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SUMMARY

The influence of the gut microbiome on metabolic
and behavioral traits is widely accepted, though the
microbiome-derived metabolites involved remain
unclear. We carried out untargeted urine 1H-NMR
spectroscopy-based metabolic phenotyping in an
isogenic C57BL/6J mouse population (n = 50) and
show that microbial-host co-metabolites are prodro-
mal (i.e., early) markers predicting future divergence
in metabolic (obesity and glucose homeostasis) and
behavioral (anxiety and activity) outcomeswith 94%–
100% accuracy. Some of these metabolites also
modulate disease phenotypes, best illustrated by
trimethylamine-N-oxide (TMAO), a product of micro-
bial-host co-metabolism predicting future obesity,
impaired glucose tolerance (IGT), and behavior while
reducing endoplasmic reticulum stress and lipogen-
esis in 3T3-L1 adipocytes. Chronic in vivo TMAO
treatment limits IGT in HFD-fed mice and isolated
pancreatic islets by increasing insulin secretion. We
highlight the prodromal potential of microbial metab-
olites to predict disease outcomes and their potential
in shaping mammalian phenotypic heterogeneity.
INTRODUCTION

Phenotypic heterogeneity is generally attributed to gene-envi-

ronment interactions. However, phenotype variability is also

commonly observed in identical twins and in isogenicmodel sys-

tems (Lehner, 2013), which can be exacerbated by high-fat diet

(HFD) feeding in mice (Burcelin et al., 2002). This phenomenon
136 Cell Reports 20, 136–148, July 5, 2017 ª 2017 The Authors.
This is an open access article under the CC BY license (http://creative
is associated with changes in gut microbial communities in

isogenic mouse populations (Serino et al., 2012) and in monozy-

gotic twins (Ridaura et al., 2013). With�10million genes (Li et al.,

2014), there is growing evidence that the gut microbiome con-

tributes to obesity (Cotillard et al., 2013; Le Chatelier et al.,

2013; Turnbaugh et al., 2006) and type 2 diabetes (Karlsson

et al., 2013; Qin et al., 2012) in the context of Western-style diets

rich in saturated fats (David et al., 2014; Muegge et al., 2011).

Fecal microbiota transplantations (Smith et al., 2013; Turnbaugh

et al., 2006) and metagenomic studies have highlighted the roles

of microbiome architecture and richness (Cotillard et al., 2013;

Le Chatelier et al., 2013).

However, beyond beneficial bacteria (Dao et al., 2016; Shoaie

et al., 2015), the microbiome-derived mediators promoting host

health or disease remain elusive: a few microbial metabolite

families (e.g., short-chain fatty acids or bile acids) are known to

affect human health (Dumas et al., 2014; Russell et al., 2013).

To drive a shift in host physiology and potentially affect patho-

genesis, microbial metabolite variation should precede changes

in host metabolism and physiology and these metabolites

should directly modulate traits associated with the disease. In

this context, phenotypic heterogeneity observed in discordant

twins or in populations of isogenic mice fed HFD offers a unique

opportunity to evaluate microbial metabolites as early predictive

(i.e., prodromal) markers of disease onset and progression and

to assess their impact on disease (Hsiao et al., 2013; Venkatesh

et al., 2014; Yoshimoto et al., 2013).

To evaluate microbial metabolites as prodromal markers, we

repurposed a pharmaco-metabonomics framework (Clayton

et al., 2006), which we developed initially for drug toxicity predic-

tion using pre-dose metabolic phenotypes, to predict complex

metabolic and behavior phenotype outcomes following HFD

feeding in isogenic mouse populations. We best exemplify the

influence of microbial-host co-metabolites through trimethyl-

amine-N-oxide (TMAO), a phase 1 oxidation product of gut
commons.org/licenses/by/4.0/).
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Figure 1. HFD Induces Phenotypic Heterogeneity in an Isogenic Population of 50 C57BL/6J Mice within 3 Weeks

(A) HFD feeding caused segregation of physiological phenotypes for diabetes (cumulative glycemia) and obesity (BW), and thresholds on cumulative glycemia

and BW stratify the population into three disease sub-phenotypes: lean normoglycemic (LNG), lean impaired glucose tolerance (L-IGT), and obese impaired

glucose tolerance (Ob-IGT).

(B) Short-term (3 weeks) HFD feeding generates heterogeneous phenotypes for BW and glucose tolerance in C57BL/6J male mice. Age-matched controls were

fed a standard carbohydrate diet (CHD, n = 85–95). Data are presented as means ± SE. *p < 0.05, **p < 0.01, ***p < 0.001.

See also Figures S1–S3.
microbial trimethylamine (TMA) that we observed first in insulin

resistance (Dumas et al., 2006) and then with Akkermansia muci-

niphila’s beneficial effects on impaired glucose tolerance (Plovier

et al., 2017) and that plays roles in atherosclerosis (Koeth et al.,

2013; Tang et al., 2013;Wang et al., 2011b). In our study, methyl-

amines predict impaired glucose tolerance (IGT) and obesity

outcomes. TMAO reduces endoplasmic reticulum (ER) stress

and lipogenesis in adipocytes, increases insulin secretion in

isolated pancreatic islets, and attenuates diet-induced IGT,

thus demonstrating dual prodromal and functional properties

of microbiome-derived metabolites in health and disease

(Dumas, 2011; Nicholson et al., 2012).

RESULTS

Phenotypic Heterogeneity Underpins IGT and Obesity in
Isogenic Mouse Populations
To study the phenomenon of heterogeneous metabolic adapta-

tion to HFD in mice (Burcelin et al., 2002; Serino et al., 2012), we

generated a large population of isogenic C57BL/6J mice fed

either chow diet (CHD) or HFD (n = 193) for up to 5 months.

HFD-fed mice became divergent from CHD-fed mice for IGT as-

sessed by intraperitoneal glucose tolerance tests (IP-GTTs) and

body weight phenotypes with strong and permanent heteroge-

neity in glucose tolerance and body weight (Figures S1A–S1C).

Phenotype SDs for body weight (BW) and IGT progressively

increased between 3 and 5 months of fat feeding and were

greater in HFD-fed mice than in CHD-fed mice (Figure S1D).

These preliminary results show that phenotypic heterogeneity
develops progressively over time and confirm that HFD feeding

promotes this phenomenon.

We then bred a new cohort of 50 isogenic mice for in-depth

characterization of the dietary-induced phenotype heterogeneity

from 3 weeks of HFD feeding onward (Figure S1D). Outcomes

from IP-GTT performed after 3 weeks of HFD feeding (Figure 1;

Figure S2) and BW (Figure 1; Figure S3) were used to stratify the

mouse population according to glucose tolerance (cumulative

glycemia during the IP-GTT) and obesity phenotypes. Applying

a threshold of 2 SD above the mean of cumulative glycemia and

BW defined three disease sub-groups of extreme responders to

HFD feeding: lean with impaired glucose tolerance (L-IGT), obese

with impaired glucose tolerance (Ob-IGT), and non-responder

lean normoglycemic (LNG) (Figure 1A). As expected, fasting gly-

cemia in LNG mice (5.22 ± 0.35 mM) was not different from that

of CHD-fed controls (6.14 ± 0.11mM). Identical glycemic profiles

during the IP-GTT in fat-fed LNG mice and in control CHD-fed

mice confirms the resistance of LNGmice to the dietary challenge

(Figure 1B). In addition, fasting glycemia was significantly lower in

these groups than in L-IGTmice (9.12 ± 0.87 mM, p = 0.001) and

Ob-IGT mice (8.90 ± 0.67 mM, p < 0.001) (Figure 1B; Figure S2).

Fat-fedmice from theOb-IGT, LNG, and L-IGT groupswere iden-

tified in parallel in several cages, thus ruling out possible cage

effects (Ridaura et al., 2013) on phenotypes.

Extreme HFD Responders Have Altered Insulin
Secretion, Adiposity, and Lipids
To extend the in vivo physiological screening of extreme

responders, we determined insulin during the IP-GTT, adiposity
Cell Reports 20, 136–148, July 5, 2017 137



index (ratio of adipose weight to body weight), and plasma lipids.

Even though glucose-stimulated insulin secretion was not used

for stratification of the mouse groups, the glucose-intolerant

groups L-IGT and Ob-IGT are hyperinsulinemic compared to

LNG mice (Figures S2B and S2E). Pre-intervention BWs at

5 weeks were not significantly different among any of these

sub-groups, but BMI, BW gain, and the weights of the epidid-

ymal fat pad (EPD), retroperitoneal fat pad (RFP), and brown ad-

ipose tissue (BAT) diverged in the Ob-IGT group compared to

other groups (p < 0.001) (Figures S3A–S3I) at day 20. The obese

group had significantly lower plasma high-density lipoprotein

(HDL) and higher plasma triglycerides than the lean groups, while

the glucose-intolerant group L-IGT had significantly more

plasma low-density lipoprotein (LDL) than the LNG mice, sug-

gestive of stratification-associated dyslipidemia in obese (Ob)

and IGT mice (Figures S3J–S3M).

HFD Induces Heterogeneity in Behavior
Because mice exhibiting extreme glucose tolerance and body

weight were systematically observed in different cages, we hy-

pothesized that heterogeneous metabolic adaptation to HFD

may involve behavioral traits, which we characterized using

robust procedures in Ob-IGT, LNG, and L-IGTmice (Figure S4).

Time spent in the elevated plus maze (EPM) closed arms and

latency to enter the open field (OF) central arena show similar

patterns, supporting inter-test validity. EPM activity and anxi-

ety generally increased with IGT between LNG and Ob-IGT

mice (Figures S4A and S4B). This was reflected by the

increased number of entries in the closed EPM arms in Ob-

IGT mice (11.7 ± 1.0) compared with LNG mice (8.8 ± 0.8)

(p = 0.026) and the increased time spent in the EPM center

in Ob-IGT mice (76.5 ± 8.7) and L-IGT mice (80.5 ± 4.8)

compared with LNG mice (59.0 ± 7.3) (p < 0.05). Ob-IGT

mice also showed a significantly higher number of rearings

(p = 0.04) and transitions in the OF when compared to lean

mice. Activity parameters in the OF (number of rearings and

transition) were increased in Ob-IGT mice compared to LNG

mice (p = 0.04) (Figures S4C and S4D). Altogether, these re-

sults show that HFD induces heterogeneous metabolic, hor-

monal, and behavioral changes characterized by increased

anxiety and activity in mice showing impaired glucose homeo-

stasis and increased BW.

Metabolic Phenotypes Mirror Phenotypic Variability
To identify metabolic signatures associated with heteroge-

neous adaptation to HFD, we performed 1H-NMR-based un-

targeted metabolic phenotyping (i.e., metabotyping) (Gava-

ghan et al., 2000) of 24 hr urinary collections obtained at

baseline before dietary intervention (5 weeks of age, day 0),

and 1, 2, and 20 days (8 weeks of age) after intervention.

An orthogonal partial least-squares discriminant analysis

(O-PLS-DA) constructed using all urines clearly discriminated

CHD from HFD samples (p = 10�4) (Figure 2A). The O-PLS-

DA model was highly predictive when randomly resampled

10,000 times (Figure 2B), and detailed structural assignment

(Table S1) confirmed that the methylamine pathway is acti-

vated in HFD (Figure 2C), as initially reported (Dumas et al.,

2006): TMA is derived from dietary choline fermentation by
138 Cell Reports 20, 136–148, July 5, 2017
commensal bacteria, and metabolized into TMAO, dimethyl-

amine (DMA), and monomethylamine (MMA) in the liver (Fig-

ure 2D) (al-Waiz et al., 1992; Craciun and Balskus, 2012; Dol-

phin et al., 1997).

Predictive Modeling of Disease Sub-groups and
Quantitative Phenotypes
To test whether pre-intervention metabotypes can predict

future disease outcome, we built a series of O-PLS-DA models

predicting disease sub-groups after 20-day HFD from baseline

urinary metabolic phenotypes at day 0. We implemented a

7-fold cross-validation strategy to assess the performance of

the models: the cross-validated score plots show a clear predic-

tion of glycemia and obesity sub-phenotypes (Figure 3A). We

also resampled our predictions using 10,000 random permuta-

tions and rederived goodness-of-prediction Q2
Yhat parameters

by 7-fold cross-validation, demonstrating the original O-PLS-

DA models were significantly different from 10,000 random

cross-validated models, with p = 0.0099–0.0487 (Figure 3B).

We then evaluated the performance of the predictive O-PLS-

DA cross-validated scores in a receiver-operating characteristic

(ROC) analysis. The area under the ROC curve (AUC), corre-

sponding to discriminative power ranged from 94% to 100%

(Figure 3C). We built and permutation validated a series of pre-

dictive O-PLS-DA models showing significant segregation of

the original models for the following sub-phenotypes: extreme

(Q2
Yhat = 0.67, p = 0.0116, AUC = 100%), lean from Ob

(Q2
Yhat = 0.36, p = 0.0099, AUC = 94%), normoglycemic from

IGT (Q2
Yhat = 0.37, p = 0.0142, AUC = 98.6%), and LNG from

L-IGT (Q2
Yhat = 0.50, p = 0.0487, AUC = 94.29%).

We also computed O-PLS regressions between urinary me-

tabotypes and the 44 physiological or behavioral quantitative

phenotypes measured at day 20 using the whole cohort of

HFD-fed mice (Table 1). Permutation testing showed that 25 of

44 quantitative phenotypes after 3 weeks of HFD feeding were

significantly predicted using baseline (i.e., before HFD challenge)

urinary metabotypes. In particular, pre-interventional metabo-

types predict not only BW at baseline (p = 0.0007) and after a

3-week HFD (p = 0.0034) but also BMI (p = 0.0362), BW gain

(p = 0.0001), fasting glycemia (p = 0.012), cumulative glycemia

and insulinemia, heart and fat pad (EPD and RFP) weights, and

even behavioral traits (number of rearings in OF, p = 0.0122).

These data suggest that HFD heavily disturbs microbial and

host metabolism overnight with gradual and often phenotype-

specific heterogeneity.

Prodromal Predictors of Disease Outcomes and
Quantitative Traits
We next identified metabolic markers for phenotypic heteroge-

neity using empirical p values generated for Spearman’s rank

correlation with 10,000 random permutations. The patterns of

association between urinary metabolites and physiological phe-

notypes are complex, withmultiple partial contributions fromone

metabolite to each phenotype (Figure 3D). For instance, heart

weight is predicted by increased excretion of tricarboxylic acid

(TCA) cycle intermediates (citrate, 2-oxoglutarate, fumarate,

and succinate), as well as choline and N-N-dimethylglycine

(DMG). We show that excretion of gut microbial metabolites,



Figure 2. The Urinary Metabolic Signature of HFD in the C57 Mouse

(A) O-PLS-DA scores plot.

(B) O-PLS-DA permutation plot. The O-PLS-DA model was validated by random permutations (n = 10,000 iterations) of the original variable to explain class

membership (CHD versus HFD). The horizontal axis represents the correlation between the original class membership (right) and the randomly permuted class

membership vectors (no longer correlatedwith the original classmembership) (left). The y axis represents the goodness-of-fit R2 (in green) parameter obtained for

each O-PLS-DA model and the goodness-of-prediction Q2 (in blue) parameter obtained by 7-fold cross-validation of the O-PLS-DA model. The R2 and Q2

parameters for the original model in the top right corner do not belong to the population of 10,000 models fitted with random class memberships, highlighting that

the original model does not belong to the population of 10,000 randomly permuted models (p < 0.0001) and thereby confirming the significance of the fitness and

prediction ability attached with the original O-PLS-DA model.

(C) O-PLS-DA model coefficient plot.

(D) Summary of microbial-mammalian co-metabolism of methylamines.
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including methylamines, predicts several physiological and

behavioral traits (Figure 3D). Pre-interventional excretion of

choline, TMAO, DMA, and MMA predicts not only IGT and

obesity but also stratification of the mouse population into Ob-

IGT and L-IGT disease sub-groups and finally heterogeneity of

quantitative phenotypes, i.e., fat pad (EPD and RFP) weights

(raw and normalized to total BW), BMI, or food consumption

traits. Baseline TMAO excretion predicts obesity and IGT out-

comes (BW, BMI, BW gain, EPD weight and ratio, glycemia,

and insulinemia). In contrast, urinary TMA presents weaker asso-

ciations and is negatively correlated to disease sub-groups (Fig-

ure 3D). Methylamines (TMA, DMA, MMA, and TMAO) and their

pre-cursor choline are the major metabolites associated with

HFD in the C57BL/6J mouse (Figure 2D), which is consistent

with our previous report (Dumas et al., 2006). Other microbial-

host co-metabolites, such as phenylacetylglycine (PAG) and

hippurate, are also predictive of disease risk, BW, glycemia, in-

sulinemia, feeding behavior, and anxiety parameters, suggesting

that symbiotic metabolism also predicts future anxiety and activ-

ity patterns (Figure 3D).

TMAO Correlates with Lower Adipose ER-Stress
Response and Insulin Signaling
We focused on TMAO as the product of the main microbial-

host co-metabolic pathway significantly associated in our study

(choline, TMA, DMA, MMA, and TMAO) (Figures 2 and 3). Details

of TMAO action on obesity and adipocyte function remain

unknown. After 3 weeks of HFD, TMAO excretion is negatively

associated with EPD weight and the ratio of EPD weight to

body weight observed 20 days post-HFD (r = �0.302 and

�0.291, respectively). We profiled the transcriptome in EPD

from HFD-fed mice belonging to the LNG, LD, and Ob-IGT con-

tinuum and characterized by glucose tolerance and body weight

within 2 SD of the mean for these phenotypes (i.e., midgroup)

(Figure 4; Table S2). Permutation testing identified 2,875 genes

correlated with TMAO excretion at day 20 (Figure 4A; Table

S2). This transcriptomic correlation pattern accounts for com-

bined effects of TMAO and other metabolites associated with

extreme adaptations of mice to HFD (e.g., hippurate and PAG)

and consequences of altered physiological and behavioral phe-

notypes. A gene ontology analysis (Table S3) highlights a coordi-
Figure 3. Pre-intervention Metabotypes Predict Disease Outcome and

(A) Pre-intervention (day 0) urinary 1H-NMR-based metabolic profiles predict dis

(B) Model goodness-of-fit (R2) and goodness-of-prediction (Q2) parameters are

(empirical p value derived from 10,000 iterations).

(C) Receiver-operating characteristic (ROC) curves demonstrate efficient predict

(D) Heatmap of significant metabolic predictors of disease and quantitative phe

assignments). The heatmap was built using significant Spearman’s rank-based

metabolites and day 20 heterogeneous phenotypes. Only significant correlations

correlations are left uncolored (white). BCAA, branched chain amino acids.

Phenotypes were determined in mice at 5 weeks (5wk) or 2 months (2m). Glucose

(T15); cumulative glycemia (CG); cumulative glycemia above baseline (dG); the di

insulin secretion 15, 30, and 75min after glucose injection (I15, I30, and I75, respe

and the ratio of cumulative glycemia to cumulative insulinemia (IcumG). BW, bod

AUC, area under the curve during the intraperitoneal glucose tolerance test (I

retroperitoneal fat pad; RFP_ratio, RFP weight to BW ratio; L, Lean; Ob, obese; I

food.calc, food intake; AKIV, alpha-keto-isovalerate; BAIB, beta-aminoisobutyr

abbreviations.
nated regulation involving response to endoplasmic reticulum

stress, regulation of lipid biosynthetic process, insulin receptor

signaling pathway, and fat cell differentiation. Protein process-

ing, ER-associated degradation, and ubiquitin-ligase complex

are strikingly anti-correlated with TMAO (Figure 4B; Table S3).

Under ER stress conditions, Ire1 cleaves a 26-nucleotide intron

from the Xbp1 mRNA (Nfx1, r = �0.51, p = 0.0456), leading to

spliced Xbp1 mRNA encoding for a transcription factor promot-

ing expression of unfolded protein response (UPR) genes (Hota-

misligil, 2010). Splicing of the Xbp1 transcript is also required for

adipogenesis (Sha et al., 2009).

TMAO Reduces ER Stress and Lipid Accumulation in
Adipocytes
To confirm that TMAO reduces ER stress and lipid metabolism,

we tested these effects with 3T3-L1 adipocyte cell-based as-

says. We first assessed Xbp1 splicing, because splicing of this

central ER stress regulator is induced by ER stress and was vali-

dated as an ER stress marker recapitulating all other events in

the IRE1a-XBP1 pathway (van Schadewijk et al., 2012). We

confirmed that 0.1 mM TMAO inhibits tunicamycin-stimulated

Xbp1 splicing as efficiently as 0.1 mM 4-phenylbutyrate (PBA)

(Figure 4C), an ER stress inhibitor also known to inhibit lipogen-

esis (Basseri et al., 2009). TMAO inhibits adipogenesis, as shown

by decreased lipid accumulation (Figure 4D), which concurs with

the negative association between TMAO excretion and the ratio

of both EPD weight and EPD weight to body weight observed

20 days post-HFD (r = �0.302 and �0.291, respectively). These

results show that TMAO, a known chemical chaperone (Ozcan

et al., 2006), alleviates ER stress at 0.1 mM, as suggested by

gene expression results, and impairs adipogenesis. Given that

TMAO was also shown to reduce ER stress in b cells (Akerfeldt

et al., 2008), we then tested the role of TMAO on glucose toler-

ance and insulin secretion in vivo in mice and in vitro in isolated

islets.

TMAO Improves Glucose Homeostasis and Insulin
Secretion In Vivo
To assess potential therapeutic effects of TMAO in vivo, we

carried out glucose tolerance and insulin secretion tests in

CHD- and HFD-fed mice treated by chronic subcutaneous
Phenotypic Heterogeneity

ease outcome (day 20, after a 3-week HFD challenge).

significantly different from those expected by chance in a permutation test

ion of future disease outcomes.

notype outcomes present complex yet structured patterns (see Table S1 for

correlations after 10,000 random permutation testing between day 0 urinary

(permutation testing p < 0.05) are color-coded on the heatmap; non-significant

tolerance tests were used to determine glycemia 15 min after glucose injection

sappearance rate of glucose from blood, in minutes (K15to30 and K15to75ins);

ctively); cumulative insulinemia (CI); cumulative insulinemia above baseline (dI);

y weight; BMI, body mass index; FG, fasting glycemia; FI, fasting insulinemia;

P-GTT); EPD, epididymal fat pad; EDP_ratio, EPD weight to BW ratio; RFP,

GT; impaired glucose tolerance; OF, open field; dig.energy, digestible energy;

ate; AKG, 2-oxoglutarate; DMG, N-N-dimethylglycine. See Table 1 for other
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Table 1. Predictions for Quantitative Physiological and Disease Phenotypes

Phenotype Day 20 Day 0 (p Value) Day 1 (p Value) Day 2 (p Value) Day 20 (p Value)

BW baseline (day 0) 0.0007 0.0001 0.0001 NS

BW 0.0034 0.0005 0.0012 0.0269

BMI 0.0362 0.0054 0.0005 0.0059

Fasting glycemia 0.0012 0.0079 NS 0.0121

Glycemia 15 min IP-GTT 0.0008 0.0429 0.0341 0.0105

Glycemia 30 min IP-GTT NS NS NS 0.0269

Glycemia 75 min IP-GTT NS 0.0174 NS NS

AUC glycemia IP-GTT 0.0246 NS NS 0.0282

Delta glycemia IP-GTT 0.0133 0.0109 NS NS

K parameter (glycemia) IP-GTT 0.0236 0.0225 0.0055 NS

Fasting insulinemia 0.0095 NS 0.041 NS

Insulinemia 15 min IP-GTT 0.0001 0.0004 0.0019 0.0028

Insulinemia 30 min IP-GTT 0.0009 NS 0.0028 NS

Insulinemia 75 min IP-GTT 0.0012 NS NS 0.033

AUC insulinemia IP-GTT 0.0001 0.0411 0.0051 0.0266

AUC(I)/AUC(G) IP-GTT 0.0002 NS 0.0113 NS

Delta insulinemia IP-GTT 0.0154 0.0034 0.0012 NS

K parameter (insulin) IP-GTT 0.0122 0.0411 0.0125 0.0152

EPD weight 0.0146 NS 0.0057 0.014

RFP weight 0.0243 NS NS NS

BAT weight NS NS 0.0368 0.0024

Heart weight 0.0001 0.0005 0.0109 0.0392

EPD weight/BW (%) 0.0058 NS 0.0024 0.0102

RFP weight/BW (%) 0.0343 NS NS 0.0341

BAT weight/BW (%) NS NS NS 0.0034

Heart weight/BW (%) NS NS NS 0.0175

Food intake 0.0051 0.0228 0.0008 NS

Entries open arm NS NS NS 0.0295

Time to enter open arm NS 0.0388 NS 0.0155

Digestible energy 0.0042 0.0233 0.0008 NS

Rearings (OF) 0.0122 0.0374 0.0489 NS

BW gain day 0–20 0.0001 0.0001 0.0001 NS

O-PLS regression models predicting each quantitative phenotype variable using metabolic profiles (n = 44) at a given time point (day 0, day 1, day 2, or

day 20) were assessed by permutation testing. The p values for the Q2
Yhat model prediction parameter were obtained by random permutation testing

with 10,000 iterations. Then, the original Q2
Yhat is projected on the confidence interval of the population of 10,000 Q2

Yhat values obtained from each

randommodel to derive a non-parametric empirical p value. BW, body weight; AUC, area under the curve during the intraperitoneal glucose tolerance

test (IP-GTT); EPD, epididymal fat pad; RFP, retroperitoneal fat pad; BAT, brown adipose tissue; OF, open field; NS, not statistically significant.
infusion of this compound (Figure 5). HFD feeding resulted in sig-

nificant elevation of fasting glycemia and insulinemia, glucose

intolerance, enhanced insulin secretion induced by glucose,

and increased BW after 7 weeks when compared to CHD-fed

mice. TMAO infusion had no effect on glucose homeostasis, in-

sulin secretion, or BW in CHD-fed mice (Figure 5E). In contrast,

glucose tolerance (Figures 5A and 5B) was partially restored by

chronic 6-week TMAO treatment in HFD-fed mice, as indicated

by significant reduction of glycemia during the IP-GTT (Fig-

ure 5A) and cumulative glycemia during the test (Figure 5B) in

TMAO-treated mice when compared to saline-treated controls.

Improved glucose tolerance in TMAO-treated, HFD-fed mice

was associated with further significant enhancement of insulin
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secretion response to glucose by TMAO in these mice (Figures

5C and 5D). We noted a tendency of TMAO to reduce body

weight in mice fed HFD during the final 3 weeks of TMAO admin-

istration (Figure 5E), but differences were not statistically signif-

icant and the TMAO treatment could not be prolonged beyond

6 weeks for technical reasons. We then confirmed that TMAO

directly increases insulin secretion in isolated islets (Figure 5F),

which is consistent with its role as a chemical chaperone

reducing ER stress in b cells (Akerfeldt et al., 2008). The partial

IGT normalization induced by subcutaneous TMAO treatment

in HFD-fed mice only suggests that TMAO’s beneficial role in

the regulation of glucose homeostasis and insulin secretion is

dependent of an interaction with diet.
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Figure 4. TMAO Alleviates ER Stress

(A) The 2,875 EPD genes significantly correlate with TMAO excretion after 20-day HFD. See also Table S2.

(B) TMAO correlates with reduced expression of ER stress genes. See also Tables S3 and S4.

(C) TMAO reduces ER stress in differentiating 3T3-L1 adipocytes. Data were derived from six replicates of three cell preparations.

(D) TMAO reduces lipid accumulation in 3T3-L1 adipocytes. Data were derived from six replicates of three independent cell preparations. Data are presented as

means ± SEM.

T, tunicamycin; PBA, 4-phenylbutyrate. A one-way ANOVA was performed to identify significantly different factor levels, denoted as a–c (p < 0.05 post hoc test).

The pathway of protein degradation in the ER was redrawn from Kyoto Encyclopedia of Genes and Genomes (KEGG), with KEGG annotations substituted for

gene annotations in cases of significant differences.
DISCUSSION

Our results shed new light on metabolic roles of the gut micro-

biome in shaping host phenotypic heterogeneity and pre-dispo-

sition to disease susceptibility. Pre-intervention urinary me-

tabotypes predict post-interventional disease outcomes and

quantitative heterogeneity for a large number of traits (metabolic,

hormonal, organ weights, and behavior) in isogenic mice. Micro-

bial metabolites and their detoxification products belong to this

prodromal signature, including microbial TMA and its product

TMAO, which alleviates ER stress and reduces lipogenesis in

cell-based assays, as well as improving glucose homeostasis

by stimulating insulin production by pancreatic islets in vivo

and in vitro.

Microbiome-Driven Phenotypic Heterogeneity in
Isogenic Mouse Populations
Variability of disease phenotypes in response to HFD in isogenic

C57BL/6J mouse populations was proposed by Burcelin et al.

(2002) as an alternative to diet-based comparisons; removing

unwanted dietary confounders allowed the study of the role of

microbial variations within this population (Serino et al., 2012).

In our study, although the extreme groups were defined only

on cumulative glycemia and BW, we observed a co-segregation
of multiple traits, such as insulin secretion, blood lipids, organ

weights, and behavior.

Pre-dietary Intervention Metabolic Profiles Predict
Disease Outcomes
By combining the isogenic mouse population model with a phar-

maco-metabonomic approach, phenotypic heterogeneity in

absence of genetic variation can be directly predicted by specific

microbial-host co-metabolites, which could not be inferred

through 16 s rRNA phylogenetic analysis (Serino et al., 2012).

We show that pre-intervention urinary metabotypes predict

post-intervention disease outcome and behavior patterns, thus

showing that the pharmaco-metabonomics concept also applies

to nutritional interventions and the prediction of disease risks or

outcomes. The complexity of the metabolic patterns identified in

our study suggests that each trait has a specificmetabolic signa-

ture that is only similar to the signatures of other co-associated

traits, which are best exemplified by BW, BMI, BW gain, and

EPD and RFP weights or glycemic and insulinemic traits.

Microbial-Host Co-metabolites Are Prodromal Markers
of Phenotypic Heterogeneity
Several endogenous andmicrobial metabolites were identified in

the predictive signatures for diabetes and obesity outcomes. In
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Figure 5. TMAO Partially Improves Glucose Tolerance on HFD through Increased Insulin Secretion

(A) Plasma glucose profile during IP-GTT.

(B) Cumulative glycemia (AUC).

(C) Plasma insulin profile during IP-GTT.

(D) Cumulative insulinemia (AUC).

(E) Weekly BW monitoring.

(F) Primary pancreatic islet insulin secretion.

Glycemia and insulinemia were determined following an injection of glucose (2 g/kg BW) in control or HFD-fed mice treated by TMAO or NaCl for 5 weeks (n = 5

per group). BW was monitored throughout the duration of the experiment. The effect of TMAO on insulin production was tested in pancreatic islets cells (n = 20

mice, 1,705 islets in total) in response to 2.8 or 16.7 mMglucose. $p < 0.05 for control diet (CD) NaCl versus HFDNaCl, *p < 0.05 for HFD NaCl versus HFD TMAO,

yp < 0.05 for HFD TMAO versus CD NaCl. #p < 0.05, ##p < 0.01, ###p < 0.001. Data are presented as means ± SEM.
particular, TMAO, PAG, and hippurate are three microbial-

mammalian co-metabolites obtained by phase 1 and phase 2 re-

actions in liver from their gut microbial substrates (TMA, phenyl-

acetate, and benzoate, respectively). We observed that varia-

tions in baseline (i.e.. before HFD induction) excretion of TMAO

and hippurate are strongly predictive of obesity risk. We previ-

ously showed that hippurate is negatively associated with BMI

in humans (Elliott et al., 2015) and that benzoate variation was
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associated with a UGT2b polymorphism in the Goto-Kakizaki

rat model of type 2 diabetes (Dumas et al., 2007). Post-interven-

tion TMAO excretion was anti-correlated with obesity traits and

was associated with a reduction of the expression of key en-

zymes involved in energy metabolism, lipid biosynthesis, and in-

sulin signaling in adipose tissue. These observations support re-

ports on the impact of the gut microbiome on brain development

and anxiety behavior (Diaz Heijtz et al., 2011), while antibiotic



therapy (Bercik et al., 2011) or Lactobacillus spp. supplementa-

tion (Bravo et al., 2011) affects behavior. In addition, Bacteroides

fragilis affects the gut barrier in autism spectrum disorder mice,

with circulating levels of microbial metabolites such as 4-ethyl-

phenylsulfate eventually affecting their behavior (Hsiao et al.,

2013).

TMAO and Cardiometabolism
Methylamines represent the main microbial-mammalian co-

metabolic pathway associated with HFD in our mouse model.

TMAO results from a phase 1 N-oxidation of gut microbial TMA

(al-Waiz et al., 1992) catabolized by FMO3 in humans (Dolphin

et al., 1997). TMA is synthesized by gut microbial degradation

of nitrogen-rich nutrients such as choline, phosphatidylcholine,

and L-carnitine in decreasing order (al-Waiz et al., 1992; Russell

et al., 2013). FMO3 is a target gene of the bile acid receptor FXR

(Bennett et al., 2013) and was shown to play a central role in the

regulation of cholesterol balance and glucose homeostasis

(Warrier et al., 2015). This led to the establishment of a prelimi-

nary disease mechanism model in which TMAO and its dietary

pre-cursors such as phosphatidylcholine and L-carnitine, found

in red meat, could explain the increased cardiovascular disease

(CVD) risk associated with red meat consumption (Koeth et al.,

2013). While the association between TMAO and atherosclerosis

initially reported by Tang et al. (2013) is now accepted (Bennett

et al., 2013; Koeth et al., 2013, 2014; Ussher et al., 2013;

Wang et al., 2011b), the roles played by TMAO in glucose ho-

meostasis are less clear (Bai et al., 1998; Gao et al., 2014; Lever

et al., 2014; McEntyre et al., 2015).

TMAO Alleviates ER Stress
Our results suggest that TMAO exposure reduces ER stress, re-

sulting from the accumulation of misfolded proteins in the ER

(Ozcan et al., 2006). This gene expression signature is particu-

larly relevant because TMAO is an osmolyte acting as a chemical

chaperone and stabilizing a three-dimensional protein structure,

a role that was initially discovered in saltwater fish (Yancey et al.,

1982). This general protein stabilization mechanism (Ma et al.,

2014) is thought to reduce ER stress, which is involved in inflam-

mation and insulin resistance (Ozcan et al., 2006), and could

explain our observations for the role of TMAO on ER stress

and Xbp1 splicing in adipocytes. Similarly, TMAO corrects ER

stress and Xbp1 splicing induced by cytokines and palmitate in

b cells (Akerfeldt et al., 2008).

TMAO Infusion Improves Glucose Homeostasis, but Not
Obesity, in Mice
Several conflicting studies exist about TMAO’s role on glucose

homeostasis. The existing literature suggests that both dietary

TMAO and FMO3 overexpression exacerbate IGT, whereas

FMO3 is downregulated by insulin (Gao et al., 2014; Miao

et al., 2015). To bypass indirect FMO3-specific effects (Bennett

et al., 2013; Miao et al., 2015) triggered by potential microbial

retroversion (Al-Waiz et al., 1987), we performed subcutaneous

TMAO administration. The lack of effect of TMAO treatment on

BW and BMI in HFD-fed mice supports the view that despite

Xbp1’s central role in ER stress, adipocyte-specific Xbp1 dele-

tion does not affect obesity (Gregor et al., 2013). However, the
marked improvement of HFD-induced IGT mediated by

increased insulinemia, which we confirmed in vitro by treating

isolated pancreatic islets with TMAO, is consistent with

improved ER stress. Dietary TMAO was reported to exacerbate

HFD-induced IGT after 3 weeks of feeding in male mice (Gao

et al., 2014), whereas a previous report showed that subcutane-

ous or intraperitoneal TMAO injections lower glycemia (Bai et al.,

1998). The beneficial effects of our 6-week subcutaneous TMAO

infusion resulting in a partial correction of IGT through increased

insulin secretion support the latter report. Our results are also

consistent with the recent association of methylamines in gen-

eral (and TMAO in particular) with the beneficial effects of Akker-

mansia muciniphila treatment in HFD-fed mice (Plovier et al.,

2017). Analysis of long-term TMAO effects on b cell function

and replication of the experiment inmice treated with oral admin-

istration of TMAO should improve our understanding of the

impact of TMAO on glucose homeostasis and insulin secretion.

In conclusion, through extensive phenotyping, metabolomic,

and transcriptomic studies, we show that microbial metabolites

are prodromal markers and drivers of diet-induced phenotypic

heterogeneity in isogenic mouse populations. We highlight

a novel beneficial role for TMAO in glucose homeostasis and

insulin secretion. Our work supports the emerging view that

the gut microbiome can pre-dispose host health, opening per-

spectives in terms of predicting and monitoring functional

effectiveness of dietary and microbiome interventions in strati-

fied medicine.

EXPERIMENTAL PROCEDURES

Animals

All experiments were approved by the ethical committees of the University of

Oxford and University Pierre & Marie Curie. Male C57BL/6J mice were bred in

the laboratory. All mice were kept under standard maintenance conditions on

12 hr light/dark cycle.

Heterogeneous Mouse Populations

Mice were weaned at 21 days and caged in groups of ten throughout the whole

experiment. Mice were fed a normal carbohydrate (CHD) diet containing 5%

fat, 19% protein, and 3.5% fiber (w/w). At 5 weeks, a group of mice (n = 50–

193) was transferred to a 40% w/w (65% kcal) (HFD) ad libitum, while a group

of age-matched mice remained on CHD throughout the experiment as

described previously (Dumas et al., 2006; Fearnside et al., 2008). Blood and

urine samples were collected in both groups. Metabolic homeostasis was as-

sessed by glucose tolerance tests after 3 weeks of treatment. Animals were

then killed by CO2 asphyxiation. Tissues were collected, weighed, and snap-

frozen in liquid nitrogen.

TMAO Infusion

Six-week-old C57BL/6J mice were fed a standard CHD, and at 9 weeks, a

group of ten mice was transferred to a HFD. At 10 weeks, osmotic minipumps

were inserted subcutaneously in mice under ketamine-xylazine anesthesia

to deliver NaCl or TMAO (2.78 mM in 0.9% NaCl) for 6 weeks as described

previously (Cani et al., 2007).

Insulin Secretion from Isolated Islets

Six-week-old C57BL/6J male mice (n = 20) were euthanized by cervical dislo-

cation and pancreatic islets isolated by collagenase digestion. Groups of 5–6

islets per well (1,705 islets in total) were incubated in presence of TMAO in

culture media. Islets were then incubated in 2.8 mM glucose to measure basal

insulin production and subsequently in 16.7 mM glucose to measure glucose

stimulated insulin secretion.
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ER Stress

ER stress was assessed in 3T3-L1 adipocytes after 7 days of differentiation,

upon ER stress stimulation by 50 ng/mL tunicamycin, and rescued by

10 mM PBA or 10 mM TMAO. RNA was extracted from cells, and differential

splicing of XBP1 mRNA was assessed by qPCR before reverse transcription

using previously described primers for total XBP1 (XBP1t) and spliced XBP1

(XBP1s) (Wang et al., 2011a).

Lipid Accumulation

Oil red O staining was performed in differentiated 3T3-L1 adipocytes after

9 days of differentiation. Oil red O was added for 10 min. The dye bound to

lipids was resuspended using isopropanol, and optical density at 520 nm

was read on a spectrophotometer. The oil red O quantification was then

normalized to cell viability assessed by crystal violet staining for 30min, resus-

pended in methanol, and read at 600 nm.

Glucose Tolerance and Insulin Secretion Tests

Body weight (BW) was recorded and intraperitoneal glucose tolerance tests

(IP-GTT, 2 g/kg BW) were performed in overnight-fasted mice as previously

described (Fearnside et al., 2008).

Behavioral Tests

EPM and OF were used to assess rodent exploration, activity, and anxiety as

previously described (Solberg et al., 2006; Valdar et al., 2006). Animals were all

naively tested at 8 weeks of age.

Transcriptomics

Experiments were performed according to Affymetrix protocols as previously

described (Toye et al., 2007). Microarray data were analyzed using R and the

Bioconductor packages affy (Gautier et al., 2004), LIMMA (linear models for

microarray data) (Smyth, 2005), and BiNGO (Maere et al., 2005).

Metabolic Phenotyping

Urine samples were profiled using a 1H-NMR spectrometer operating

at a 600.22 MHz 1H frequency, and spectra were imported into MATLAB

(R2012b, MathWorks) as described previously (Dumas et al., 2006). The

dataset was then further aligned using recursive segment-wise peak align-

ment (RSPA) (Veselkov et al., 2009), and peak calling was performed

using statistical recoupling of variables (SRVs) (Blaise et al., 2009).

Variance-stabilizing logarithmic transform of the SRV clusters (Veselkov

et al., 2011) and probabilistic quotient normalization (Dieterle et al., 2006)

were used before multivariate analyses. Predictive models were built using

O-PLS-DA with 7-fold cross-validation. Models were validated by per-

mutations testing of the Q2
Yhat goodness-of-prediction statistics param-

eter with 10,000 random iterations and calculation of an empirical p value

(Blaise et al., 2007).

Experiments are Minimum Information About a Microarray Experiment (MI-

AME) compliant. See Supplemental Experimental Procedures for more details.
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