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The production of biomass by micro-organisms is of great interest in more and more industrial fields. Their culture in fedbatch bioreactors is largely used and the optimization of the influent flow rate is a major challenge to set the microorganisms in the highest performance conditions. Usually, sets of experiments are achieved to compute macroscopic models expressing the observed growth as a function of the concentrations of glucose, cell density, and any kind of external parameters (pH, temperature, etc. ). In contrast, this paper relies on an intracellular model of a bacteria, which is used to determine the optimal profile of influent flow rate in a fedbatch bioreactor to produce as much biomass as possible. Compared to macroscopic models, the additional elements of this model better describe biological phenomena. The intracellular part of the model also provides a clear interpretation of the obtained optimal influent profile.

I. INTRODUCTION

Bacterial cultures are a central interest in the production of biochemical products and a challenge is to make them grow as fast as possible. Usually, bacteria are placed in a medium containing all the needed nutrients for growth. The objective is then to maintain the highest culture performance, either for the bacterial growth or for other products of interest production. Usually, bioreactors containing bacteria are analyzed and controlled using a growth rate model based on macroscopic observations as for example in [START_REF] Bastin | On-line estimation and adaptive control of bioreactors[END_REF], [START_REF] Srinivasan | Dynamic optimization of batch processes: ı. characterization of the nominal solution[END_REF] or [START_REF] Tebbani | Open-loop optimization and trajectory tracking of a fed-batch bioreactor[END_REF]. In this kind of model, the growth is linked to macroscopic variables such as biomass, substrate and excreted product concentrations in the bioreactor, density of cells or other physical variables. Such models can be as simple as linear relations, Monod kinetics including saturations, Haldane-like formulations with inhibitions taken into account, or combination of different kinetics. The fact remains that the growth rate always has a dominant role in the modelling of the process. However, the growth rate strongly depends on biological factors and intracellular activity. Accurate and general modellings of cellular activity exist in steady-state. [START_REF] Varma | Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type escherichia coli w3110[END_REF] and [START_REF] Goelzer | Cell design in bacteria as a convex optimization problem[END_REF] present two of these models in steady state and [START_REF] Waldherr | Dynamic optimization of metabolic networks coupled with gene expression[END_REF] presents a dynamical model for cellular inner concentrations in metabolites and enzymes. These models are accurate and are able to predict the behaviour of the cells according to 1 Laboratoire des Signaux et Systèmes, CentraleSupélec -CNRS -Univ. Paris-Sud, Université Paris-Saclay, Control Department, Plateau du Moulon, 91190 Gif-sur-Yvette, France (e-mail: firstname.name@centralesupelec.fr) 2 MaIAGE, INRA, UR1404, Université Paris-Saclay, 78350 Jouy-en-Josas, France (e-mail: firstname.name@inra.fr) the external medium composition. Indeed, high numbers of internal variables and parameters (greater than 1000) are taken into account in these models, while considering some general assumptions. In a previous work [START_REF] Jeanne | Modelling and optimization of metabolic pathways in bacteria[END_REF], we proposed an accurate tractable biological model for batch cultivation bioprocess, that combines these two modelling approaches (macroscopic and intracellular models). In the present paper, the model is extended to the case of a fedbatch cultivation bioprocess. In the latter operating mode, this model is further exploited to determine the optimal feeding rate in order to maximize the bacteria growth. The biological part of the model completes the usual macroscopic description and brings the optimal profile closer to biological considerations. This paper also shows that the biological constraints described in the model allow a clear interpretation of the limitations of the cells and a fair characterization of the optimality. This paper is organized as follows: in Section II, the dynamics of the process is presented, further completed in Section III by the description of the related biological constraints in order to fully describe the cells growth. With this model, the optimal feeding strategy that maximizes the bacteria growth for a fedbatch bioreactor is derived, and presented in Section IV with some computational details. Then, in Section V, an analysis of the intracellular model is considered to interpret the determined optimal feeding strategy. Finally, some conclusions and perspectives are drawn in Section VI.

II. DYNAMICS OF THE BIOPROCESS

A. Volume variations

Denoting F in and F out the influent and effluent flow rates respectively (both in L.h -1 ), the variation of the bioreactor medium volume, V react , is given by:

dV react (t) dt = F in (t) -F out (t) (1) 
The bioreactor is supposed to be perfectly stirred and namely the population of bacteria, N pop , is supposed to be perfectly homogeneous in the medium. So, the number of bacteria leaving the reactor at each time instant equals the effluent flow rate multiplied by the relative concentration of bacteria in the bioreactor (N pop /V react ). Hence, with µ(t) the specific growth rate, characterizing the natural growth of the bacterial culture, the evolution of bacteria population is given by [START_REF] Srinivasan | Dynamic optimization of batch processes: ı. characterization of the nominal solution[END_REF].

dN pop (t) dt = µ(t) N pop (t) Growth -F out (t) N pop (t) V react (t) Ef f luent (2) 
Also, assuming the volume of each bacteria, v b , constant with time, the total volume of bacteria, V pop (t) = v b N pop (t), follows the same dynamics:

dV pop (t) dt = µ(t) - F out (t) V react (t) V pop (t) (3) 

B. Concentration variations in terms of fluxes

The mass balance of the compounds in presence is derived from the exchange of material between species. Like in [START_REF] Fredrickson | Formulation of structured growth models[END_REF], a part of the exchanges is material fluxes per unit of bacterial volume. In addition, the influent and effluent flow rates are responsible of material variation. Hence, the variation of the quantities of each intracellular and extracellular species ξ in presence, n ξ , can be expressed in terms of total bacterial volume, reactions fluxes per unit of bacterial volume, ν ξ produced and ν ξ consumed , and influent and effluent flow rates as in [START_REF] Varma | Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type escherichia coli w3110[END_REF].

dn ξ (t) dt = (ν ξ produced (t) -ν ξ consumed (t)) V pop (t) +ξ 0 F in (t) - n ξ (t) Vreact(t) F out (t) (4)
where ξ 0 is the concentration of the species ξ in the influent (null in case of intracellular specie). Expressing the concentration of an internal compound ξ int , denoted [ξ int ], with respect to the volume of bacteria V pop , and the concentration of an external compound ξ ext , denoted [ξ ext ], with respect to the bioreactor volume V react , it comes:

d[ξ int ] dt = d n ξ int Vpop dt = 1 V pop dn ξint dt
eq.( 4)

- [ξ int ] V pop dV pop dt eq.(3) (5) 
and for external concentrations:

d[ξ ext ] dt = d n ξ ext Vreact dt = 1 V react dn ξext dt eq.(4) - [ξ ext ] V react dV react dt eq.(1) (6) 
Merging the equation ( 5) with ( 4) and (3), and the equation ( 6) with ( 4) and (1), leads to:

d[ξint] dt = ±ν ξint -µ[ξ int ] d[ξext] dt = ±ν ξext Vpop Vreact + (ξ 0 -[ξ ext ]) Fin Vreact ( 7 
)
where ±ν ξ = ν ξ produced -ν ξ consumed . Remark: There is a strong analogy with the dynamics described in [START_REF] Bastin | On-line estimation and adaptive control of bioreactors[END_REF] for the growth of one population of microorganisms on a single limiting substrate, recalled:

     dVreact dt = F in -F out dVpop dt = µV pop -F out Vpop Vreact d[S] dt = -Y S µ Vpop Vreact + (S 0 -[S]) Fin Vreact (8)
with the same notations as previously and with Y S the "yield coefficient in substrate consumption by the biomass", and S the single external substrate. Hence, in this framework, the following analogy can be made between the two models:

±ν S = -Y S µ (9) 
Assuming there is no production of S and only its consumption, Y S = ν S consumed /µ is a rational definition for the notion of yield: the ratio of the consumption over the growth.

C. Pool aggregation and fluxes

1) Pool definition: In the bioreactor medium, there are

• bacteria with a volume V pop • a single substrate S ext As in [START_REF] Jeanne | Modelling and optimization of metabolic pathways in bacteria[END_REF], this work relies on the aggregation of the different intracellular species into pools in order to deal with the tradeoff between simplicity and tractability. Almost all cellular components can be categorized in one of these pools:

• S in pool gathers all the intracellular metabolic precursors including intracellular forms of substrate, • e B are all the proteins involved in metabolic network and the proteins complexes engaged in molecular machineries, • e T are the membranous proteins, part of which is involved in the substrate uptake, • e R are the ribosomes, • X B pool consists in all the metabolites and macrocomponents of the cell.

2) Flux expression:

The considered reactions in this model are the same as in [START_REF] Jeanne | Modelling and optimization of metabolic pathways in bacteria[END_REF], that is to say:

• S ext νimport -→ S in , importing the substrate from the external medium to the cells thanks to membranous proteins e T , 

• S in ν X B -→ α B .X B ,
ν = efficiency [enzyme concentration] (10) 
The efficiencies are determined as in [START_REF] Jeanne | Modelling and optimization of metabolic pathways in bacteria[END_REF]:

ν import = r imp v T [S ext ] [S ext ] + K T (1 + [S in ]/K S ) [e T ] ν X B = k B [S in ] [e B ] ν e B = u e B [S in ] [e R ] ν e T = u e T [S in ] [e R ] ν e R = u e R [S in ] [e R ] (11) 
where v T is the maximal import efficiency of transporters, r imp is the proportion of active transporters in the membrane, K T is a constant representing the affinity between e T and the substrate S ext , K S is a constant representing the inhibition of the import flux relative to [S in ], k B is the relative efficiency of metabolism with respect to [S in ], u e B (resp. u e T , u e R ) is level of expression of e B (resp. e T , e R ).

Concerning the import flux ν import , the efficiency is supposed to be saturated by the concentrations in external substrate as it is observed on experiments. The transfer is also supposed to be inhibited by the internal concentration in substrate in order to avoid too high intracellular concentrations. The other efficiencies are linear with respect to internal substrate concentration meaning that the absence of substrate turns these fluxes off.

D. Concentration dynamics

Considering the fluxes expressions given in [START_REF] Marr | Growth rate of escherichia coli[END_REF] and the general formulation of the concentration dynamics [START_REF] Jeanne | Modelling and optimization of metabolic pathways in bacteria[END_REF] and with ( 1) and ( 3), the description of the bioprocess dynamics is derived in [START_REF] Bremer | Modulation of chemical composition and other parameters of the cell at different exponential growth rates[END_REF].

                                                             [S in ] = r imp v T [S ext ][e T ] [S ext ] + K T (1 + [S in ]/K S ) -k B [e B ][S in ] - i∈{B,T,R} u ei [e R ][S in ] -µ[S in ] [e B ] = α e B u e B [e R ][S in ] -µ[e B ] [e T ] = α e T u e T [e R ][S in ] -µ[e T ] [e R ] = α e R u e R [e R ][S in ] -µ[e R ] [X B ] = α B k B [e B ][S in ] -µ[X B ] [S ext ] = - r imp v T [S ext ][e T ] [S ext ] + K T (1 + [S in ]/K S ) V pop V react + (S 0 ext -[S ext ]) F in V react Vpop = µ V pop -F out V pop V react Vreact = F in -F out (12)
The expression of the specific growth rate is detailed hereafter. The values of the parameters can be found in literature ( [START_REF] Goelzer | Quantitative prediction of genome-wide resource allocation in bacteria[END_REF]) and are gathered in table I. [START_REF] Goelzer | Quantitative prediction of genome-wide resource allocation in bacteria[END_REF], EXCEPT FOR THOSE MARKED WITH [*] FROM [START_REF] Jeanne | Modelling and optimization of metabolic pathways in bacteria[END_REF]. "aa" STANDS FOR AMINO ACIDS Param.

Value 

(U nit) v T 1.33 10 6 (L h -1 mmol -1 ) r imp 0.01 K T 0.8 (mmol L -1 ) K S 1 (mmol L -1 ) k B 4.32 10 4 (L h -1 mmol -1 ) aae B 360 ( 

III. BIOLOGICAL LIMITATIONS

The above state variables and dynamics have to respect some biological constraints to reproduce reliably the biological behaviour of the cells. Namely, the growth rate and the limiting ribosome capacity have to be taken into account.

A. Intracellular density regulation

In this model, the specific growth rate µ is assumed to be linked to the mass accumulation in the form of proteins and ribosomes. The intracellular density in joined amino acids, denoted D, is known to be constant over time [START_REF] Kubitschek | Independence of buoyant cell density and growth rate in escherichia coli[END_REF]. Typically, it means that the pools S in and X B do not account in the intracellular density, as in [START_REF] Marr | Growth rate of escherichia coli[END_REF]. The density is expressed as:

D = i∈{B,T,R} aa ei [e i ] (13) 
and thus, its derivative is null, leading to:

Ḋ = 0 = B,T,R aa ei [e i ] 0 = B,T,R aa ei α ei u ei [e R ][S in ] -µ[e i ] 0 = B,T,R aa ei α ei u ei [e R ][S in ] -µ B,T,R aa ei [e i ] 0 = B,T,R aa ei α ei u ei [e R ][S in ] -µD (14) Consequently 
, µ = 1 D B,T,R aa ei α ei u ei [e R ][S in ] (15) 
The specific growth rate is thus determined from the concentrations in ribosomes and in internal substrate.

Computational remark: In order to avoid numerical chattering, a first-order filter with very fast time constant compared to 1/µ can be added either to µ or to D defined as [START_REF] Agrawal | An algorithm for operating a fed-batch fermentor at optimum specific-growth rate[END_REF] and [START_REF] Biegler | An overview of simultaneous strategies for dynamic optimization[END_REF], respectively. Biological remark: the density regulation mechanisms statement notably stands for rod-shaped bacteria like Escherichia coli and Bacillus subtilis.

B. Translation limitation

The ribosomes capacity represents the number of amino acids one ribosome can join together to form peptide chains. As observed in [START_REF] Bremer | Modulation of chemical composition and other parameters of the cell at different exponential growth rates[END_REF], this capacity, k T , is limited by the growth rate as follows:

k T = v k T µ K k T + µ (16)
where v k T is the maximal translation capacity and K k T is a constant representing the growth rate for which the capacity is half its maximal value. This leads to a constraint on the enzyme and ribosome creation fluxes:

i∈{B,T,R} ν ei Total enzymes production ≤ v k T µ K k T + µ Ribosomes capacity [e R ] (17) 
Hence, from [START_REF] Marr | Growth rate of escherichia coli[END_REF]:

[S in ] i∈{B,T,R} u ei ≤ v k T µ K k T + µ (18) 
This constraint must be satisfied at any time.

IV. OPTIMAL FEEDING STRATEGY FOR A FEDBATCH

BIOREACTOR

In the following, the study will focus on a fedbatch bioreactor, i.e. a culture without any effluent flow:

F out = 0 (19) 
The problem considered below consists in maximizing the bacteria growth within a fixed cultivation duration, using the modelling and the constraints developed in Section II and III, and parameters from table I, acting only on the influent flow rate, F in . The derived optimization problem is then expressed as: 

max Fin(t) V pop (t = t f ) subject to,                    concentrations dynamics (12) growth rate (15) translation constraint (18) fixed initial conditions 0 ≤ F in (t) ≤ F M AX 0 ≤ V react (t) ≤ V M AX fixed t f (20) F M AX (resp. V M AX )
0.015 (L) [e T ] 0 14 (mmol L -1 ) Vreact 0 3 (L) [e R ] 0 0.21 (mmol L -1 ) t f 10 (h) [S in ] 0 0.43 (mmol L -1 ) F M AX 0.7 (L h -1 ) [X B ] 0 0.06 (mmol L -1 ) V M AX 10 (L) [Sext] 0 5 (mmol L -1 ) S 0 ext 60 (mmol L -1 )
The solution of problem (20) can be determined by a sequential approach as in [START_REF] Biegler | An overview of simultaneous strategies for dynamic optimization[END_REF] and [START_REF] Tebbani | Open-loop optimization and trajectory tracking of a fed-batch bioreactor[END_REF]. It means that only the control variable, F in , is described by piecewise polynomials and the optimization is made with respect to these polynomial coefficients. The problem is then formulated as a nonlinear programming problem. Here, the command F in is discretized with a zero-order hold with a 7min time step, and equations ( 12), ( 15), (18) are also discretized with an explicit Euler method of sampling time 0.06min. The optimization problem is solved using a Sequential Quadratic Programming algorithm presented in [START_REF] Fletcher | Practical methods of optimization[END_REF].

The obtained optimal influent flow rate profile is depicted in Fig. 1.

The strategy appears to be split in 3 stages: (ii) a sort of exponential curve, (iii) the "exponential" seems to saturate at F in = F M AX . Next Section will analyse and interpret this obtained profile.

(i) F in (t) = F M AX , Time (h)

V. INTERPRETATION

The intra-cellular concentrations have a fast dynamics compared to the extracellular variables ([S ext ], V pop and V react ) which have slower dynamics. Therefore, a model reduction can be applied, based on the assumption that [ξ int ] = 0. Thus, the objective is to determine [ξ int ] as a function of the slow external variables.

A. Model reduction

In the following, the equilibrium of the internal concentration is assumed to be reached and [ξ int ] denotes the of internal compound ξ int at equilibrium. From the ribosomes equilibrium in [START_REF] Bremer | Modulation of chemical composition and other parameters of the cell at different exponential growth rates[END_REF]:

µ = α e R u e R [S in ] (21) 
From the enzymes e B and e T equilibrium in [START_REF] Bremer | Modulation of chemical composition and other parameters of the cell at different exponential growth rates[END_REF] and from (21), it can be shown that:

   [e B ] = αe B ue B [e R ] [Sin] µ = αe B ue B αe R ue R [e R ] [e T ] = αe T ue T [e R ] [Sin] µ = αe T ue T αe R ue R [e R ] (22) 
The constant density in proteins and ribosomes and (22) gives the relation:

[e R ] = α e R u e R i∈{B,T,R} aa ei α ei u ei D (23) 
And once again (22):

[e j ] = α ej u ej i∈{B,T,R} aa ei α ei u ei D, j ∈ {B, T, R} (24) 
This means that the enzyme and ribosome concentrations in steady-state depend on the density D.

Besides, the concentration of intracellular metabolites and macrocomponents is deduced from its equilibrium:

[X B ] = α B k B α e R u e R [e B ] = α B k B α e R u e R α e B u e B i∈{B,T,R}
aa ei α ei u ei D (25) Moreover, (21) can be included in the equation of the equilibrium of S in as in (26). ], the polynomial has two conjugate complex roots and a real positive one. Plotting the latter root as a function of [S ext ] is similar to a Michaelis-Menten shape:

0 = -[e T ]v T r imp [S ext ] + (k B [e B ] + B,T,R u ei [e R ]) ([S ext ] + K T ) [S in ] + (k B [e B ] + B,T,R u ei [e R ]) K T /K S +α e R u e R ([S ext ] + K T ) [S in ] 2 + α e R u e R K T /K S [S in ] 3 ( 
[S in ] ≈ α[Sext] β+[Sext] .
Consequently, from (21), this model reduction shows that the behaviour is similar to the one obtained through a macroscopic approach considering a Monod kinetics law.

B. Focus on the growth rate

As the internal steady state growth rate follows a Monodlike kinetics, the optimal strategy to maximize the growth appears to be to maximize the external substrate concentration. This is the classical strategy when not considering inhibition of the substrate, when the growth strictly increases with the substrate concentration. The asymptotic specific growth rate, µ sup , is given by (27) (from (26) when [S ext ] tends to infinity).

0 = -[e T ]v T r imp + E µsup αe R ue R + α e R u e R µ 2 sup α 2 e R u 2 e R µ sup = -E+ E 2 +4αe R ue R v T rimp[e T ] 2 (27) with E = k B [e B ] + B,T,R u ei [e R ].
Nonetheless, in this context, the translation constraint (18) becomes a limitation on µ as in (28).

[S in ] i∈{B,T,R} u ei ≤ v k T µ K k T +µ µ αe R ue R i∈{B,T,R} u ei ≤ v k T µ K k T +µ µ ≤ v k T αe R ue R i∈{B,T ,R} ue i -K k T ∆ = µ trans (28)
This threshold µ trans has to be compared to µ sup . With the numerical values of table I, it comes:

µ sup = 0.50h -1 µ trans = 0.48h -1 (29) 
Thus, the translation constraint can limit the growth. In fact, under the assumption of intracellular steady state, a too important concentration of external substrate burdens the cells and the translation constraint is saturated. The translation constraint and the steady-state growth rate are both represented in terms of [S ext ] on Fig. 2. It can be seen that the constraint indirectly prevents the substrate from being too concentrated. Hence, the optimal feeding strategy is not to fill the bioreactor at a maximum to increase the substrate concentration as in a Monod-like macroscopic model (see [START_REF] Agrawal | An algorithm for operating a fed-batch fermentor at optimum specific-growth rate[END_REF]) but to keep the system around the point µ = µ trans and so, [S ext ] = [S ext ] trans .

[

C. Time evolutions

Simulation is run with computational details from Section IV and the influent profile F in (t) depicted in Fig. 1. Fig. 3 gathers the time evolutions of the growth rate and the external substrate concentration, and the representation of the real µ versus [S ext ] to complete Fig. 2. The same three stages as in Fig. 1 can be observed: (i) both of the substrate concentration and the growth rate increase, (ii) the substrate concentration and the growth rate are maintained constant. The specific growth rate value equals µ trans , (iii) both of the substrate concentration and the growth rate decrease, corresponding to F in = F M AX . As depicted in Fig. 3.c, obtained growth rate µ is very close to the theoretical one, µ. The difference comes from: (1) the control law discretization, (2) optimization algorithm convergence, and (3) numerical approximation while performing model reduction. Finally, the optimal operating point of the system corresponds to µ ≈ µ trans and [S ext ] ≈ [S ext ] trans . The optimal feeding strategy thus consists in driving the system to this point and maintaining it there until F in reaches its upper bound. The optimal strategy can be split into three stages: (i) as long as [S ext ] < [S ext ] * , increase [S ext ]: F in (t) = F M AX , (ii) as long as F opt (t) < F M AX , keep µ = µ trans , i.e. the translation constraint saturated: F in (t) = F opt (t), (iii) as long as V react < V M AX , F in (t) = F M AX .

(i) (ii) (iii) (i) (ii) (iii) (a) (c) (b) 

VI. CONCLUSIONS AND PERSPECTIVES

The biological constraints and the information they provide on the cell behaviour are complementary to the evolution of every compound in the cells and the reactor. They have to be exploited in the design of control laws as the dynamics of extracellular compounds already are. It is essential to understand what is important for the cells and so how bacteria can be at best in a bioreactor to grow. In this paper, we have shown that an optimal control law profile is perfectly described if we consider the internal limitation in terms of proteins translation limitation. The optimal feeding flow is the one which maintains the internal state of the cells in such a way that resources are present in the maximal quantity with respect to this translation constraint. This optimal feed-rate was determined by means of an intracellular model. A current drawback of this kind of intracellular models is that they have to be assessed by experiments to be fully trustworthy. For instance, some model parameters must be determined. The uncertainty on their values and its impact on the model accuracy and control law optimality will be further investigated in a future work. The optimal flow rate can be moved into a control problem: the optimal operating of the bioreactor can then be expressed as the regulation of the specific growth rate to a given value that corresponds to the maximal capacity of the ribosomes, or equivalently, to regulate the external substrate concentration to the corresponding objective value. Moreover, the control of inner parameters as gene level expressions should be also optimized to improve further the performance of the bioprocess operation. This is investigated in an ongoing work.

  producing metabolites and macrocomponents from S in under the action of enzymes and molecular machineries e B , • S in νe B -→ α e B .e B , creating the metabolic enzymes by ribosomes e R , • S in νe T -→ α e T .e T , creating membranous proteins by ribosomes e R , • S in νe R -→ α e R .e R , producing ribosomes by themselves. A reaction catalysed by an enzyme has a flux equal to:

Fig. 1 .

 1 Fig. 1. Time evolution of the optimal influent flow rate

Fig. 3 .

 3 Fig. 3. (a) the growth rate µ. (b) [Sext] as a function of time. (c) in grey, µ evolution versus [Sext] and in dashed black, recalling µ from Fig.2. mM stands for mmol L -1 .

TABLE I PARAMETERS

 I VALUES. ALL FROM

  is the upper bound on F in (resp. V react ). Considered initial values, bounds, final time and influent flow characteristics are gathered in table II.

  26) Assuming D independent from [S in ], (26) can be seen as a third degree polynomial in [S in ] with coefficients depending on [S ext ]. The roots of this polynomial in [S in ] can be computed with the numerical values of table I and several values of [S ext ]. For every value of [S ext

  Fig.2. Growth rate as a function of external substrate concentration, assuming internal steady-state is reached. In grey, the evolution of µ in steady state, without translation constraint. In black, the equivalent translation constraint in terms of saturation on growth rate, implicitly limiting [Sext] (dotted black line). mM stands for mmol L -1 .
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