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ABSTRACT 

This work seeks to understand the kinetics of O2 and SO2 consumption of air-saturated red 

wine as a function of its chemical composition, and to describe the chemical changes suffered 

during the process in relation to the kinetics. Oxygen Consumption Rates (OCRs) are faster 

with higher copper and epigallocatechin contents and with higher absorbance at 620 nm and 

slower with higher levels of gallic acid and catechin terminal units in tannins. Acetaldehyde 

Reactive Polyphenols (ARPs) may be key elements determining OCRs. It is confirmed that SO2 is 

poorly consumed in the first saturation. Phenylalanine, methionine and maybe, cysteine, seem 

to be consumed instead. A low SO2 consumption is favoured by low levels of SO2, by a low 

availability of free SO2 caused by a high anthocyanin/tannin ratio, and by a polyphenolic profile 

poor in epigallocatechin and rich in catechin-rich tannins. Wines consuming SO2 efficiently 

consume more epigallocatechin, prodelphinidins and procyanidins.  

KEYWORDS: red wine, oxygen consumption rate, sulfur dioxide, polyphenols, epigallocatechin, 

tannins, copper, amino acids  
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1. INTRODUCTION 

Nowadays, the use of oxygen in winemaking is widespread around the world to obtain high 

quality wines. A mild oxidation is known to produce improvements in red wines: more color 

stability due to reactions of oxygen with anthocyanins (Atanasova, Fulcrand, Cheynier, & 

Moutounet, 2002; Cano-Lopez, et al., 2008), softening of astringency and bitterness due to 

reactions of tannins (Cejudo-Bastante, Hermosin-Gutierrez, & Perez-Coello, 2011), aroma 

modulation and decrease of vegetative and green perceptions (Cejudo-Bastante et al., 2011; 

Ortega Heras, Rivero-Perez, Perez-Magarino, Gonzalez-Huerta, & Gonzalez-Sanjose, 2008). 

However, oxygen can also produce undesirable and unpredictable effects. In this context, 

research is required concerning the different effects that oxygen consumption has on wine 

composition, together with a better understanding about the mechanisms implied in wine 

oxidation. Undeniably, models able to predict how the wine is going to respond to contact with 

oxygen would be useful for helping winemakers to make wines more resistant towards 

oxidation.  

Sulfur dioxide (SO2) is the most important chemical used to prevent wine oxidation. It is used 

worldwide and it has not only antioxidant, but also antimicrobial and antioxidasic properties. 

Furthermore, SO2 binds to certain compounds, such as aldehydes, preventing the detection of 

many oxidation-related off-odors even if they are already present (Bueno, Carrascón, & 

Ferreira, 2016). On the other hand, SO2 produces allergic reactions in some individuals, so the 

maximum levels are legally restricted (European Comission Regulation 606/2009, 2009) and 

there is an increasing tendency to produce wines containing lower levels of sulfite. For all of 

this, SO2 has been used for many years, and although many studies are now being conducted 

to replace it by new chemicals with similar properties but with less harmful effects (Guerrero & 

Cantos-Villar, 2015), no replacement has been yet found. 
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Recently, wine oxidation chemistry has been broadly studied (Danilewicz, 2007; Danilewicz, 

2011; Danilewicz, Seccombe, & Whelan, 2008; Laurie, et al., 2012; Singleton, 1987; Ugliano, 

2013), and the general mechanism has been already established. In the first place, molecular 

oxygen accepts electrons from iron and copper ions - Fe(II) and Cu(I) - which act as catalysts 

forming a superoxide ion O2˙
− (hydroperoxyl radical OH-O˙ at wine pH). Phenolic compounds 

with a catechol group are oxidized by Fe(III) to a quinone, and the hydroperoxyl is reduced by 

Fe(II) to hydrogen peroxide. If sulfur dioxide is present, it reacts with hydrogen peroxide, giving 

sulfate and water, and with the quinone, reducing it back to the catechol form or forming a 

product with a sulfonate group. The precise outcome depends on pH and on the structure of 

the polyphenol. Polyphenols having an ortho dihydroxy-or trihydroxy- substitution pattern on 

the aromatic ring, namely B ring of flavanols, or hydroxy-cinnamic acids (caftaric) or 

hydroxybenzoicacids (gallic or protocatechuic acids) are more prone to suffer nucleophilic 

addition. If there is no sulfur dioxide in the wine, hydrogen peroxide can take part in further 

oxidation steps, such as the Fenton reaction (Gambuti, Han, Peterson, & Waterhouse, 2015). In 

this case, iron and copper ions interact with hydrogen peroxide to form the hydroxyl radical 

HO˙, a strong oxidant that reacts with many organic compounds in wine. The most important 

oxidation product of this reaction is acetaldehyde, in as much as ethanol is the most 

concentrated organic compound present in wine. 

Acetaldehyde can further react with flavanols and anthocyanins forming pigments with a 

methylmethine bridge, usually referred as ethyl bridge, between the two units of flavanol and 

anthocyanin (Somers, 1971; Timberlake & Bridle, 1976). Pyranoanthocyanins are also indirect 

oxidation products of anthocyanins. In this case a new pyran ring is formed from the 

nucleophilic addition of alkenes rich in electrons to anthocyanins, such as the addition of 

acetaldehyde (Bakker & Timberlake, 1997), 4-vinylphenol (Fulcrand, dosSantos, 

SarniManchado, Cheynier, & FavreBonvin, 1996) or pyruvic acid (Fulcrand, Benabdeljalil, 

Rigaud, Cheynier, & Moutounet, 1998).  
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Previous works on wine oxidation kinetics have shown that oxygen consumption rates are 

strongly wine-dependent (Vivas & Glories, 1993; Vivas, Vivas de Gaulejac, & Nonier, 2014). In 

wines, higher pH and added ellagitannins can increase oxygen consumption rates (Singleton, 

1987; Vivas & Glories, 1996). In a previous report, initial OCRs were positively related to levels 

of copper, of tannins rich in epigallocatechin structural units and of absorbance at 620 nm (blue 

pigments) (Ferreira, Carrascón, Bueno, Ugliano, & Fernández-Zurbano, 2015). Studies in model 

systems reported a strong dependence of the rate on copper and iron concentrations 

(Danilewicz, 2007) and a positive effect of SO2 in presence of catechin and epicatechin 

(Danilewicz, 2007; Danilewicz, Seccombe, & Whelan, 2008). In wines undergoing micro-

oxygenation, OCR strongly increased when free SO2 was exhausted, which was attributed to 

the Fenton reaction in which radicals are being continuously formed and reacting (Gambuti, 

Han, Peterson, & Waterhouse, 2015).  

In a previous report two different OCRs were defined: a highly variable initial OCR and a rather 

stable average OCR. Initial OCRs were much higher and determined oxygen consumption in the 

first air saturation, notably in the first moments after contact with O2; average OCRs remained 

constant in 3 to 4 consecutive cycles of air-saturation (Ferreira, et al., 2015). Unfortunately, in 

that experiment no specific analyses were performed after the first air-saturation, which made 

it difficult to assess the specific chemical changes linked to the fast oxygen uptake in the first 

saturation. 

This work seeks to study in detail the kinetics of oxygen and sulfur dioxide consumption during 

a single air saturation, to determine the relationship between those kinetics and the wine 

chemical composition and also to evaluate their effects on the chemical changes taking place 

during the process. For that, commercial red wines have been extensively analytical 

characterized before and after the oxidation. Chemical analyses have included dissolved 
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oxygen, sulfur dioxide, acetaldehyde, color, total phenolic index (TPI), Folin-Ciocalteu index, 

metals, phenolics, tannins, amino acids and aroma compounds. 

 

2. MATERIALS AND METHODS 

2.1. Solvents and Chemicals 

Dichloromethane, ethanol and methanol for gas chromatography analyses were purchased 

from Merk (Darmstadt, Germany). Methanol and acetonitrile of HPLC quality were obtained 

from Fluka Analytical (Buchs, Switzerland). Hydrochloric acid 37%, formic acid and ammonium 

formate high purity grade were purchased from VWR Prolabo (Fontenay sous Bois, France). 

Phloroglucinol, ascorbic acid (≥99%), acetaldehyde (≥99.5%), 2-chloroethanol (≥ 99.0%), 

methyl 2-methylbutyrate (≥ 99%), 2-buthanol (≥ 99%), Folin-Ciocalteu’s phenol reagent, 

sodium carbonate (≥ 99%), gallic acid (≥ 99%) and (+)-catechin (≥ 99%)  were supplied by 

Sigma-Aldrich (Madrid, Spain). Sodium metabisulfite 99% (Na2S2O5), tartaric acid (99%), 

glycerol (99.5%), 1,2-propanediol (99.5%), sodium hydroxide (98%), ortho phosphoric acid 

(85%), hydrogen peroxide 3 % stabilized w/v VINIKIT, indicator 4,4, mixed (methyl red-

methylene blue) VINIKIT, sodium hydroxide 0.01 mol/L VINIKIT were from Panreac (Barcelona, 

Spain). Standards and reagents for aroma compounds and amino acids determination were 

purchased from Sigma-Aldrich, Fluka, Panreac, Lancaster, PolyScience, Chemservice and 

Firmenich, and details of the chemicals have been already reported (Hernandez-Orte, Ibarz, 

Cacho, & Ferreira, 2003; Lopez, Aznar, Cacho, & Ferreira, 2002; Ortega, Lopez, Cacho, & 

Ferreira, 2001). Water was purified in a Milli-Q system from Millipore (Bedford, Germany) to 

get a resistance of 18.2 MΩ·cm at 25 °C. 

2.2. Samples and oxidation procedure 

For this study, eight Spanish wines of different vintages, between 2009 and 2014, and two 

different grape varieties, Garnacha (Grenache) and Tempranillo, were purchased at a local 
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store. Details of the samples together with some compositional parameters are shown in table 

1. 

Samples were oxidized in duplicate by saturating the wine with air.  For each wine, two 

separate saturation replicates with 500 mL each, were carried out. This was done by gentle 

shaking 500 mL of wine in a 1 L closed flask for 10 seconds, after which the cap was opened to 

allow fresh air to enter, and the shaking operation was repeated 2 more times. Air-saturated 

wine was then distributed in screw capped 60 mL vials strictly avoiding any headspace, as 

reported by Ferreira et al. (Ferreira, et al., 2015). Dissolved oxygen was monitored at least 

twice a day with PSt3 sensors and an oxygen analyzer from Nomacorc SA (Thimister-Clermont, 

Belgium). Each saturation cycle was considered complete when the wine consumed 90% of the 

initial oxygen or after a week. At that time, the vials were opened inside a glove chamber from 

Jacomex (Dagneux, France) without oxygen (oxygen <0.002%) to get samples for analysis 

avoiding further oxidation of the wine. The rest of the wine was taken out of the chamber to 

undergo a new saturation. Initial and average oxygen consumption rates of each wine were 

determined in duplicate following the method formerly described (Ferreira, Carrascon, Bueno, 

Ugliano, & Fernandez-Zurbano, 2015).  

Initial wines and samples after each saturation were analyzed for free and total SO2 as well as 

for free and total acetaldehyde, color parameters, total polyphenol index and Folin-Ciocalteu 

index. Phenolic and tannin composition, aroma compounds, metals, and amino acids were 

determined in the initial wine and after the first saturation to study in depth this first oxidation 

stage.  

2.3. Sulfur dioxide and acetaldehyde determination 

Free sulfur dioxide and free acetaldehyde were determined by headspace gas chromatography 

with a mass spectrometer detector (HS-GC-MS) in a QP 2010 GC-MS from Shimadzu (Kyoto, 

Japan) with a DB-WAX ETR (30 m x 0.25 mm i.d. x 0.25 µm) capillary column from J&W 
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Scientific (Agilent Technologies, Santa Clara, CA, USA) following the procedure described in 

previous works (Carrascón, Ontañón, Bueno, & Ferreira, 2017). For the analysis of nominally 

free SO2, 4.5 mL of sample acidified with 500 μL of orthophosphoric acid (85%) were incubated 

at 40 °C for 15 min. After this, 400 μL of the headspace were injected in a split/splitless injector 

with a 1:4 split ratio. External calibration curves in model wine (5 g/L tartaric acid, 12% 

ethanol, 1.5% propane-1,2-diol, 10 g/L glycerin, pH 3.5) containing known amounts of sulfur 

dioxide, obtained by dissolving sodium metabisulfite (Na2S2O5) or acetaldehyde were prepared 

to quantify both compounds. Analyses were performed in duplicate. 

For total sulfur dioxide determination, the aspiration/titration method recommended by the 

OIV (International Organization of Vine and Wine) was used (OIV, 2009b). All of the analyses 

were performed in duplicate. 

Total acetaldehyde was determined by gas chromatography with  ame ioni a on detec on 

( C-FID) by injec on of 1  L of wine sample spi ed with 2-butanol as internal standard. A  C 

8000 series from Fisons Instrument ( Ipswich, United Kingdom) with a DB-WAX (30 m x 0.53 

mm of i.d. x 2 µm) capillary column from J&W Scientific (Agilent Technologies, Santa Clara, CA) 

were used. The injector was kept at 250 °C and the split ratio was 1:4. Hydrogen was used as 

carried gas and the pressure was kept at 27.5 kPa. The temperature program was 50 °C for 5 

min and then raised to 220 °C in 10 minutes. The FID temperature was 250 °C and the detector 

gases flows were 95 kPa for the make up gas, 35 kPa for hydrogen and 60 kPa for air. Analyses 

were performed in duplicate. External calibration in model wine (5 g/L tartaric acid, 12% 

ethanol, 1.5% propane-1,2-diol, 10 g/L glycerin, pH 3.5) containing known amounts of 

acetaldehyde was carried out. 

2.4. Spectrophotometric measures 

For color determination, absorbances at wavelengths 420, 520, and 620 nm of undiluted wine 

samples were measured using glass cells with optical paths of 1, 2 or 5 mm, taking the 
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measurement which provided absorbance readings between 0.3 and 0.7, as recommended by 

the OIV (OIV, 2009).  

Total Phenolic Index (TPI) was determined as absorbance at 280 nm as described by Ribereau-

Gayon et al. (Ribéreau-Gayon, Glories, Maujean, & Dubourdieu, 2006).  

Folin-Ciocalteau assay was performed following the method described by Singleton et al. 

(Singleton, Orthofer, & Lamuela-Raventos, 1999) using 1 cm quartz cuvettes. 

All the absorbance measurements were taken in duplicate, using a UV−vis spectrophotometer 

UV-17000 Pharma Spec from Shimadzu (Kyoto, Japan). 

2.5. Metal analyses 

A direct 5-fold aqueous dilution of wine was analyzed by inductively coupled plasma-mass 

spectrometry with collision/reaction cell (CCT-ICP-MS) as it was described by Grindlay et al. in 

2014 (Grindlay et al., 2014) using rhodium as internal standard. Analyses were performed in 

duplicate.  Metals quantified were iron, copper, zinc and manganese. 

2.6. Amino acid analyses 

For the determination of amino acids (valine, methionine, isoleucine, leucine, phenylalanine, 

cysteine), a derivatization procedure with aminoquinolyl-N-hydrosysuccinimidyl carbamate 

(AQC) followed by an analysis by high-performance liquid chromatography (HPLC) was carried 

out in duplicate, according to the method reported by Hernandez-Orte et al. (Hernandez-Orte, 

et al., 2003). A quaternary HPLC system Waters 2695 from Waters (Milford, MA) with a 

fluorescence detector ProStar 363 from Varian (Walnut Creek, CA) were used. 

2.7. UHPLC−DAD-MS2 Analysis 

Ultra-high performance liquid chromatography (UPLC) with diode array detector (DAD) and 

mass spectrometry (MS) was used to study the nonvolatile matter of wines before and after 
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oxidation in the first saturation. They were analyzed in triplicate in positive and negative 

mode. The analysis procedure was described by Vallverdú-Queralt et al. (Vallverdu-Queralt, 

Meudec, Ferreira-Lima, Sommerer, Dangles, Cheynier, et al., 2016).  Samples were filtered (0.2 

µm) and 0.5 µL of the filtered sample was injected. The equipment used was a Waters Acquity 

UPLC–DAD system (Waters, Milford, MA, USA), and the column was a reverse phase Acquity 

BEH C18 column (150 mm length, 1 mm internal diameter, 1.7 µm particle size) from Waters 

(Milford, MA, USA). The autosampler was kept at 8 °C and the column at 35 °C. Mobile phase 

consisted of water 1% formic acid (A) and methanol - 1% formic acid (B) and the flow was 0.08 

mL/min. Gradient for elution was: isocratic with 2% B (1 min), 2–30% B (1–10 min), isocratic 

with 30% B (10–12 min), 30–75% B (12–25 min), 75–90% B (25–30 min), and isocratic with 90% 

B (30–35 min), followed by a column reconditioning. DAD detector recorded the UV–visible 

spectra from 200 to 650 nm. 

The spectrometer hyphenated to the UPLC–DAD system was a Bruker Daltonics Amazon 

(Bruker, Darmstadt, Germany) mass spectrometer, equipped with an electrospray ion source 

(ESI) and an ion trap mass analyzer. It was operated in the negative ion mode with a capillary 

voltage of 4.5 kV and of 2.5 kV in the positive ion mode. The end plate off set was -500 V, 

temperature was kept at 200 °C, nebulizer gas was at 10 psi and dry gas at 5 L/min. For MS2 

fragmentation experiments, collision energy was set at 35 V.  

2.8. Phloroglucinolysis  

Phloroglucinolysis reaction (acid-catalyzed depolymerization in the presence of a nucleophilic 

agent) was used for studying the composition of condensed tannins following the procedure 

described by Kennedy and Jones (Kennedy & Jones, 2001) with some modifications. To analyze 

wine samples, 400 µL of sample were brought to dryness in a centrifugal solvent evaporator 

(Genevac, Ipswich, UK) to obtain a pellet where the tannins were collected. The solid was 

dissolved in 600 µL of a solution of 50 g/L of phloroglucinol and 10 g/L of ascorbic acid in 
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methanol-HCl 0.2M. The mixture was incubated at 50 °C for 20 minutes to complete the 

reaction, cooled in an ice bath and finally, 600 µL ammonium formiate 200 mM were added to 

stop the reaction by increasing pH and stabilize the solution. Samples were centrifuged at 

15000 rpm at 4 °C for 15 min and the supernatants were collected in 1.2 mL vials for analysis. 

The reaction was performed in triplicate for each sample. Depolymerized samples were 

analyzed by UPLC-MS. This analysis gives access to the nature and relative proportions of the 

terminal subunits and the extension subunits released as phloroglucinol derivatives by 

depolymerization. The total to terminal subunits molar ratio gives access to the mean degree 

of polymerization (mDP) (Ducasse, et al., 2010). The samples were analyzed using the same 

method described for the nonvolatile matter in positive and negative mode. Quantification 

was done in equivalents of catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate 

at 280 nm. 

2.9. Aroma analyses 

Major aroma compounds were determined as described by Ortega et al. (Ortega, et al., 2001) 

with some modifications reported recently (Herrero, 2015), by liquid−liquid microextraction of 

the wine with dichloromethane and further analysis in a gas chromatography with flame 

ionization detection in a CP-2800 GC from Varian (Walnut Creek,CA, USA).  Analyses were 

performed in duplicate. 

Minor and trace aroma compounds analysis were performed adapting the procedure 

described by Lopez et al. (Lopez, et al., 2002) but with lower sample and solvent volumes. 

Wine samples (15 mL) were extracted in a 65 mg LiChrolut EN  cartridge, cleaned up with 1.5 

mL of a 30% methanol in water at pH 3 rising solution and finally eluted with 0.6 mL of 

dichloromethane with 5% methanol (v/v). Extractions were performed in duplicate. Extracts 

were directly analyzed by gas chromatography with ion trap mass spectrometry detection 
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according to the conditions reported by Lopez et al. (Lopez, et al., 2002) in a 450-GC and Saturn 

2200 GC/MS from Varian (Walnut Creek, CA, USA). 

2.10. Data treatment and Statistical Analysis 

Partial Least-Squares (PLS) regressions were performed using The Unscrambler 9.7 (CAMO 

Software AS, Oslo, Norway). Correlation studies and Student's t-test were carried out in Excel 

2013 (Microsoft, WA). 

3. RESULTS AND DISCUSSION 

3.1. Initial oxygen consumption rates (OCRs) and initial wine composition 

Wines were oxidized along three consecutive air saturation cycles in duplicate, which made it 

possible to determine initial and average oxygen consumption rates following a previously 

described strategy (Ferreira, et al., 2015).  In such a procedure, wines are subjected to several 

consecutive air saturations with daily oxygen monitoring. The representation of the total 

accumulated amount of oxygen consumed versus time forms a plot in which the points 

corresponding to the accumulated oxygen consumed after the first, second and third (even 

fourth and fifth) saturations lie in a straight line. Taking advantage of this fact and applying 

linear regression analysis, two oxygen consumption rates, an initial and an average rate, can be 

estimated together with their uncertainty. These data are shown in Table 2.  As can be seen, 

the range of initial OCRs varies from 1.95 ± 0.32 to 6.83 ± 0.87 mg/L/day, levels of O2 

consumed in the first saturation were fairly constant, as were also average OCRs.  

In order to understand why wines consume O2 at different initial rates, these were correlated 

to the wine chemical composition. Results, summarized in Table 3, revealed that only pH kept 

a non-significant positive correlation with initial OCRs, while several compounds were 

significantly and negatively correlated, in agreement with a previous report (Ferreira, et al., 

2015). Compounds keeping negative correlations were total acetaldehyde, some constitutive 

subunits of the tannins determined by phloroglucinolysis and one flavanol monomer, 
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epicatechin-3-O-gallate. Moreover, a highly explicative and significant PLS model relating initial 

OCRs to initial wine composition could be obtained (model 1 in Table 4). Attending to the 

model, initial OCRs are negatively correlated to the wine initial contents in total acetaldehyde, 

gallic acid and to the content of catechin in terminal units of the tannins so that wines with 

higher levels of these compounds consume oxygen at slower rates. Conversely, wines with 

higher absorbance at 620 nm, and with higher levels of epigallocatechin and copper consume 

oxygen faster. The pattern of dependence expressed in the model has a strong resemblance to 

the model previously obtained (Ferreira, et al., 2015), which already recognized the essential 

positive role of copper, of the compounds with blue color (responsible for A 620 nm) and the 

negative contribution of gallic acid. The negative role of total acetaldehyde could not be 

identified in that work because only free acetaldehyde was measured.  

It may be naively thought that the negative role of acetaldehyde on wine initial OCRs would be 

related to its ability to interact with SO2. Attending to this, the presence of acetaldehyde, 

would displace the HSO3
- + CH3CHO  CH3CH(OH)SO3

- equilibrium to the right, decreasing 

levels of free SO2 which would be less available, slowing down the reduction/reaction with 

quinones and hence the oxidation process. However, two objections can be made to this 

explanation. First, that this is valid for free acetaldehyde, rather than for total acetaldehyde. 

Second, that this explanation assumes that the availability of SO2 is critical for the 

development of reaction, as found in synthetic wine (Danilewicz, 2007; Danilewicz, et al., 

2008), while neither in the present work or in a previous report (Ferreira, et al., 2015) any 

model or relationship suggest a relevant role for free or total SO2 on the kinetics of oxygen 

consumption in real wines. An alternative explanation should be sought.  

A relevant observation in this sense is the fact that wines with highest amounts of 

acetaldehyde should be wines with smallest amounts of acetaldehyde-reactive polyphenols 

(ARPs) and, conversely, wines with smallest levels of acetaldehyde should be wines with 
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highest levels of ARPs.  It should be noted that there is not a well-defined category of ARPs. 

Acetaldehyde is known to react to anthocyanins, flavanols and tannins to form ethyl-bridged 

polymeric pigments which have less astringency (Cheynier, Duenas-Paton, Salas, Maury, 

Souquet, Sarni-Manchado, et al., 2006; Vidal, Francis, Noble, Kwiatkowski, Cheynier, & Waters, 

2004) and which become resistant to sulfite bleaching (Sheridan & Elias, 2015). According to 

recent data acetaldehyde may react not only to anthocyanidins, but to phenolic acids and 

flavonols (Aleixandre-Tudo, Lizama, Alvarez, Nieuwoudt, Garcia, Aleixandre, et al., 2016) or to 

catechin itself (Sheridan & Elias, 2016). The reaction of some of these ARPs with acetaldehyde 

is much faster than previously expected and takes places, albeit at lower rates, even in the 

presence of equimolar amounts of SO2 (Sheridan & Elias, 2016). The hypothesis is that those 

ARPs, whose levels would be inversely related to the presence of acetaldehyde, would be very 

active in determining wine oxidation kinetics. Such hypothesis would be consistent with the 

fact that wines with highest initial OCRs tended to accumulate smallest levels of acetaldehyde 

during this first saturation, although in this case the relationship did not reach the statistical 

level of significance (table 5). It would be also consistent with the fact that copigments derived 

from ARPs become fairly more inert to SO2 bleaching and oxidation (Boulton, 2001) and less 

astringent (Aleixandre-Tudo et al., 2016) after reaction with acetaldehyde. If astringency is 

mainly driven by the interaction with proline, primary through hydrogen bonds via hydroxyl 

groups, this could imply that those hydroxyl groups are less available in the ethylene bridged 

derivatives. Such smaller availability could also affect their interaction with metals catalyzing 

the oxidation to quinones. Additional experimental work is required to confirm this hypothesis.  

It should be noted that for the second time, initial OCRs have not been found to be related to 

the wine contents in SO2 or iron, while in model solutions these parameters were relevant 

(Danilewicz, 2007; Danilewicz, et al., 2008). This apparent discrepancy could be related to 

limitations of the analytical methodologies or simply to the fact that in real wine the other 

parameters are kinetically determinant. 
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3.2. Initial oxygen consumption rates (OCRs) and effects on wine composition 

The chemical changes suffered by the wines in the first saturation are summarized in Table 5, 

together with their correlation with initial OCRs. As can be seen, none of the compounds more 

affected by oxidation were significantly correlated to OCR. Additionally, it should be noted that 

the positive correlation coefficients at the bottom of the table belong to species whose levels 

decreased during oxidation, and hence indicate that decreases are smaller in wines consuming 

oxygen faster. This means that simple correlation analysis does not provide any clue about the 

existence of any chemical being consumed at higher levels in wines with higher OCRs. This may 

be in part related to limitations of the analyses currently used to characterize the phenolic 

polymeric fraction of wines. Indeed, condensed tannins are only expressed with respect to 

units released by the depolymerization and it has been demonstrated in model solutions that 

the oxidation of tannins generates bonds which do not break under the conditions of the 

depolymerization reaction. The oxidation products remaining as oligomeric residues appear in 

the chromatographic profile as an unresolved and large broad peak more or less flat, under the 

individual peaks of the unoxidized monomers released from depolymerization. These oxidized 

products are not taken into account, to date, in the analysis of tannins. Other reaction 

products, such as ethyl bridged, direct reaction with anthocyanins or other molecules are 

detected with specific markers but are not quantified. Many publications about wine oxidation 

and tannins have addressed this issue in the last decade (Bindon, McCarthy, & Smith, 2014; 

Mouls & Fulcrand, 2012; Poncet-Legrand, Cabane, Bautista-Ortin, Carrillo, Fulcrand, Perez, et 

al., 2010; Vallverdú-Queralt, Meudec, Eder, Lamuela-Raventos, Sommerer, & Cheynier, 2017; 

Vernhet, Dubascoux, Cabane, Fulcrand, Dubreucq, & Poncet-Legrand, 2011).  Nevertheless, 

data in the table confirm that wines with high initial OCRs have a different pattern of oxidation 

characterized by smaller decreases in some subunits released by depolymerization, particularly 

epicatechin and catechin as terminal units or epicatechin-3-o-gallate and catechin as extension 

units.  
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PLS modelling has made it possible to find a highly explicative and significant model relating 

initial OCRs to the chemical changes observed during the first saturation (model 2 in Table 4). 

The model indicates that wines with high initial OCRs produce smaller amounts of total 

acetaldehyde which, as earlier discussed, could be due to the fact that these wines contain 

large amounts of ARPs so that acetaldehyde would be quickly removed by reaction. The model 

also suggests that tannins containing epicatechin-3-o-gallate as terminal units are consumed in 

wines with high initial OCRs, while they are slightly produced in wines with low initial OCRs. 

Gallic acid and tannins rich in catechin as terminal units decrease at higher levels in wines with 

low OCRs, which suggests that they could be substrates consumed in the oxidation, likely by 

reaction with SO2, and that such consumption is more intense at low rates. A final remark that 

can be extracted from the PLS model is that different OCRs in red wines involve different 

changes in the profile of units released from the depolymerization of tannins, especially in the 

terminal units: while slow O2 consumptions are related to strong decreases in catechin units 

and increases in epicatechin-3-O-gallate as terminal units, fast OCRs are linked to higher 

decreases in epicatechin-3-O-gallate and increases in catechin as terminal units. 

3.3. Consumption of sulfur dioxide and its relationship to the initial chemical composition 

Data related to the consumption of SO2 are summarized in Table 2. As can be seen, for an 

oxygen consumption in the first saturation around 7 mg/L, these wines consumed between 9.6 

and 18.8 mg/L of SO2, well below the 28 mg/L theoretically possible according to the expected 

2:1 SO2:O2 stoichiometric molar ratio (Ferreira et al., 2015). These means that between 34 and 

61% of the electrons taken by O2 during its reduction proceeded from SO2 while the rest, 

corresponding to between 3 and 4.7 mg/L of O2, proceeded from the oxidation of other wine 

components, so that the actual molar ratios were between 0.69 and 1.22. All these parameters 

are listed in the table under the headings “SO2 efficiency”, “O2 not SO2” and “molar ratio 
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SO2:O2”, respectively, while their correlation coefficients with the wine chemical composition 

are summarized in Table 6.  

Most remar ably, the “SO2 efficiency” in the second saturation which is given in the last 

column in Table 2, clearly increases in 5 out of the 8 samples, meaning that for a similar O2 

uptake, the wines consumed more SO2 in the second saturation, even if there was less SO2 

available. Moreover, such increases were particularly high in the samples T2_12 and above all 

in T1_11. Such increase is in agreement with results from a previous publication (Carrascón et 

al., 2015) in which the existence of a “preSO2 stage” was described. This phase takes place 

during the first saturation in some of the wines and is characterized by a very low SO2 

consumption, which increases in the second and subsequent saturations if there remains 

enough SO2. 

A low SO2 consumption during the first saturation indicates that wine should contain other 

constituents able to compete with SO2 for the Fe(III) primarily formed upon O2 uptake, for the 

quinones or for the H2O2 generated during oxidation. Those constituents will be depleted in 

the first saturation, which explains why in the second saturation the consumption of SO2 

increases. The competition is obviously enhanced by the fact that some of the wines contained 

relatively low amounts of SO2, as seen in Table 1. Nevertheless, it is noteworthy that SO2 

consumption is just weakly correlated to the levels of free or total SO2 of the wine, as seen in 

Table 6, which suggests that there are other more influential factors determining SO2 

consumption. The list below enumerates some possibilities explaining a low SO2 consumption 

together with the expected correlation with the SO2 consumption parameters: 

1. The existence of highly reactive nucleophiles able to react to quinones before SO2 

(positive correlation to O2 not SO2, negative to SO2:O2 molar ratio and SO2 efficiency) 

2. The existence of an antioxidant able to react to Fe(III) or to H2O2 before SO2 (positive 

correlation to O2 not SO2, negative to SO2:O2 molar ratio and SO2 efficiency) 
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3. The absence of reactive polyphenols whose quinones can easily be reduced back by 

SO2 or react with it (negative correlation to O2 not SO2, positive to SO2:O2 molar ratio 

and SO2 efficiency) 

4. The presence of polyphenols forming stable quinones less reactive to SO2 than to 

other nucleophiles (positive correlation to O2 not SO2, negative to SO2:O2 molar ratio 

and SO2 efficiency) 

On the basis of the correlation coefficients shown in Table 6, epigallocatechin and 

prodelphinidins seem to be the reactive polyphenols mentioned in third place and wines 

containing higher levels of these compounds will consume higher levels of SO2 during 

oxidation.  Conversely, tannins rich in catechin (terminal + extension units) would belong to 

the fourth category and, accordingly, wines richest in these tannins would consume little SO2 

during oxidation. Finally, methionine may act as one of the antioxidants mentioned in the 

second category. Methionine can easily form sulfoxides and sulfones by direct oxidation with 

Fe(III) (Firouzabadi, Iranpoor, & Zolfigol, 1998).  

A quite simple and significant PLS model relating initial composition to the SO2:O2 molar ratio 

(or SO2 efficiency) was obtained (Table 4 model 3) and indicates that the amount of SO2 

consumed during oxidation depends, essentially, on the wine content in epigallocatechin, 

either free or in tannins, and negatively to the anthocyanin/tannin ratio of the wine. This ratio 

was calculated as the ratio of anthocyanins determinated by UPLC-DAD and the total tannins 

resulted in the phloroglucinolysis essay, both of them in mg/L units, and which ranged from 

0.03 to 1.30 in this experiment (table 1). The anthocyanin/tannin ratio is important in enology 

because critically determines the success of co-pigmentation (Boulton, 2001) ), as probable 

indicator of the aptitude for wine ageing (Pérez-Magariño & González-San José, 2006) and as 

the model suggests, is could be also relevant for determining the efficiency in the use of SO2. 

Its negative role could be due to the fact that higher levels of anthocyanins would be 
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responsible for a “de facto” smaller availability of free SO2 because they form weak 

associations to SO2. This result would be in agreement with recent estimations made by Coelho 

et al. (Coelho, Howe & Sacks, 2015) and would confirm that the reference aspiration-titration 

method does not give an accurate estimation of free SO2. 

3.4. Consumption of sulfur dioxide and its effects on the chemical composition 

The magnitude of the compositional changes observed during the first saturation were also 

studied in relation to the efficiency in the use of SO2. According to our previous reasoning, it 

can be argued that a poorer SO2 consumption should concur with: 

1. A stronger decrease of any antioxidant competing with SO2 (negative correlation to O2 

not SO2, positive to SO2:O2 molar ratio and SO2 efficiency) 

2. A stronger decrease of any nucleophile competing with SO2 for reacting with quinones 

(negative correlation to O2 not SO2, positive to SO2:O2 molar ratio and SO2 efficiency) 

3. Smaller decreases of the polyphenols which oxidize strictly following the SO2-centered 

oxidation cycle (positive correlation to O2 not SO2, negative to SO2:O2 molar ratio and 

SO2 efficiency) 

4. Higher increases of the reaction products derived from the compounds in 1) and 2) 

(positive correlation to O2 not SO2, negative to SO2:O2 molar ratio and SO2 efficiency) 

5. Smaller increases of the reaction products derived from the compounds in 3) (negative 

correlation to O2 not SO2, positive to SO2:O2 molar ratio and SO2 efficiency) 

Results of the correlation study are shown in table 6 and indicate, first, that methionine could 

belong to the first category, acting as antioxidant competing with SO2, and reacting well with 

both Fe(III) and H2O2. This is supported in the significant increase of its sulfoxide, shown in 

table 5, in the fact that such increase is significantly correlated to the decrease of methionine 

(P=0.018) and in the weak negative correlation between its sulfone and the SO2 efficiency 

shown in Table 6. The sulfone would belong to the fourth category in the previous list. It is also 
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worth mentioning, that although not correlated to SO2 efficiency, the oxidation involved a 

significant increase in the sulfonate of cysteine (table 5), which suggests that cysteine may act 

also as antioxidant replacing SO2. Second, phenylalanine seems to belong to the 2nd category in 

the list, competing with SO2 for quinones. The addition products of this amino acid have not 

been identified so that different reaction mechanisms, including the Strecker degradation to 

form phenylacetaldehyde should be also possible. The formation of the aldehyde has been 

reported to take place when levels of free SO2 drop below 5 mg/L (Bueno, et al., 2016), a 

threshold reached during the first saturation for most of the wines in the study. It is also 

worthmentioning that the adduct of cysteine with procyanidin increases significantly during 

oxidation (table 5), indicating that cysteine also acts as nucleophile. Third, epigallocatechin and 

prodelphinidins, together with procyanidins are the phenols in the third category: compounds 

which oxidize strictly following the SO2–centered oxidation cycle with a large concomitant 

consumption of SO2. Since these compounds decrease (table 5), their quinones should directly 

react to SO2 rather than being reduced back to the o-diphenol form. Gallic acid would behave 

contrarily and since its decrease is positively correlated to the initial free SO2 levels it seems 

that this phenol is preferably consumed whenever there is few free SO2 available. Finally, the 

pigment guaiacylpyranopeonidin-3-O-glucoside, which is a pyranoanthocyanidin known to be 

formed by reaction of vinylguaiacol with peonidin (Vallverdú-Queralt, et al., 2016) would 

belong to the fifth category in the previous list. 

The best PLS model explaining the effects of efficiency on the pattern of change of the wine is 

seen in Table 4 (model 4) and simply states that an efficient use of SO2 is linked to larger 

decreases of epigallocatechin, prodelphinidins and procyanidin and to a smaller consumption 

of phenylalanine.  

Finally, changes in aroma composition were not very intense (data not shown). It is worth 

mentioning the fact that E-isoeugenol increased significantly and that the increase was 
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negatively and significantly related to SO2 efficiency. This could suggest that this volatile 

phenol is the ending point of an oxidative degradation of polyphenols which are preferably 

consumed through the SO2-alternate mechanism for O2 consumption.  

4. CONCLUSIONS 

Red wines can consume oxygen at quite different initial OCRs, which are critically dependent 

on wine content in copper, epigallocatechin and on A620 and are negatively related to wine 

content in gallic acid and in catechin as terminal units of depolymerisable tannins. The 

apparent role played by acetaldehyde lead to the hypothesis that Acetaldehyde Reactive 

Polyphenols (ARPs) may be key elements determining O2 consumption kinetics. Different initial 

OCRs involve also different changes in the profile of tannins that are able to undergo 

depolymerization: low initial OCRs are related to strong decreases in catechin terminal 

subunits and increases in epicatechin-3-O-gallate as terminal units of tannins; fast OCRs are 

linked to higher decreases in epicatechin-3-O-gallate and increases in catechin as terminal 

units in tannins. 

Regarding SO2 consumption, it is confirmed that in many wines SO2 is particularly poorly 

consumed in the first saturation. Altogether our results strongly suggest that some amino 

acids, notably methionine, phenylalanine and maybe, cysteine, are consumed in the first 

saturation replacing SO2. Preliminary results indicate that cysteine could act as both reactive 

nucleophile and as antioxidant and methionine as antioxidant, while the mechanism of action 

of phenylalanine is not clear at present. A low SO2 consumption, and hence an enhanced 

amino acid consumption, would be favoured by low levels of SO2, by a low availability of free 

SO2 caused by a high anthocyanin/tannin ratio, and by a polyphenolic profile poor in 

epigallocatechin and rich in tannins rich in catechin. On the contrary, wines consuming SO2 

efficiently tend to consume large amounts of epigallocatechin, prodelphinidins and 

procyanidins (particularly C type).   
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Table 1. Basic details about the wines used in the study together with chemical data relevant 

to the oxidation process 

Wine 

Code 
DO 

Grape 

Variety 
Vintage 

Ethanol 

(v/v) 

Total 

acetaldehyde 

(mg/L) 

Total SO2 

(mg/L) 

Free SO2 

(mg/L) 
pH 

Fe 

(mg/L) 

Cu 

(µg/L) 

Tannins 

(mg/L) 
mDP 

Anthocyanins 

(mg/L) / 

Tannins  

(mg/L) 

G1_09 CB G 2009 14.0 15.90 31 2.6 3.32 1.59 28.7 688 4.8 0.029 

G2_13 CB G 2013 15.0 17.63 31 10.5 3.26 1.25 97.8 729 5.2 1.155 

G3_14 Cl G 2014 14.5 20.33 43 14.8 3.29 1.37 55.2 1468 7.8 0.943 

G4_14 CB G 2014 13.5 16.38 37 14.4 3.31 1.50 55.4 1155 6.5 1.350 

T1_11 Rj T 2011 13.5 19.61 76 24.7 3.51 1.25 59.2 819 6.9 0.236 

T2_12 Tr T 2012 14.5 17.78 77 33.7 3.60 0.87 145.3 1363 9.5 0.416 

T3_10 Rj T 2010 13.5 13.90 40 13.3 3.61 1.18 44.3 757 7.6 0.164 

T4_14 Rj T 2014 13.5 17.25 24 10.1 3.58 2.17 239.7 1066 8.4 1.302 

DO: Denomination of origin; CB: Campo de Borja; Cl: Calatayud, Rj: Rioja; Tr: Toro.  
G: Garnacha; T: Tempranillo 
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Table 2. Initial and average oxygen consumption rates (OCRs) and data about the oxygen and 

sulfur dioxide consumed during the first saturation. Standard deviations shown in brackets. 

 

Initial rate 
(mg 

O2/L/day) 

Average rate 
(mg O2/L/day) 

Consumed 
O2 (mg/L) 

Consumed 
SO2 (mg/L) 

O2 not SO2 
(mg/L) 

Molar ratio 
SO2:O2 

SO2 
efficiency 

(%) 

SO2 
efficiency 

(%) 
(2

nd
 sat) 

G1_09 3.70 (0.54) 0.98 (0.05) 7.22 (0.22) 11.2 (1.13) 4.42 (0.07) 0.78 (0.06) 39.1 40.0 

G2_13 4.90 (0.19) 0.905 (0.02) 7.42 (0.13) 10.8 (3.96) 4.72 (0.86) 0.73 (0.25) 36.4 39.1 

G3_14 1.95 (0.32) 0.93 (0.02) 7.32 (0.08) 14.8 (2.83) 3.62 (0.63) 1.01 (0.18) 50.6 57.2 

G4_14 4.29 (0.25) 0.97 (0.02) 6.94 (0.09) 9.6 (2.26) 4.54 (0.66) 0.69 (0.17) 34.6 43.9 

T1_11 4.40 (0.49) 0.88 (0.04) 7.69 (0.28) 18.8 (3.39) 2.99 (0.57) 1.22 (0.18) 61.1 91.8 

T2_12 5.13 (1.11) 0.98 (0.10) 7.60 (0.12) 16.8 (3.39) 3.40 (0.97) 1.11 (0.24) 55.3 70.1 

T3_10 6.83 (0.87) 1.16 (0.10) 7.45 (0.24) 16.0 (0.00) 3.45 (0.24) 1.07 (0.03) 53.7 48.2 

T4_14 5.29 (0.11) 1.25 (0.01) 7.65 (0.06) 14.0 (1.13) 4.15 (0.22) 0.92 (0.07) 45.8 36.7 
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Table 3. Relevant correlation coefficients between initial oxygen consumption rates and wine 

initial compositional parameters. 

 

Correlation coefficients with 
initial OCRs 

pH 0.689 # 

Total Acetaldehyde  -0.708 * 

Epicatechin-3-O-gallate -0.710 * 

Catechin terminal unit ‡ -0.649 
#
 

Epicatechin terminal unit ‡ -0.757 * 

Catechin-ethyl extension unit ‡ -0.713 * 

ns: not significant;   # p(t) < 0.1;    *: p(t) < 0.05 ; ‡ released from tannin depolymerisation 
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Table 4. PLS regression models explaining: 1) the initial oxygen consumption rate in red wines 

as a function of the wine chemical composition 2) the relationship between initial OCRs and 

the chemical changes observed after the first saturation 3) SO2 efficiency (as consumed SO2:O2 

molar ratio) to the initial composition of the wines 4) relationships between SO2 efficiency and 

the chemical changes observed during its oxidation 

(‡): released from tannin depolymerization;  a Values of the model by cross-validation. 

 

 

 

 

 

 

 PLS Regression Model PCs RMSE R2 

1 
Initial rate = 4.560 − 0.766 Total Acetaldehyde - 0.469  allic acid − 0.475 
Catechin terminal unit (‡) + 0.195 Absorbance 620 nm + 0.310 
Epigallocatechin + 0.306 Cu 

5 
0.046 

(0.255)a 
0.999 

(0.971)a 

2 
Initial rate = 4.560 − 0.606 Total Acetaldehyde – 0.114 Folin-Ciocalteu 

index – 0.762  Epicatechin-3-O-gallate terminal unit (‡) +  0.729 Gallic 

acid + 0.494 Catechin terminal unit (‡) 

4 
0.0713 
(0.202)a 

0.997 
(0.982)a 

3 
SO2:O2 molar ratio = 0.940 - 0.085 Anthocyanins/Tannins + 0.053 % 
epigallocatechin in tannins + 0.121 Epigallocatechin 

2 
0.051 

(0.071 )a 
0.921 

(0.884 )a 

4 
SO2:O2 molar ratio = 0.940 - 0.052 Prodelphinidins -0.061  

Epigallocatechin - 0.048  Procyanidins + 0.053 Phenylalanine 
1 

0.053 
(0.076 )a 

0.915 
(0.866 )a 
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Table 5. Average increments during oxidation and relevant correlation coefficients between 

initial oxygen consumption rates and increases of compounds measured in the first oxidation 

cycle. Except where indicated, increments are in mg/L.  

 
Average Increment 

Correlation 
coefficients with 

initial OCRs 

Total SO2 -14.00 (-31.2 %) *** ns 

Free SO2 -6.21 (-40.1%) *** ns 

Combined SO2 -7.79 (-26.5 %) *** ns 

Total Acetaldehyde 1.63 (9.43 %) * -0.625 # 

Free Acetaldehyde 1.53 (100.3 %) * ns 

TPI a -1.38 (-2.43 %) * ns 

Abs420 a 0.266 (7.01 %) *** ns 

Abs520 a 0.356 (7.77 %) * ns 

Abs620 a 0.089 (8.22 %) ** ns 

Color total a 0.711 (7.51 %) ** ns 

Catechin-ethyl extension units ‡ b 3.40 · 107 (12.3 %) ** 0.629 # 

Catechin  (terminal + extension) ‡ 0.525 (6.78 %) * ns 

Epigallocatechin terminal unit ‡ -1.55 (-16.0 %) * ns 

Catechin-ethyl-Malvidin-3-O-Glucoside b 1.30 · 106 (15.2 %) ** ns 

Epigallocatechin -1.37 (-12.7 %) ** ns 

Catechin -3.71 (-11.0 %) ** ns 

Epicatechin -1.39 (-8.93 %) * ns 

Epicatechin-3-O-gallate -0.036 (-29.34 %) * ns 

Methionine -2.54 (-15.0 %) * ns 

Methionine-sulfoxide b 1.12 · 106 (14.0 %) ** ns 

Cysteine-sulfonate b 8.86 · 105 (13.6 %) * ns 

Procyanidin-cysteine b 1.29 · 106 (37.0 %) ** ns 

Compounds not reaching the level of 
significance but important for correlations and 

PLS models 
 

 

Folin-Ciocalteu c 2.61 (0.112 %) ns  

Total depolymerised units from tannins -27.08 (-8%) ns 0.639 # 

Catechin terminal unit ‡ -0.289 (-1.29%) ns 0.724 * 

Epicatechin terminal unit ‡ -1.06 (-7.17%) ns 0.769 * 

Epicatechin-3-o-gallate terminal unit ‡ -0.007 (-2.80 %) ns ns 

Epigallocatechin extension unit ‡ -6.67 (-9.52%) ns 0.663 # 

Catechin extension unit ‡ -0.264 (-10.4 %) ns 0.731 * 

Epicatechin-3-O-gallate extension unit ‡ -0.795 (-13.0 %) ns 0.813 * 

Procyanidins  -10.8 (-3.38%) ns 0.632 # 

Prodelphinidins  -3.22 (-2.72 %) ns ns 

Gallic acid  -3.22 (11.8 %) ns ns 
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a Absorbance units. b Area units. c Concentration in Gallic acid equivalents (mg/L). ‡: released 

from tannin depolymerization.  ns: not significant;   # p(t) < 0.1*: p(t) < 0.05 ;  **: p(t) < 0.01.   

 

Table 6. Relevant correlation coefficients between the two parameters related to the 

efficiency in the consumption of sulphur dioxide during oxidation and the initial wine chemical 

composition and between SO2 efficiency parameters and the compositional changes measured 

during the first oxidation cycle. 

Initial composition O2 not SO2 
Molar ratio SO2:O2 

or SO2 efficiency 

 

Total SO2 -0.785 * 0.759 *  

Free SO2 -0.690 # 0.678 #  

pH -0.643 # 0.693 #  

Abs 520 nm 0.675 # ns  

Prodelphinidins -0.721 * 0.692 #  

mDP ns 0.629 #  

% extension units ‡ -0.641 # 0.646 #  

% terminal units ‡ 0.641 # -0.646 #  

Catechin ‡ 0.876 ** -0.848 **  

Epigallocatechin -0.867 ** 0.902 **  

Methionine 0.638 # -0.688 #  

 Compounds decreasing in the first 

saturation 
O2 not SO2 

Molar ratio SO2:O2 

or SO2 efficiency 
Initial Free SO2 

Δ Prodelphinidins 0.907 ** -0.918 ** ns 

Δ Procyanidins 0.892 ** -0.912 ** ns 
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Δ Gallic acid  -0.627 # 0.663 # 0.748 * 

Δ Epigallocatechin 0.943 *** -0.937 *** -0.713 * 

Δ Epicatechin 0.663 # -0.623 # ns 

Δ Methionine -0.841 * 0.880 ** ns 

Δ Phenylalanine -0.821* 0.819 * ns 

Compounds increasing in the first 

saturation 
O2 not SO2 

Molar ratio SO2:O2 

or SO2 efficiency 
Initial Free SO2 

Δ  uaiacylpyranopeonidin-3-o-glucoside -0.811 * 0.777 * ns 

Δ Methionine-sulfone 0.670 # -0.660 # ns 

‡: released from tannin depolymerization; Δ: increment; ns: not significant;   # p(t) < 0.1;    *: 

p(t) < 0.05 ;  **: p(t) < 0.01; ***: p(t) < 0.001 
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Highlights: 

 

1.- Wine Oxygen Consumption Rates (OCRs) perfectly modeled from chemical composition 

2.- OCRs increase with Cu, epigallocatechin and A620, decrease with gallic acid  

3.- Acetaldehyde Reactive Polyphenols (ARPs) maybe key determining OCRs 

4.- SO2 consumption related to epigallocatechin and to anthocyanin/tannin ratio 

5.- Poor SO2 consumers degrade amino acids and oxidize methionine into its sulfone 

 

 

 


