥ 0 where u(t)> 0,

lim
x→0+

(a(x)u(t)−b(x))f(t,x)=αu(t)2 ,

where α is the limit of αε in (1.2). In other terms we recover the behavior of f near
x=0 with the free particles concentration through the limit

lim
x→0+

xraf(t,x)=
α

a
u(t).

Organization of the paper. In the next Section 2 we introduce the main assumptions
together with some properties of the BD model. Then, in Section 3 we state our main
result on measure-valued solution to LS with boundary term. To do so we improved
previous compactness arguments on the re-scaled density (1.5), so that the boundary
term can be taken into account in Section 4. It is achieved thanks to a new estimate on
the growth of the “small” sized clusters (point-wise estimates of the density approxima-
tion, see Proposition 2). The identification of the boundary term in Section 5 follows
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from a rigorous quasi-steady-state approximation of the small-sized clusters, in analogy
with slow-fast systems, and allow proving the main theorems. Finally, we extend some
results to a convergence in density, see Section 6. We conclude by a discussion and
further directions in Section 7.

Notations. For any U ⊆R, we denote by C(U), respectively Cc(U) and Cb(U), the space
of continuous function on U , respectively with compact support on U , and bounded on
U . We denote by Mf(U) the set of non-negative and finite regular Borel measures on
U . We will use the classical weak−∗ convergence (sometimes called vague) on Mf (U),
i.e. the topology given by pointwise convergence for test functions ϕ∈Cc(U), i.e. for
{νε} and ν in Mf (U), we say νε converge to ν in Mf(U) (in the weak−∗ topology) if
and only if for all ϕ∈Cc(U)

∫ ∞

0

ϕ(x)νε(dx)→
∫ ∞

0

ϕ(x)ν(dx).

2. Preliminaries and Assumptions

In this section we recall some known results on the BD system together with as-
sumptions for the main results of this paper. First of all, we refer the reader to Theorem
2.1 in [16] for existence and uniqueness of (non-negative) global solution to (1.1) sat-
isfying the balance of mass (1.3) at fixed ε> 0. Well-posedness follows from growth
conditions on the kinetic rates, namely we assume

Assumption 1. The rates αε, βε, (aεi )i≥2 and (bεi )i≥3 are positives and, for each ε> 0,
there exists a constant K(ε)> 0 such that

aεi+1−aεi ≤K(ε), i≥ 2 ,

bεi −bεi+1≤K(ε), i≥ 3 .

From now, for each ε> 0, we assume uε and (cεi )i≥2 are non-negatives and define a
solution to (1.1), that belongs (each) to C([0,+∞)).

We construct aggregation and fragmentation rates as functions on R+ (similarly to f ε),
namely, for each ε> 0 we define, for all x in R+,

aε(x) :=
∑

i≥2

aεi1Λε
i
(x), and bε(x) :=

∑

i≥3

bεi1Λε
i
(x).

Now, we are able to derive a weak equation on the density approximation f ε, for each
ε> 0, in which we will pass to the limit to recover weak solutions to Eq. (1.4).

Proposition 1. Under Assumption 1, let {f ε} constructed by Eq. (1.5). For each
ε> 0, and all ϕ∈W 1,∞

loc (R+) such that ∂xϕ∈L∞(R+), we have, for all t≥ 0,

∫ +∞

0

f ε(t,x)ϕ(x)dx

=

∫ +∞

0

f in,ε(x)ϕ(x)dx+

∫ t

0

[αεuε(s)2−βεεηcε2(s)]

(
1

ε

∫

Λε
2

ϕ(x)dx

)
ds

+

∫ t

0

∫ +∞

0

[aε(x)uε(s)f ε(s,x)∆εϕ(x)−bε(x)f ε(s,x)∆−εϕ(x)] dxds, (2.1)
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where ∆hϕ(x)= (ϕ(x+h)−ϕ(x))/h, for h∈R, and

uε(t)+

∫ ∞

0

xf ε(t,x)dx=mε. (2.2)

This result follows from [16, Lemma 4.1], which allows taking ϕ(x)=x in the equation.
In the next assumption we assume standard hypotheses on the convergence of the rate
functions and their sub-linear control, see also [8, 16].

Assumption 2. Convergence of the rate functions. let α and β be two positive numbers,
and let a and b be two non-negative continuous functions on [0,+∞) that are positive
on x∈ (0,+∞). Then, as ε→0, we suppose that

{αε} converges towards α. (H1)

{βε} converges towards β . (H2)

{aε(.)} converges uniformly on any compact set of [0,+∞) towards a(.) and

∃Ka> 0 s.t. aε(x)≤Ka(1+x), ∀x∈R+ and ∀ε> 0 . (H3)

{bε(.)} converges uniformly on any compact set of [0,+∞) towards b(.) and

∃Kb> 0 s.t. bε(x)≤Kb(1+x), ∀x∈R+ and ∀ε> 0 . (H4)

We recall a discussion on the scaling of the coefficients is differed to Section 7. The next
assumption details the behaviour of the rate functions around 0. This is the essential
assumption which allow us to identify the limit of εηcε2 in the second integral in the
right hand side of (2.1).

Assumption 3. Behavior of the rate functions near 0. We suppose there exist ra∈ [0,1),
rb≥ ra, a> 0, b> 0 such that

a(x)∼0+ ax
ra , b(x)∼0+ bx

rb ,

aε(εi)=a(εi)+o((εi)ra), bε(εi)= b(εi)+o((εi)rb),
(H5)

where o is the Landau notation, i.e. o(x)/x→0 as x→0.

Note, if 0≤ rb<ra or ra≥ 1, the kinetic rates a and b are related to outgoing character-
istics for which the theory already exists, see [16, 8]. Finally, we assume some control
on the initial conditions. For convenience, we define the quantity

ρ := lim
x→0+

b(x)

a(x)
= lim

x→0+

b

a
xrb−ra ∈ [0,+∞). (2.3)

It determines whether the characteristic at x=0 is ongoing or outgoing, according to
whether u(t) is greater or less than ρ in (1.3).

Then, we introduce a set of functions which shall play a key role. We denote by
U the set of non-negative convex functions Φ belonging to C1([0,+∞)) and piecewise
C2([0,+∞)) such that Φ(0)=0, Φ′ is concave, Φ′(0)≥ 0, and

lim
x→+∞

Φ(x)

x
=+∞ .

Note that Φ is increasing. These functions have remarkable properties when conjugate
to the structure of the Becker-Döring system and provide important estimates, see for
instance [15].
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Assumption 4. Initial conditions. We assume there exists uin>ρ and a non-negative
measure µin∈Mf([0,+∞)) such that uin,ε converges to uin in R+ and {f in,ε} converges
to µin, in the weak−∗ topology of Mf ([0,+∞)). Moreover, we assume there exists Φ∈U
such that

sup
ε>0

∫ ∞

0

Φ(x)f in,ε(x)dx<+∞ . (H6)

En particular, we can define

m :=uin+

∫ ∞

0

xµin(dx).

Moreover, we suppose that for all z∈ (0,1),

sup
ε>0

∑

i≥2

εracin,εi e−iz<+∞ . (H7)

Remark 2. m is well-defined since weak−∗ convergence plus the extra-moment in
(H6) give the limit

∫ ∞

0

xf in,ε(dx)→
∫ ∞

0

xµin(dx).

See for instance [8, Proof of Theorem 2.3].

Remark 3. In fact, we could obtain freely this Φ assuming a stronger weak conver-
gence (against (1+x)ϕ(x) for ϕ bounded and continuous). See for instance [6] for the
construction of such a Φ.

Remark 4. We highlight that condition (H7) is not restrictive. For example, consider

f in(x)=x−r on (0,1) and 0 elsewhere, with r≤ ra. Then, consider cin,εi =(iε)−r for
i≤ 1/ε, and 0 elsewhere. We have that {f in,ε} trivially converges to f in in the sense of
(H6) and it satisfies (H7). Note that we do not necessarily require the initial condition
is composed of “ very large” clusters (of size i≫1/ε).

3. Main results

For the remainder of the paper, we always assume that {f ε} is constructed by (1.5),
that {uε} is given by the balance (2.2), and Assumption 1 to Assumption 4 hold true.
The next definition extends the notion of a solution to the LS model, Eq. (1.4), with a
general boundary condition, or nucleation rate.

Definition 1. N-solution. Let T > 0, a function N ∈L∞
loc(R+) called nucle-

ation rate, uin>ρ, a measure µin∈Mf([0,+∞)), and a measure-valued function µ∈
L∞([0,T ];Mf([0,+∞)). We say that µ is a N -solution of the LS equation (in measure)
on [0,T ] with mass m, when:

i) There exists a non-negative u∈C([0,T ]), such that u(0)=uin,

inf
t∈[0,T ]

u(t)>ρ, and ∀t∈ [0,T ] , u(t)+

∫ ∞

0

xµt(dx)=m.
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ii) For all ϕ∈C1
c ([0,T )× [0,+∞)) and t∈ [0,T ]

∫ T

0

∫ ∞

0

[
∂tϕ(t,x)+(a(x)u(t)−b(x))∂xϕ(t,x)

]
µ(t,dx)dt

+

∫ ∞

0

ϕ(0,x)µin(dx)+

∫ T

0

ϕ(s,0)N(u(s))ds=0 , (3.1)

We now state our main results. The first theorem, when η>ra, corresponds to the case
where the first fragmentation rate is too slow and does not contribute to the boundary
value. Thus the nucleation rate is proportional to the number of encounter of free
particles, namely u(t)2 at time t.

Theorem 1. The slow de-nucleation case. Assume η>ra and let a sequence {εn}
converging to 0. There exists T > 0, a sub-sequence {εn′} of {εn}, and µ a N -solution
of LS with mass m, such that

f εn′ −−−−−⇀
n′→+∞

µ

in C([0,T ];w−∗−Mf([0,+∞)), and, for all u≥ 0,

N(u)=αu2 .

Remark 5. The space C([0,T ];w−∗−Mf([0,+∞))) has to be understand as measure-
valued function that are continuous in time for the weak−∗ topology on Mf ([0,+∞)),
i.e. for {νt}∈C([0,T ];w−∗−Mf([0,+∞))), we have, for all t∈ [0,T ] and ϕ∈
Cc([0,+∞)),

t 7→
∫ ∞

0

ϕ(x)νt(dx)

is continuous.

The second theorem holds in the limit case when η= ra, i.e. the first fragmentation
rate has the same order of magnitude than the aggregation rate (i≥ 2). Compared to
the first case, the nucleation rate is balanced by a function varying between 0 and 1.

Theorem 2. The compensated de-nucleation case. Assume η= ra and let a sequence
{εn} converging to 0. There exists T > 0, a sub-sequence {εn′} of {εn}, and µ a N -
solution of LS with mass m, such that

f εn′ −−−−−⇀
n′→+∞

µ

in C([0,T ];w−∗−Mf([0,+∞)), and, for all u≥ 0,

N(u)=





αu2
u

u+β/(ā2η)
, if η= ra<rb ,

αu2
au−b

au−b+β/2η
, if η= ra= rb ,

Remark 6. In the pure aggregation case, with βε= bεi =0, then b=0 and β= b=0. Our
results in Theorem 1 and Theorem 2 are consistent and remain true.
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Finally, the last theorem considers the case of a fast de-nucleation rate so that the flux
at the boundary vanished, and the solution can reveal fast oscillation near x=0.

Theorem 3. The fast de-nucleation rate. Assume η<ra and let a sequence {εn}
converging to 0. There exists T > 0, a sub-sequence {εn′} of {εn}, and µ a N -solution
of LS with mass m, such that

f εn′ −−−−−⇀
n′→+∞

µ

in weak−∗−L∞(0,T ;Mf([0,+∞)), and, for all u≥ 0,

N(u)=0 .

Remark 7. In this case were not able to prove equicontinuity of the density approxima-
tion in Mf ([0,+∞)). For this case, in fact, it is true for Mf ((0,+∞)) (open in x=0).
Also, we use the weak−∗ topology on L∞(0,T ;Mf([0,+∞)) which is the topology of
the point-wise convergence against test functions in L1(0,T ;Cc([0,+∞)).

Remark 8. These limit theorems provide local in time existence and could be extended
to a maximal time interval [0,T ) where T =sup{τ : inft∈[0,τ ]u(t)>ρ}. Also, uniqueness
is not investigate here, but and appropriate result would entails convergence of the whole
sequence without extraction.

4. The compactness estimates

In this section we provide the main estimates to obtain sufficient compactness ar-
guments to pass to the limit in (2.1)-(2.2). Remark for further estimations, under (H1)
and (H2), there exists a positive Kα,β such that, for all ε> 0,

αε,βε,α,β∈ (0,Kα,β] , (4.1)

and (H3)-(H4) imply the limit functions also satisfy

a(x)≤Ka(1+x) and b(x)≤Kb(1+x), ∀x∈ [0,+∞). (4.2)

We fix these constants for the remainder.

4.1. Uniform bound for the density approximation

The first lemma gives basic estimates. In particular, it constructs the compact set
of Mf([0,+∞)) in which the sequence of solutions remains.

Lemma 1. For all T > 0,

sup
ε>0

sup
t∈[0,T ]

∫ +∞

0

(1+x+Φ(x))f ε(t,x)dx<+∞ , (4.3)

sup
ε>0

sup
t∈[0,T ]

uε(t)<+∞ , (4.4)

sup
ε>0

∫ T

0

εηcε2(t)dt<+∞ . (4.5)

Remark 9. Similar estimates can be found in [16] for a different scaling. For sake of
completeness we recall the proof below. Note that estimate (4.5), although trivial, seems
to have not been reported elsewhere, and will be important for the next.
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Proof. By Assumption 4, the convergence of {f in,ε} implies that the sequence lies
in a weak−∗ compact set of Mf([0+∞)), and with (H6) we have

sup
ε>0

∫

R+

f in,ε(x)(1+x+Φ(x))dx<+∞ . (4.6)

Let us start now with estimate (4.4). By the mass conservation relationship (2.2),
uε(t)≤mε, for any t≥ 0, and thanks to Assumption 4, (mε) converges as ε→0, thus it
is bounded by a constant Km> 0. Then estimate (4.4) directly follows. Similarly, we
obtain

sup
ε>0

sup
t∈[0,T ]

∫ +∞

0

xf ε(t,x)dx<+∞ .

Then, taking ϕ=1 in Eq. (2.1), it immediately yields by re-arranging the non-positive
term

0≤
∫ +∞

0

f ε(t,x)dx+

∫ t

0

βεεηcε2(s)ds≤
∫ +∞

0

f in,ε(x)dx+

∫ t

0

αεuε(s)2ds.

Using the bounds (4.1), (4.4) and (4.6), we obtain the inequality (4.5) together with
the first part of estimate (4.3).

Finally, we put ϕ=Φ in (2.1). Remark that the derivative Φ′ is not uniformly bounded,
thus we cannot use Proposition 1 straightforwardly. However, with a classical regular-
izing argument, one can show that the next computations hold true a posteriori, see for
instance [16, proof of Lemma 4.2]. We remark that

0≤∆εΦ(x)≤Φ′(x+ε), −∆−εΦ(x)≤−Φ′(x)≤ 0.

Moreover, Φ′(x+ε)≤Φ′(x)+εΦ′′(0). Thus, dropping the non-positive term, using (H3)
and again that uε(t)≤Km,

∫ +∞

0

f ε(t,x)Φ(x)dx≤
∫ +∞

0

f in,ε(x)Φ(x)dx+

∫ t

0

αεuε(s)2

(
1

ε

∫

Λε
2

Φ(x)dx

)
ds

+KmKa

∫ t

0

∫ +∞

0

(1+x)f ε(s,x)(Φ′(x)+εΦ′′
1,r(0))dxds, (4.7)

Let δ> 0. Note that xΦ′(x)≤ 2Φ(x) (see [14, Lemma A.1]), we get

∫ +∞

0

(1+x)f ε(s,x)Φ′(x)dx≤
∫ δ

0

f ε(s,x)Φ′(x)dx+

(
1

δ
+1

)∫ +∞

0

xf ε(s,x)Φ′(x)dx

≤
(
sup
(0,δ)

Φ′)
∫ ∞

0

f ε(s,x)dx+2

(
1

δ
+1

)∫ +∞

0

f ε(s,x)Φ(x)dx.

We introduce this last estimation into Eq. (4.7) and we conclude using the previous
bounds and Grönwall lemma.
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4.2. Pointwise estimations on the density

We turn now to the main estimate of this paper. Indeed, to obtain equicontinuity
for the density {f ε} (in a measure space), and then identify the boundary condition,
we need to control the behaviour of the small-sized clusters, particularly because of the
term εηcε2 in the weak equation (2.1). Remark that we already have a weak bound
(in time) given by Eq. (4.5). In the next Proposition 2 we improve this estimate by a
control on exponential moments which depends on ρ (defined in Eq. (2.3)). Moments
are classical tools and play a key role in the well-posedness of BD theory. More recently,
exponential moments were also used [12, 5] to study long time behavior of BD solutions.
Here, let us define the discrete Laplace transform

F ε(t,z)=
∑

j≥2

εracεj(t)e
−jz , z∈ (0,1). (4.8)

From the re-scaled system (1.1), the sequence (dεi )i≥2 defined by dεi := ε
racεi , for i≥ 2,

satisfies, for each ε> 0, the following equations

ε1−ra d

dt
dεi (t)=H

ε
i−1−Hε

i , i≥ 2 , (4.9)

where the fluxes are

Hε
1 =α

εuε(t)2−βεεη−radε2(t), and H
ε
i =a

ε
iu

ε(t)dεi (t)−εrb−rab
ε

i+1d
ε
i+1(t), i≥ 2 ,

with, for all i≥ 2,

aεi =
aεi
εra

, and b
ε

i+1=
bεi+1

εrb
.

Note that, under hypotheses (H3), (H4) and (H5), the kinetic coefficients αε, βε and
aεi , b

ε

i , i≥ 2, are convergent sequences toward a positive value (resp. α, β, aira , birb).

Proposition 2. Let T > 0 and {εn} a sequence converging to 0 such that {uεn} con-
verges toward u uniformly on [0,T ], with inft∈[0,T ]u(t)>ρ. There exists z0> 0 such that
for all z∈ (0,z0)

sup
n≥0

sup
t∈[0,T ]

F εn(t,z)<∞ . (4.10)

In particular, for all r≥ ra and i≥ 2, we have

sup
n≥0

sup
t∈[0,T ]

εrcεni (t)<+∞ . (4.11)

Remark 10. It is immediate from estimate (4.11) that we can obtain compactness in
w−∗−L∞(0,T ) for any finite size cluster εrcεi , which will be used to prove theorem 1
and 2.

Remark 11. We cannot prove that the pseudo-moment F ε is propagated along limit
solution for which u(t)≤ρ on some time interval. This is important in the case ra= rb
since ρ> 0 and u can eventually cross this threshold (which is, up to our knowledge, an
open problem).
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Proof. Let z> 0 and ε> 0. First, note the discrete Laplace transform define in Eq.
(4.8) is finite for each ε> 0 and for all t in [0,T ], since

F ε(t,x)≤ εra−1

∫ ∞

0

xf ε(t,x)dx.

Let us derive F ε with respect to time (derivation under the sum is justified by similar
bound). For all t∈ [0,T ], we get

ε1−ra∂tF
ε(t,z)=

∑

j≥2

e−jz
[
Hε

j−1−Hε
j

]
= e−2zHε

1 −(1−e−z)
∑

j≥2

e−jzHε
j .

Thus, developing the fluxes we get

ε1−ra∂tF
ε(t,z)= e−2zHε

1 −(1−e−z)
∑

j≥2

e−jzaεju
ε(t)dεj(t)

+(1−e−z)
∑

j≥2

e−jzεrb−rab
ε

j+1d
ε
j+1(t).

Then, re-indexing the second sum on the right hand side, we obtain

ε1−ra∂tF
ε(t,z)= e−2zHε

1 −(1−e−z)e−2zaε2u
ε(t)dε2(t)

−(1−e−z)
∑

j≥3

e−jzaεj

[
uε(t)−

bεj
aεj
ez

]
dεj(t). (4.12)

Since inft∈[0,T ]u(t)>ρ, we can find a constant c such that inft∈[0,T ]u(t)≥ c>ρ. Then,
by uniform convergence of {uεn}, there exists ε̃> 0 small enough, such that for all n
with εn≤ ε̃, inft∈[0,T ] u

εn(t)≥ c>ρ. Also, we can choose δ> 0 and z0> 0, both small
enough, such that for all t∈ [0,T ] we have c>ρez0 +2δ. Then, there exists N > 0 such
that, for all z∈ (0,z0)

inf
n≥N

inf
t∈[0,T ]

uεn(t)>ρez+2δ .

Then, by hypothesis (H5), for all 3≤ j≤ 1/
√
ε,

bεj
aεj

=
b

a

(εj)rb +o((εj)rb)

(εj)ra +o((εj)ra)
=
b

a
(εj)rb−ra(1+o(1)),

so that, we have, for N large enough,

sup
n≥N

sup
j∈[3,...,⌊1/√εn⌋−1]

∣∣∣∣∣ρ−
bεnj
aεnj

∣∣∣∣∣<δe
−z .

The latter gives a uniform control in j for the relatively “small” sizes j≤ 1/
√
ε.

We separate the sum in Eq. (4.12) in two parts, the small-sized clusters for
j∈ (3, . . . ,⌊1/√εn⌋−1) in one side, for which (for n≥N)

uεn(t)−
bεnj
aεnj

ez=uεn(t)−ρez+ez
(
ρ−

bεnj
aεnj

)
≥ 2δ−δ= δ ,
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and the large-sized clusters in another side. Hence, for all t∈ [0,T ],

∑

j≥3

e−jzaεnj

[
uεn(t)−

bεnj
aεnj

ez

]
dεnj (t)

≥ δ
⌊1/√εn⌋−1∑

j=3

e−jzaεnj dεnj (t)+
∑

j≥⌊1/√εn⌋
e−jzaεnj

[
uεn(t)−

bεnj
aεnj

ez

]
dεnj (t). (4.13)

Using hypothesis (H5), there exists x0 such that for all x∈ (0,x0), a(x)/x
ra > 3a/4.

Thus, there exists Ñ such that for all n≥ Ñ and for all 2≤ i≤ 1/
√
εn we have εni≤

√
εn<

x0 and a(εi)/(εni)
ra ≥ 3a/4. Still with hypothesis (H5), we can choose Ñ such that for

all n>Ñ , and for all 2≤ i≤ 1/
√
εn, we have a

ε(εi)/(εni)
ra ≥a/2. Hence, from the rank

Ñ , there exists a constant K̃a> 0 such that for all n≥ Ñ and for all 2≤ j≤ 1/
√
εn, we

have

aεnj =
aεnj
εran

≥ K̃a :=
1

2
a2ra .

Accordingly, the rest of the proof has to be understood for n large enough. Using the
equation on Hε

1 and plugging inequality (4.13) into Eq. (4.12) we obtain

ε1−ra
n ∂tF

εn(t,z)≤ e−2z[αεnuεn(t)2−εη−ra
n βεndεn2 (t)]

−(1−e−z)e−2z[aεn2 uεn(t)−δK̃a]d
εn
2 (t)−(1−e−z)δK̃a

⌊1/√εn⌋−1∑

j=2

e−jzdεnj (t)

−(1−e−z)
∑

j≥⌊1/√εn⌋
e−jzaεnj

[
uεn(t)−

bεnj
aεnj

ez

]
dεnj (t).

Remark that aεn2 uεn(t)−δK̃a≥ K̃a(ρe
z+2δ−δ)≥ K̃aρ≥ 0. Using the moment esti-

mates (4.4) and hypothesis (H3), we have supt∈[0,T ]α
εuε(t)2≤K0 uniformly in ε> 0.

Thus, dropping also some negative terms, we have

εn
1−ra∂tF

εn(t,z)≤K0e
−2z−(1−e−z)δK̃a

⌊1/√εn⌋−1∑

j=2

e−jzdεnj (t)

+(1−e−z)
∑

j≥⌊1/√εn⌋
e−jz

bεnj
εnra

dεnj (t).

Now using that

⌊1/√εn⌋−1∑

j=2

e−jzdεnj (t)=F εn(t,z)−
∑

j≥⌊1/√εn⌋
e−jzdεnj (t),

we obtain

εn
1−ra∂tF

εn(t,z)≤K0e
−2z−(1−e−z)δK̃aF

εn(t,z)

+(1−e−z)δ
∑

j≥⌊1/√εn⌋
e−jzK̃ad

εn
j (t)+(1−e−z)ez

∑

j≥⌊1/√εn⌋
e−jz

bεnj
εnra

dεnj (t).
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At this step, we recall that by definition we have, for all j≥ 2, dεj/ε
ra = cεj, and K̃a<

aεj/ε
ra , so that, with K=max(δ,ez),

εn
1−ra∂tF

εn(t,z)≤K0e
−2z−(1−e−z)δK̃aF

εn(t,z)

+(1−e−z)K
∑

j≥⌊1/√εn⌋
e−jz(aεnj +bεnj )cεnj (t).

Finally, by hypotheses (H3)-(H4), we have, for all j≥⌊1/√ε⌋ (and ε small enough)

e−jz(aεj+b
ε
j)≤ (Ka+Kb)(1+εj)e

−jz ≤ (Ka+Kb)ε.

Thus,

εn
1−ra∂tF

εn(t,z)≤K0e
−2z−(1−e−z)δK̃aF

εn(t,z)

+(1−e−z)K(Ka+Kb)

∫ +∞

0

f εn(t,x)dx.

By the moment estimates (4.3), there exists K̃ independent from εn such that

εn
1−ra∂tF

εn(t,z)≤−(1−e−z)δK̃aF
εn(t,z)+K̃ . (4.14)

We can conclude that

F εn(t,z)≤F εn(0,z)+
K̃

δK̃a(1−e−z)
,

and the result (4.10) follows thanks to the initial bound on F ε(0,z) given by hypothesis
(H7). Note that (4.11) directly follows from the previous bound (4.10) and the definition
of the discrete Laplace transform (4.8).

Remark 12. Estimate (4.14) on F ε can be easily generalized for any exponent r instead
of ra. Writing G

ε

(t,z)=
∑

j≥2ε
rcεj(t)e

−jz , and following the same steps, we find

ε1−ra∂tG
ε(t,z)≤−(1−e−z)δK̃aG

ε(t,z)+εr−raK̃ .

Thus, this inequality provides valuable information if r≥ ra.
4.3. Equicontinuity lemmas

We now turn to the equicontinuity of the density approximation, as a measure
valued time-dependent function. The new result here is to provide equicontinuity in a
measure space on [0,∞) (lemma 3) . The first lemma is independent on η and similar
to [16, 8].

Lemma 2. Let T > 0. The family {uε} is equicontinuous on [0,T ].

Proof. Let us fix T > 0. From the mass conservation (2.2), we can deduce that the

equicontinuity of {uε} directly follows from the one of the sequence {
∫ +∞
0

xf ε(·,x)dx}.
Thus, we focus on this latter. We have, from Eq. (2.1) with ϕ(x)=x, for all t∈ [0,T −h]
and s∈ [0,h] with 0<h<T ,

∣∣∣∣
∫ +∞

0

[f ε(t+s,x)−f ε(t,x)]xdx

∣∣∣∣≤
(
1

ε

∫

Λε
2

xdx

)∫ t+s

t

(αεuε(σ)2+βεεηcε2(σ))dσ

+

∫ t+s

t

∫ +∞

0

|aε(x)uε(σ)f ε(σ,x)−bε(x)f ε(σ,x)|dxdσ. (4.15)
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The first term in the r.h.s of (4.15) can be bounded, thanks to the bound (4.1), by

(
1

ε

∫

Λε
2

xdx

)∫ t+s

t

(αεuε(σ)2+βεεηcε2(σ))dσ

≤ 2Kα,β

[
ε sup
t∈[0,T ]

uε(t)2+ sup
t∈[0,T ]

εη+1cε2(t)

]
h.

Then, since η≥ 0 and remarking that εcε2 is obviously bounded by the L1 norm of f ε,
we can use the moment estimates in Eqs. (4.3) and (4.4), so that for ε sufficiently small,
there exists K independent of t and ε such that

(
1

ε

∫

Λε
2

xdx

)∫ t+s

t

(αεuε(σ)2+βεεηcε2(σ))dσ≤Kh. (4.16)

Let us now focus on the second term on the right-hand side of Eq. (4.15). Using
hypotheses (H3)-(H4) and the moment estimates in Eq. (4.3), we get

∫ t+s

t

∫ +∞

0

|aε(x)uε(σ)f ε(σ,x)−bε(x)f ε(σ,x)|dxdσ

≤
(
Ka sup

ε>0
sup

t∈[0,T ]

uε(t)+Kb

)∫ t+s

t

∫ +∞

0

f ε(σ,x)(1+x)dxdσ.

Hence, there is a constant K> 0 such that

∫ t+s

t

∫ +∞

0

|aε(x)uε(σ)f ε(σ,x)−bε(x)f ε(σ,x)|dxdσ

≤hK
(
sup
ε>0

sup
t∈[0,T ]

∫ +∞

0

(1+x)f ε(t,x)dx

)
. (4.17)

Combining both inequalities (4.16)-(4.17), it follows that for all δ> 0, for all h∈ (0,T ) ,

sup
ε>0

sup
t∈[0,T−h]

sup
s∈[0,h]

∣∣∣∣
∫ +∞

0

[f ε(t+s,x)−f ε(t,x)]xdx

∣∣∣∣≤ δ ,

which gives the equicontinuity property for {uε}.
The next lemma improves the equicontinuity of {f ε} around x=0.

Lemma 3. Assume η≥ ra and T > 0. Let {εn} a sequence converging to 0 such that
{uεn} converges toward u uniformly on [0,T ] satisfying inft∈[0,T ]u(t)>ρ. Then the
sequence {f εn} is equicontinuous in Mf ([0,+∞)).

Proof. Let us fix T > 0. Let h≥ 0∈ (0,T ), t∈ [0,T −h] and s∈ [0,h] we have, for all
ψ∈C∞

c ([0,+∞)) and ε> 0

∣∣∣∣
∫ +∞

0

[f ε(t+s,x)−f ε(t,x)]ψ(x)dx

∣∣∣∣

≤
∫ t+s

t

(αεuε(σ)2+βεεηcε2(σ))

(
1

ε

∫

Λε
2

|ψ(x)| dx
)
dσ

+

∫ t+s

t

∫ +∞

0

|aε(x)uε(σ)f ε(σ,x)∆εψ(x)−bε(x)f ε(σ,x)∆−εψ(x)|dxdσ. (4.18)
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The first integral in the right-hand side can be bounded as follows

∫ t+s

t

(αεuε(σ)2+βεεηcε2(σ))

(
1

ε

∫

Λε
2

|ψ(x)| dx
)
dσ

≤h‖ψ‖∞ sup
t∈[0,T ]

[
αεuε(t)2+βεεηcε2(t)

]
.

Using Eqs. (4.1), (4.4) and by Proposition 2, Eq. (4.11), both terms in the supremum
are uniformly bounded in time and along {εn}. Hence, there exists K independent of
T and ε such that, for all t≤T −h, s∈ [0,h],

∫ t+s

t

(αεnuεn(σ)2+βεnεn
ηcεn2 (σ))

(
1

εn

∫

Λεn
2

|ψ(x)| dx
)
dσ≤K‖ψ|∞h. (4.19)

We now focus on the second integral in the right hand side of (4.18). Using upper
bounds (4.2) and (4.4), we can find a constant K such that for all ε> 0

∫ t+s

t

∫ +∞

0

|aε(x)uε(σ)f ε(σ,x)∆εψ(x)−bε(x)f ε(σ,x)∆−εψ(x)|dxdσ

≤K‖ψ′‖∞
∫ t+s

t

∫ +∞

0

f ε(σ,x)(1+x)dxdσ.

Combining this last inequality with the moment estimate (4.3) and the inequality (4.19),
there exists a constant K (not depending on ψ, h and ε), such that for all h∈ (0,T ),
t∈ [0,T −h], s∈ [0,h], ψ∈C∞

c ([0,+∞)) and n≥ 0
∣∣∣∣
∫ +∞

0

[f εn(t+s,x)−f εn(t,x)]ψ(x)dx

∣∣∣∣≤K(‖ψ‖∞+‖ψ′‖∞)h.

Let {ϕi}i≥1⊂C∞
c ([0,+∞)) a dense subset of Cc([0,+∞)) for the uniform norm. The

metric d defined by, for all µ and ν belonging to Mf([0,+∞)),

d(µ,ν)=
∑

i

2−i

‖ϕi‖∞+‖ϕ′
i‖∞

∣∣∣∣
∫ ∞

0

ϕiµ−
∫ ∞

0

ϕiν

∣∣∣∣ ,

is equivalent to the weak−∗ topology (on bounded subset), see for instance similar
construction in [4, Theorem III.25]. Thus, for all h≥ 0∈ (0,T ), we have

sup
t∈[0,T−h]

sup
s∈[0,h]

sup
n≥0

d(f εn(t+s),f εn(t))≤Kh.

This concludes the proof.

4.4. Compactness and limit

Here we give some technical lemmas which prepare the proof of the main results.

Lemma 4. For all T > 0 and all ϕ∈C1
c ([0,T )× [0,+∞)), we have, for all ε> 0,

∫ T

0

∫ +∞

0

[∂tϕ(t,x)+a
ε(x)uε(s)∆εϕ(t,x)−bε(x)∆−εϕ(t,x)]f

ε(t,x)dxdt

+

∫ +∞

0

f in,ε(x)ϕ(0,x)dx+

∫ T

0

[αεuε(t)2−βεεηcε2(t)]

(
1

ε

∫

Λε
2

ϕ(t,x)dx

)
dt=0 (4.20)
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where ∆hϕ(t,x)= (ϕ(t,x+h)−ϕ(t,x))/h, for h∈R, and

uε(t)+

∫ ∞

0

xf ε(t,x)dx=mε. (4.21)

Proof. The proof remains on multiplying each equation of the Becker-Döring system
1.1 by ϕi=

∫
Λε

i

ϕ(t,x)dx for ϕ∈C1
c ([0,T )× [0,+∞)) and using the definition of f ε in

Eq. (1.5). It is similar to Proposition 1.

Lemma 5. Let T > 0. The family {f ε} is relatively weak−∗ compact in
L∞(0,T ;Mf([0,+∞)). If µ is an accumulation point of {f ε}, then there exists a se-
quence {εn} converging to 0 and a non-negative function u∈C([0,T ]) such that uεn

converges to u uniformly on [0,T ], with u(0)=uin and

u(t)+

∫ ∞

0

xµt(dx)=m.

Moreover, for all ϕ∈C1
c ([0,T )× [0,+∞))

∫ T

0

∫ +∞

0

[∂tϕ(t,x)+a
εn(x)uεn(s)∆εnϕ(t,x)−bεn(x)∆−εnϕ(t,x)]f

εn(t,x)dxdt

→
∫ T

0

∫ +∞

0

[∂tϕ(t,x)+(a(x)u(s)−b(x))∂xϕ(t,x)]µt(dx)dx

∫ T

0

αεnuεn(t)2

(
1

εn

∫

Λεn
2

ϕ(t,x)dx

)
dt→

∫ T

0

αu(t)2ϕ(t,0)dt,

and
∫ +∞

0

ϕ(0,x)f in,εn(x)dx→
∫ +∞

0

ϕ(0,x)µin(dx)

as n→+∞.

Proof. First, remark the bound against 1 in (4.3) yields to the relative compactness
in L∞(0,T ;Mf([0,+∞)). Let µ an accumulation point. By Lemma 2 and bound (4.4)
with Arzelá-Ascoli Theorem, entails there exists a sequence {εn} and u∈C([0,T ]) such
that uεn converge to u uniformly on [0,T ] and {f εn} to µ. It remains to note that for
any ψε∈Cc([0,T )× [0,+∞)) which converge uniformly to some ψ, we have

∫ T

0

∫ ∞

0

ψεn(t,x)f εn(t,x)dxdt→
∫ T

0

∫ ∞

0

ψ(t,x)µt(dx)dt,

as n→∞, to obtain the desired limit, see also [16, 8]. In fact, using similar arguments as
in Lemma 3 with function in Cc((0,+∞)), we can obtain equicontinuity in Mf ((0,+∞))
for the weak−∗ topology (open in x=0). Such result has been obtained for instance in
[8]. Thus, we could improve the compactness of f εn in C([0,T ];Mf((0,+∞)) by Arzelá-
Ascoli Theorem. Finally we obtain Eq. (4.21), using the bound (4.3) with Φ, and after
regularization of the identity function, we have for all t∈ [0,T ]

∫ ∞

0

xf εn(t,x)dx→
∫ ∞

0

xµt(dx).
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See [8, Proof of Theorem 2.3] for details.

Lemma 6. Assume η≥ ra and let a sequence {εn} converging to 0. There exists T > 0
and a sub-sequence {εn′} of {εn} such that {f εn′} is relatively compact in C([0,T ];w−
∗−Mf([0,+∞)) and uεn′ converge to some u uniformly on [0,T ] with inft∈[0,T ]u(t)>ρ.

Proof. Let T̃ > 0 and {εn} a sequence converging to 0. Thanks to Lemma 2

and the bound (4.4) we apply Arzelá-Ascoli Theorem, and there exists u∈C([0,T̃ ])
and a sub-sequence still denoted by {εn} such that uε converge uniformly to u on

[0,T̃ ]. By Assumption 4 we have u(0)>ρ, thus there exists T ∈ (0,T̃ ] such that we
have inft∈[0,T ]u(t)>ρ. We can apply Lemma 3 so that {f εn} is equicontinuous in
Mf ([0,+∞)). By the bound (4.3) (against 1), we have for each t∈ [0,T ] that {f εn(t) :
ε> 0} belongs to a weak−∗ compact set of Mf ([0,+∞)). Thus, again by Arzelá-Ascoli
Theorem, the sequence {f εn} is relatively compact in C([0,T ];w−∗−Mf([0,+∞)).

Remark 13. Convergence in C([0,T ];w−∗−Mf([0,+∞)) entails convergence in
L∞(0,T ;Mf([0,+∞)) for the weak−∗ topology.

5. Identification of the boundary term

This section is devoted to the proof of Theorems 1 to 3. In view of Lemmas 4 to 6
it remains to identify the limit of εηcε2 so that we can pass to the limit in the term

∫ T

0

βεεηcε2(t)

(
1

ε

∫

Λε
2

ϕ(t,x)dx

)
dt

arising in (4.20).

We separate the following in 3 subsections corresponding to the 3 theorems. Thanks
to Proposition 2, the compactness of the term εηcε2 has been already obtained in w−
∗−L∞(0,T ) for the first two case, that are η>ra and η= ra, and in Mf ([0,T ]) by
Eq. (4.5) for η<ra. The identification of the limit relies on arguments similar to the
Fenichel-Tikhonov theory on singularly perturbed dynamical systems [13]. Multiplying
the re-scaled BD equations (1.1) by ε, at least formally, we have for all t> 0 and i≥ 2,

lim
ε→0

ε
d

dt
cεi = lim

ε→0
(Jε

i−1(t)−Jε
i (t))=0 .

Hence, at each time t> 0, the underlying BD model for the discrete sizes i≥ 2 has
to reach instantaneously the equilibrium of the BD model with a constant monomer
concentration u=u(t). Such version of the BD model has been well studied in [20, 27].

5.1. Proof of Theorem 1 – The slow de-nucleation case Let {εn} a sequence
converging to 0. By Lemma 6, there exists T > 0, a sub-sequence, still denoted by {εn}
for simplicity, µ∈C([0,T ];w−∗−Mf([0,+∞))) and u∈C([0,T ]) with inft∈[0,T ]u(t)>
ρ such that {f εn} converges to µ in C([0,T ];Mf([0,+∞))) and uεn converges to u
uniformly on [0,T ]. Now, applying Proposition 2, we get

sup
t∈[0,T ]

εηnc
εn
2 (t)= εη−ra

n sup
t∈[0,T ]

εracεn2 (t)→0 ,

as η>ra. Thus, combining this result with Lemma 5 we can pass to the limit in (4.20)
to obtain Eq. (3.1) with N(u)=αu2, and Theorem 1 is proved.
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5.2. Proof of Theorem 2 – The compensated nucleation case Let {εn} a
sequence converging to 0. We proceed similarly as above with Lemma 6 and Proposi-
tion 2. As for all i≥ 2, dεni = εran c

εn
i satisfies dεni e−iz≤F εn(t,z), thanks to the estimate

(4.10), there exists z> 0 such that

sup
n≥0

sup
t∈[0,T ]

sup
i≥2

dεni e−iz<+∞ .

Hence, by a Cantor diagonal process, we can extract another sub-sequence, still denoted
by {εn}, such that for all i≥ 2,

dεni ⇀di , w−∗−L∞(0,T ),

and

0≤ sup
t∈[0,T ]

sup
i≥2

di(t)e
−iz<Kz . (5.1)

We recall, from the rescaled BD system (1.1), that the sequence (dεni )i≥2 satisfies for
each n≥ 0 Eq. (4.9). Hence, for all ϕ∈C1([0,T ]),

εn
1−radεni (t)ϕ(t)−εn1−radin,εni ϕ(0)−εn1−ra

∫ t

0

dεni (s)ϕ′(s)ds

=

∫ t

0

ϕ(s)
[
Hεn

i−1(s)−Hεn
i (s)

]
ds. (5.2)

As ra< 1, passing to the limit εn→0, the left hand-side in Eq. (5.2) vanishes, and, with
Assumption 3 on the kinetic rates, we have, for all ϕ∈C1([0,T ]),

∫ T

0

ϕ(t)[Hi−1(t)−Hi(t)] ds=0 ,

where H1=αu(t)
2−βd2, and for each i≥ 2,

Hi=




āiηudi , if η= ra<rb ,

āiηudi− b̄(i+1)ηdi+1 , if η= ra= rb .

Thus, for all i≥ 2, we have a.e. t∈ (0,T ) that Hi(t)=H1(t). In the sequel, we will
distinguish two cases, ra<rb and ra= rb.

5.2.1. The case η= ra<rb In this case, H1=H2 for a.e. t∈ (0,T ) yields

d2(t)=
αu2(t)

a2ηu(t)+β
.

Hence, the limit d2 is uniquely identified (and by recurrence, all di, i≥ 2, using Hi=H1)
as a function of the limit u. Thus, combining this result with Lemma 5 we can pass to
the limit in (4.20) to obtain Eq. (3.1) with N(u)=αu2 u

u+β/(ā2η) , and the case ra<rb
in Theorem 2 is proved.
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5.2.2. The case η= ra= rb In this case, the limit (di)i≥2 must satisfy Hi≡H ,
i≥ 1, for a given constant H . We classically (in the study of the equilibrium states of
BD equations [1]) define Q1=1 and for all i≥ 2,

Qi=
α

β

i−1∏

k=2

akra

b(k+1)ra
, i≥ 2 .

The solutions that satisfy Hi≡H for all i≥ 1, are given by, after some algebraic manip-
ulation (see [20, lemma 1]),

di=Qiu
i
(
1−H 1

αu2
−H

i−1∑

k=2

1

akraQkuk+1

)
, i≥ 2 .

Thus, for all i≥ 2,

di=
αu2

β

2ra

ira

(au
b

)i−2
[
1− H

αu2

(
1+

β

2ra
1

au−b

)
+

Hβ

αu22ra

(
b/(au)

)i−2

au−b

]
.

However, for u(t)>ρ= b/a, there exists a uniqueH such that the bound (5.1) is satisfied,
given by

H=
αu2(

1+ β
2η

1
au−b

) =
αu2(au−b)
au+ β

2η −b
.

For this value, we have a.e. t∈ [0,T ]

d2(t)=
αu(t)2

2η(au−b)+β
=
αu(t)2

β

[
1− au−b

au−b+β/2η

]
.

Hence, proceeding as before we recover the second part of Theorem 2.

5.3. Proof of Theorem 3 – The fast de-nucleation In the case η<ra we
have no L∞ bound over εηcε2, and no equicontinuity property on {f ε} in Mf ([0,+∞)).

Nevertheless, we can apply Lemma 5. Thus, let T̃ > 0 and {εn} a sequence converging

to 0, there exists a sub-sequence of {εn} (not relabeled), µ∈L∞([0,T̃ ];Mf ([0,+∞)))

and u∈C([0,T̃ ]) such that f εn ⇀µ in w−∗−L∞([0,T̃ ];Mf([0,+∞))) and uεn converges

uniformly to u on [0,T̃ ]. Since uin>ρ by Assumption 4, there exists T ∈ (0,T̃ ] such that
inft∈[0,T ]u(t)>ρ. Moreover, by the bound (4.5) we can extract another sub-sequence
of {εn} (not relabeled) such that dεn2 := εηnc

ε
2 converges to a non-negative finite measure

Γ2 on [0,T ], where the convergence holds in Mf ([0,T ]) endowed with the weak−∗
topology. Also, for all ϕ∈C1([0,T ]), the equation (1.1) for i=2 yields

εn
1−raεn

racεn2 (T )ϕ(T )−εn1−raεn
racin,εn2 ϕ(0)−εn1−ra

∫ T

0

ϕ′(t)εn
racεn2 (t)dt

=

∫ T

0

ϕ(t)[αεnuεn(t)2−βεndεn2 (t)]dt

−
∫ T

0

ϕ(t)[aεn2 εn
ra−ηuεn(t)dεn2 (t)−bεn3 εn

rbcεn3 (t)]dt. (5.3)
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By Proposition 2, εn
racεn2 (t) is uniformly bounded with respect to both time t∈ [0,T ]

and n, so that the left hand side of Eq. (5.3) goes to 0 as εn→0. Hence, with the bound
(4.5) and since η<ra, we have

lim
εn→0

∫ T

0

ϕ(t)εn
rbcεn3 (t)dt=

1

b3

(∫ T

0

ϕ(t)βΓ2(dt)−
∫ T

0

ϕ(t)αu(t)2dt

)
. (5.4)

Here again two cases have to be considered, ra<rb and ra= rb.

5.3.1. The case ra<rb In this case we use again Proposition 2 for the left hand-
side of Eq. (5.4) and use that εrb−ra →0 as εn→0. Thus, we are led with the following
equality in measure

Γ2(dt)=
α

β
u(t)2dt.

Thus, combining this result with Lemma 5 we can pass to the limit in (4.20) and we
obtain the first case of Theorem 3.

5.3.2. The case ra= rb In this case, we use again the fact that by Proposition 2,
up to a sub-sequence of {εn} (not relabeled), for all i≥ 2, there exists di∈L∞(0,T ) and
z0> 0 such that

εn
rbcεni ⇀di w−∗−L∞(0,T ),

and for all z<z0, there exists Kz> 0 such that

0≤ sup
t∈[0,T ]

sup
i≥2

di(t)e
−iz<Kz . (5.5)

From Eq. (5.4), we obtain the equality in measure

b3d3dt=βΓ2(dt)−αu(t)2dt.

Then, iterating the procedure, from equation (1.1), we get that, for all i≥ 3 and ϕ∈
C1([0,T ])

εn
1−raεn

racεni (T )ϕ(T )−εn1−raεn
racin,εni ϕ(0)−εn1−ra

∫ T

0

ϕ′(t)εn
racεni (t)dt

=

∫ T

0

ϕ(t)[aεni−1u
εn(t)εn

racεni−1(t)−b
εn
i εn

racεni (t)]dt

−
∫ T

0

ϕ(t)[aεni uεn(t)εn
racεni (t)−bεni+1εn

racεni+1(t)]dt.

Hence, for i=3, writing εn
racεn2 (t)= εra−η

n dεn2 (t)→0 (in Mf([0,T ])), we obtain

0=

∫ T

0

ϕ(t)[−b3d3(t)−a3u(t)d3(t)+b4d4(t)]dt.

And for all i≥ 4,

0=

∫ T

0

ϕ(t)[ai−1u(t)di−1(t)−bidi(t)−aiu(t)di(t)+bi+1di+1(t)]dt.
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With H2=−b3d3, Hi=aiu
εdi(t)−bi+1di+1, i≥ 3, then we must have a.e. Hi=H2=:H ,

for all i≥ 2. Then we get, for all i≥ 3,

di(t)=−H
bi

i∑

j=3




i−1∏

k=j

ak

bk



u(i−j)=−H
bi

i∑

j=3

(
au

b

)i−j

.

In order to fulfil the bound (5.5), we must get H=0, so that d3=0 and the following
equality in measure holds

Γ2(dt)=
α

β
u(t)2dt.

This ends the proof of Theorem 3.

6. Extension to a density

In this section, we make an extra-assumption in order to obtain a convergence
result in L1 functional space, so that the limit measure has a density with respect to
the Lebesgue measure:
Assumption 5. There is δ∈ (0,1/ra−1) such that, for the function Ψ(y)= y1+δ,

sup
ε>0

∫ ∞

0

Ψ(f in,ε(x))dx<∞ . (H8)

Moreover, the kinetic rates are given by exact power law functions, i.e.,

aεi =a(εi)
ra , i≥ 2 ,

bεi = b(εi)
rb , i≥ 3 .

(H9)

Remark 14. The first hypothesis (H8) is slightly stronger than a compactness hy-
pothesis in L1(dx), where a more general (and not explicit) Ψ can be obtained, see [6].
However, having an explicit power low function for Ψ will simplify the following calcu-
lus. The same is valid for the extra hypothesis (H9) on the kinetic rates (which is in
agreement with hypothesis (H5)).

Assuming Assumption 1-5 hold true, we can now prove the last result.

Theorem 4. Assume η≥ ra and ra= rb. Let a sequence {εn} converging to 0.
There exists T > 0, a sub-sequence {εn′} of {εn}, and f ∈C([0,T ],w−L1(R+,x

raδdx))∩
L∞(0,T ;L1(R+,(1+x)dx)) such that the measure f(t,x)dx is a N -solution of LS with
mass m and

f εn′ −−−−−⇀
n′→+∞

f

in C([0,T ];w−L1(R+,x
raδdx)). N is given in Theorem 1-2 according to the value of η.

The proof of this theorem is based on the following lemma which proof is postponed
below

Lemma 7. Assume η≥ ra and ra= rb. Let a sequence {εn} converging to 0. There exist
T > 0 and a sub-sequence {εn′} of {εn} such that

sup
n′≥0

sup
t∈[0,T ]

∫ ∞

0

min(1,xraδ)Ψ(f εn′ (t,x))dx<+∞ .
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Proof of Theorem 4. We reproduce the same proof as for Theorem 1 and 2 and
obtain a sub-sequence f εn′ that converges in measure. We now remark that, combining
the estimates (4.3) in Lemma 1 and the last Lemma 7 we can apply the Dunford-Pettis
theorem and we have a weak compact subsetK of L1(R+,x

rδdx) such that for all t∈ [0,T ]
and n′≥ 0, f εn′ (t)∈K. We are now in position to prove that along another subsequence,
still denoted by {εn′}, the sequence converges to some f in C([0,T ],w−L1(R+,x

rδdx)).
Moreover, f belongs to L∞(0,T,L1(R+,(1+x)dx). The proof follows similar arguments
as in [16, Proof of Theorem 2.2, p. 981] which consists in proving the equicontinuity of

t→
∫ R

0

f ε(t,x)ϕ(x)xrδdx,

for all ϕ∈L∞(0,R) and R> 0. Indeed, by Eq. (4.3) we have for any ϕ∈C1 with compact
support in (0,R) that (see also the proof of lemma 3)

lim
h→0

sup
t∈[0,T−h]

sup
s∈(0,h)

∣∣∣∣
∫ ∞

0

(f ε(t+s,x)−f ε(t,x))ϕ(x)xrδdx

∣∣∣∣=0 .

Then taking a pointwise convergent sequence {ϕn} in Cc([0,R]) of ϕ∈L∞(0,R) and using
Egorov’s theorem we get the desire results. Finally, we apply a variant of Arzela-Ascoli
theorem for weak topology, see [25, Theorem 1.3.2], so that for each R> 0, the sequence
is relatively compact in C([0,T ],w−L1((0,R),rrδdx). By the compact containment we
improve this results on R+.

Technical results. Before proving Lemma 7, we start by some technical lemmas.

Lemma 8. Let ϕ∈Cb ([0,∞)) non-negative. Then, for any I≥ 3,

∫ ∞

0

ϕ(x)
[
Ψ(f ε(t,x))−Ψ(f in,ε(x))

]
dx

≤ ε
I−1∑

i=2

ϕε
iΨ(cεi (t))+

∫ t

0

[
ϕε
Ia

ε
I−1u

ε(s)Ψ(cεI−1(s))−ϕε
I−1b

ε
IΨ(cεI(s))

]
ds

+

∫ t

0

∫ ∞

(I−1/2)ε

[
aε(x)uε(s)∆εϕ(x)−bε(x)∆−εϕ(x)

−δ (uε(s)∆−εa
ε(x)−∆εb

ε(x)ϕ(x))
]
Ψ(f ε(x,s))dxds. (6.1)

where ϕε
i =1/ε

∫
Λε

i

ϕ(x)dx.

Proof. The proof follows similar lines as in [16, Lemma 4.1], but we take profit of
the explicit form of Ψ to obtain a necessary finer estimate. We sketch it briefly below.
From the (BD) system (1.1), it comes

∫ ∞

0

ϕ(x)
[
Ψ(f ε(t,x))−Ψ(f in,ε(x))

]
dx=

∑

i≥2

∫

Λε
i

ϕ(x)[Ψ(cεi (t))−Ψ(cεi (0))] dx

= ε
∑

2≤i≤I−1

ϕε
i [Ψ(cεi (t))−Ψ(cεi (0))]+

∑

i≥I

ϕε
i

∫ t

0

[Jε
i−1(s)−Jε

i (s)]Ψ
′(cεi (s))ds.

We can decompose the latter in three parts,
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∫ ∞

0

ϕ(x)
[
Ψ(f ε(t,x))−Ψ(f in,ε(x))

]
dx = Nε(t)+

∫ t

0

[Aε(s)+Bε(s)]ds,

where

Nε(t) := ε
∑

2≤i≤I−1

ϕε
i [Ψ(cεi (t))−Ψ(cεi (0))] ,

Aε(t) :=
∑

i≥I

ϕε
iu

ε(t)[aεi−1c
ε
i−1(t)−aεi cεi (t)]Ψ′(cεi (t)),

Bε(t) :=
∑

i≥I

ϕε
i [b

ε
i+1c

ε
i+1(t)−bεi cεi (t)]Ψ′(cεi (t)).

Then, in Aε we can re-write, using the convexity of Ψ, for all i≥ I,

[aεi−1c
ε
i−1(t)−aεi cεi (t)]Ψ′(cεi (t))

=aεi−1[c
ε
i−1(t)−cεi (t)]Ψ′(cεi (t))+(aεi−1−aεi )ciΨ′(cεi (t))

≤aεi−1

(
Ψ(cεi−1(t))−Ψ(cεi (t))

)
+(aεi−1−aεi )cεi (t)Ψ′(cεi (t)).

Then, reordering the term in the last inequality and then using that xΨ′(x)−Ψ(x)=
δΨ(x),

[aεi−1c
ε
i−1(t)−aεi cεi (t)]Ψ′(cεi (t))

≤aεi−1Ψ(cεi−1(t))−aεiΨ(cεi (t))+(aεi−1−aεi )[cεi (t)Ψ′(cεi (t))−Ψ(cεi (t))]

=aεi−1Ψ(cεi−1(t))−aεiΨ(cεi (t))−δ(aεi −aεi−1)Ψ(cεi (t)).

Thus, we obtain for A the following estimation,

Aε(t)≤
∑

i≥I

aεiu
ε(ϕε

i+1−ϕε
i )Ψ(cεi (t))+ϕ

ε
Ia

ε
I−1u

ε(t)Ψ(cεI−1(t))

−δuε
∑

i≥I

ϕε
i (a

ε
i −aεi−1)Ψ(cεi ).

We estimate B, by similar argument, to get,

Bε(t)≤
∑

i≥I

ϕε
i [b

ε
i+1Ψ(cεi+1)−bεiΨ(cεi )]+δ

∑

i≥I

ϕε
i (b

ε
i+1−bεi )Ψ(cεi )

≤
∑

i≥I

(ϕε
i−1−ϕε

i )b
ε
iΨ(cεi )−ϕε

I−1b
ε
IΨ(cεI)+δ

∑

i≥I

ϕε
i (b

ε
i+1−bεi )Ψ(cεi ).

Both estimates on Aε and Bε directly give (6.1).

Lemma 9. For all 0≤ r< 1, and for all 0<δ< 1
r −1, there exists I0 such that for all

i≥ I0, and all x∈ [0,1],

[
ir
(
(i+1/2+x)rδ−(i−1/2+x)rδ

)
−δ(ir−(i−1)r)(i−1/2+x)rδ

]
≤ 0 ,
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Proof. Doing an expansion as i→∞, we easily obtain
[
ir
(
(i+1/2+x)rδ−(i−1/2+x)rδ

)
−δ(ir−(i−1)r)(i−1/2+x)rδ

]

= rδ
ir(i− 1

2 +x)
rδ

i2

[r(1+δ)−1

2
−x+O(1

i
)
]
.

We conclude straightforwardly as r(1+δ)−1< 0.

Proof of Lemma 7. In the following, let r= ra= rb and I= I0 given by Lemma
9. We want to bound each term of Eq. (6.1) with ϕ(x)=min(1,xrδ). Remark the term
−ϕε

I0−1b
ε
I0
Ψ(cεI0(t)) can be easily dropped in Eq. (6.1) since it is non-positive. Also,

note that, for 2≤ i≤ I0,
εϕε

iΨ(cεi (t))≤ ε1−r(1+δ)ϕε
i (ε

rcεi (t))
1+δ

.

Thus, since ϕε
i is bounded and δ≤ 1/r−1, we apply Lemma 6 and Proposition 2 to

obtain T > 0 and a sub-sequence, still denoted by {εn}, such that

sup
n≥0

sup
t∈[0,T ]

(εnϕ
εn
i Ψ(cεni (t)))<∞. (6.2)

Similarly, using that uε(t)≤Km, we have

ϕε
I0a

ε
I0−1u

ε(t)Ψ(cεI0−1(t))=a(I0−1)ruε(t)

(∫ I0+1/2

I0−1/2

yrδdy

)
(
εrcεI0−1(t)

)1+δ

≤Kma(I0−1)r

(∫ I0+1/2

I0−1/2

yrδdy

)
sup
ε>0

sup
t∈[0,T ]

(
εrcεI0−1(t)

)1+δ
<∞ , (6.3)

By these estimates, the boundary terms in Eq. (6.1) are uniformly bounded. We are
lead with the remaining integral term on ((I0−1/2)ε,∞). Denote, for all ε> 0 and
x> 0,

Dε(x)=aε(x)uε(t)∆εϕ(x)−bε(x)∆−εϕ(x)−δ (uε∆−εa
ε(x)−∆εb

ε(x))ϕ(x).

Thus,

∫ 1

(I0−1/2)ε

Dε(x)Ψ(f ε(x,t))dx

=

1/ε∑

i=I0

1

ε

∫

Λε
i

[
(aεiu

ε(t)(ϕ(x+ε)−ϕ(x))−bεi (ϕ(x)−ϕ(x−ε)))

−δ
(
uε(aεi −aεi−1)−(bεi+1−bεi )

)
ϕ(x)

]
Ψ(cεi (t))dx.

Then, on x∈ (0,1), we have that ϕ(x)=xrδ, and letting Γi=[i−1/2,i+1/2) and chang-
ing variable εy=x, we obtain

∫ 1

(I0−1/2)ε

Dε(x)Ψ(f ε(x,t))dx

=

1/ε∑

i=I0

εr(1+δ)

∫

Γi

[(
airuε(t)((y+1)rδ−yrδ)−bir(yrδ−(y−1)rδ)

)

−δ
(
uεa(ir−(i−1)r)−b((i+1)r− ir)

)
yrδ
]
Ψ(cεi (t))dy .
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Finally, rearranging the term we have

∫ 1

(I0−1/2)ε

Dε(x)Ψ(f ε(x,t))dx

=

1/ε∑

i=I0

εr(1+δ)

∫

Γi

[(
auε(t)−b

)(
ir((y+1)rδ−yrδ)−δ(ir−(i−1)r)yrδ

)

+bir
(
(y+1)rδ−2yrδ+(y−1)rδ

)

+δb((i+1)r−2ir+(i−1)r)yrδ
]
Ψ(cεi (t))dy .

Then, as the second discrete derivative are negative, that is, for all s< 1 and all x> 1,

((x+1)s−2xs+(x−1)s)≤ 0 ,

we obtain

∫ 1

(I0−1/2)ε

Dε(x)Ψ(f ε(x,t))dx

≤ εr(1+δ)
(
auε(t)−b

) 1/ε∑

i=I0

∫

Λi

[
ir((y+1)rδ−yrδ)

−δ(ir−(i−1)r)yrδ
]
Ψ(cεi (t))dy .

The term under the integral is negative by Lemma 9. We now fix T > 0 and extract a
sub-sequence {εn′} given by Lemma 6 such that auε(t)−b> 0 on [0,T ]. Thus,

∫ 1

(I0−1/2)ε

Dε(x)Ψ(f ε(x,t))dx≤ 0 . (6.4)

On the other hand we have, since ∆εϕ=0 on (1,+∞),

∫ ∞

1

[
Dε(x)Ψ(f ε(x,t))dx

≤ δ(Km sup
x≥1

|a′(x) |+sup
x≥1

| b′(x) |)
∫ ∞

1

ϕ(x)Ψ(f ε(x,t))dx, (6.5)

and we conclude by estimates (6.2) to (6.5) that, for some constant K> 0 and all
t∈ [0,T ],

∫ ∞

0

ϕ(x)Ψ(f εn(t,x))≤K+

∫ ∞

0

Ψ(f in,εn(x))dx+K

∫ t

0

∫ ∞

0

ϕ(x)Ψ(f εn(t,x)).

We conclude the proof with the Gronwall Lemma.

The general case. The main difficulty to treat the case ra<rb is to find a test
function ϕ in Eq. (6.1) which make the term under the integral negative around 0, but
which also keep the boundary terms bounded. We believe that a good function would
be

ϕ(x)=min(xrδe−Kxrb−ra

,c),
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for some c> 0 small and K> 0 large enough. It recovers the case ra= rb (with c=1).
Computations are not presented here because too fastidious. Just let us show that, at
the limit ε→0,

[axrau(t)−bxrb ]ϕ′(x)−δ
[
raax

ra−1u(t)−rbbxrb−1
]
ϕ(x)

=
ϕ(x)

x
(rb−ra)

[
δbxrb −Kxrb−ra(axrau(t)−bxrb)

]
.

But since u(t)>ρ, it exists x0> 0 small and γ> 0 such that the flux is bounded from
below by axrau(t)−bxrb ≥γaxra on [0,x0], thus

[axrau(t)−bxrb ]ϕ′(x)−δ
[
raax

ra−1u(t)−rbbxrb−1
]
ϕ(x)

≤ ϕ(x)

x
(rb−ra)

[
δb−Kγ

]
xrb .

Hence, for K large enough the term is negative around 0, which was the essential
ingredient of the proof of Theorem 4.

7. Discussion

In this work, we obtained limit theorems to derive rigorously the link between a
discrete-size coagulation-fragmentation model, the Becker-Döring (BD) model, and a
continuous-size model, the Lifshitz-Slyozov (LS) model. We used weak-convergence
in measure, to prove that a sequence of discrete stepwise functions associated to the
BD model converges towards a measure solution of the LS model. The novelty of
our work, compared to previous work in [16, 8], consists of being able to rigorously
defined a boundary flux condition for the limit non-linear transport partial differential
equation of the LS model. This boundary condition has been obtained thanks to an
averaging procedure for the smaller-sized cluster, namely the one of size i=2. It is
classical when passing from a discrete to a continuous model (think of a random walk
converging to a Brownian motion) to accelerate the rates (or equivalently, the time)
between each discrete transition. Hence, each individual discrete-size cluster evolves
in the re-scaled BD model (1.1) at a faster time scale than the continuous density
function f ε in Eq. (2.1). Although the fast-motion involves a dynamical system of
infinite dimension, we could obtain appropriate L∞-bounds on the time trajectories of
each discrete-sized cluster, and proves that, in the limit when the scaling parameter
ε→0, each discrete-sized cluster is the unique solution of an algebraic equation, which
appears to be the same as the steady-state condition of a constant monomer BD model.

Let us now discuss in more details what were the scaling assumptions that lead to
the study of the system (1.1) (for the mathematical derivation, see the appendix A).
Roughly, the system (1.1) is obtained when we consider that the clusters have very large
sizes but are present in a low quantity compared to a large excess of free particles. The
rescaled equations are obtained in a large volume hypothesis, and the scaling of the
macroscopic reaction rates accounts for the volume-dependence of the aggregation (so
that aggregation and fragmentation occur at the same time scale).
However, importantly enough, the first aggregation (nucleation) rate is scaled differently
from the other aggregation rates (see Appendix A) and this comes from the special role
played by the free particles. Despite the large excess of free particles, in this framework,
the nucleation occurs at the same time scale than the aggregation of large-sized clusters,
and has for consequence to prevent the formation of too many clusters. A different choice
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at this step would lead to a rapid depletion of free particles, and would result in different
mass conservation where free particles are not present as a distinct entity any more–
see the work [16] on the Lifshitz-Slyozov-Wagner equation.
Finally, we allowed a flexibility in the scaling of the first fragmentation (de-nucleation),
quantified by the exponent η. We found (see Theorems 1-2-3 ) that different values of η
give rise to distinct boundary condition at the limit when ε goes to 0. The most natural
case, η= rb, corresponds to the case where the clusters of size 2 dissociate at the same
speed than the small-sized clusters of size i, i≥ 3. Then, the case η>rb corresponds to
an asymptotically irreversible nucleation (and leads to a macroscopic flux N(t)=αu(t)2,
which corresponds to the microscopic nucleation rate – this conclusion actually holds for
all η>ra). And the case η≤ ra<rb corresponds to a strongly reversible de-nucleation
(and leads to 0≤N(t)<αu(t)2 according to the value ra).

Hence, our work shed lights on which appropriate boundary condition should be
used for the LS equation (or similar continuous coagulation models) according to specific
microscopic hypotheses (unfavorable, balanced or irreversible nucleation). We believe
that our procedure could be applied to several related models (for instance, the Lifshitz-
Slyozov-Wagner equation mentioned above, or the prion equation [10]) and should help
to build reduced structured population models while taking into account of their intrinsic
multi-scale nature (see [29, 28] for applications).

Appendix A. From the original to the dimensionless BD system.

The original BD model gives the evolution of (ci)i≥1 by

d

dt
c1 = −J1−

∞∑

i=1

Ji , t≥ 0 ,

d

dt
ci = Ji−1−Ji , t≥ 0 , i≥ 2 ,

where Ji is the flux between clusters of size i and i+1, given by

Ji=aic1ci−bi+1ci+1 , i≥ 1 .

Here, coefficients ai and bi+1 denote respectively the rate of aggregation and the rate of
fragmentation. Observe that such model (at least formally) preserves the total number
of particles (no source nor sink), that is

∞∑

i=1

ici(t)=
∞∑

i=1

ici(0)=:m, t≥ 0 .

The classical approach to operate a scaling is to write the equations in a dimensionless
form. We follow [8] and introduce the following characteristic values:

T : characteristic time,
C1 : characteristic value for the free particle concentration c1 ,
C : characteristic value for the cluster concentration ci, for i≥ 2,
A1 : characteristic value for the first aggregation coefficient a1,
B2 : characteristic value for the first fragmentation coefficient b2,
A : characteristic value for the aggregation coefficients ai, i≥ 2,
B : characteristic value for the fragmentation coefficients bi, i≥ 3,
M c : characteristic value for the total mass m.

Thus, the dimensionless quantities are

t̃= t/T , m̃=m/Mc , ũ(t̃)= c1(t̃T )/C1, c̃i(t̃)= ci(t̃T )/C ,
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and for all i≥ 2,

ãi=ai/A, b̃i+1= bi+1/B,

and the particular scaling at the boundary (we use different letters to emphasize this
point):

α̃ :=a1/A1 , β̃ := b2/B2 .

Then, the quantities ũ(t̃), c̃i(t̃) satisfy the equation

d

dt̃
ũ=

C

C1

[
−AC1T

(
2
A1C1

AC
α̃ũ2+

∑

i≥2

ãiũc̃i

)
+BT

(
2
B2

B
β̃c̃2−

∑

i≥3

b̃ic̃i

)]
,

d

dt̃
c̃2=AC1T (

A1C1

AC
α̃ũ2− ã2ũc̃2)−BT (

B2

B
β̃c̃2− b̃3c̃3),

d

dt̃
c̃i=AC1T (ãi−1ũc̃i−1− ãiũc̃i)−BT (b̃ic̃i− b̃i+1c̃i+1), i≥ 3 .

The mass conservation reads

ũ(t̃)+
C

C1

∑

i≥2

ic̃i(t̃)=
Mc

C1

m̃.

We introduce the scaling parameter ε> 0 for the size of the clusters. Namely, a cluster
of size i is now seen as a cluster of size roughly εi so that we can define the density (1.5).
Then, the scaling obtained in Eq. (1.1) corresponds to the following choice of relations
between the characteristic values

C/C1= ε
2 , AC1T =BT =

1

ε
, M c/C1=1 ,

and, at the boundary,

A1= ε
2A,

and

B2= ε
ηB,

with η≥ 0. The reader interested in a physical justification of this scaling can refer to
the discussion in Section 7 and to [8].

REFERENCES

[1] J. M. Ball, J. Carr, and O. Penrose. The Becker-Döring cluster equations: basic properties and
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[15] P. Laurençot. The Lifshitz-Slyozov-Wagner equation with conserved total volume. SIAM J. Math.

Anal., 34(2):257–272 (electronic), 2002.
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