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METHODOLOGY

An evaluation of inexpensive methods 
for root image acquisition when using 
rhizotrons
Awaz Mohamed1* , Yogan Monnier1, Zhun Mao1, Guillaume Lobet2,3 , Jean‑Luc Maeght4, Merlin Ramel1 
and Alexia Stokes1

Abstract 

Background: Belowground processes play an essential role in ecosystem nutrient cycling and the global carbon 
budget cycle. Quantifying fine root growth is crucial to the understanding of ecosystem structure and function and 
in predicting how ecosystems respond to climate variability. A better understanding of root system growth is neces‑
sary, but choosing the best method of observation is complex, especially in the natural soil environment. Here, we 
compare five methods of root image acquisition using inexpensive technology that is currently available on the mar‑
ket: flatbed scanner, handheld scanner, manual tracing, a smartphone application scanner and a time‑lapse camera. 
Using the five methods, root elongation rate (RER) was measured for three months, on roots of hybrid walnut (Juglans 
nigra × Juglans regia L.) in rhizotrons installed in agroforests.

Results: When all methods were compared together, there were no significant differences in relative cumulative 
root length. However, the time‑lapse camera and the manual tracing method significantly overestimated the relative 
mean diameter of roots compared to the three scanning methods. The smartphone scanning application was found 
to perform best overall when considering image quality and ease of use in the field. The automatic time‑lapse camera 
was useful for measuring RER over several months without any human intervention.

Conclusion: Our results show that inexpensive scanning and automated methods provide correct measurements 
of root elongation and length (but not diameter when using the time‑lapse camera). These methods are capable 
of detecting fine roots to a diameter of 0.1 mm and can therefore be selected by the user depending on the data 
required.
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Background
Fine root growth, defined as apical elongation over time 
[1–3], plays an essential role in the cycling and alloca-
tion of carbon and nutrients in ecosystems [4]. Due to 
the inaccessibility of root systems, special techniques 
are required to investigate the distribution and dynam-
ics of roots, as well as to estimate belowground car-
bon budgets [5, 6]. Today, a number of methods have 
been used to estimate root growth. These methods can 

be grouped into indirect and direct techniques [5, 7], 
both of which have advantages and drawbacks. Indi-
rect methods include the use of empirical models [8], 
estimations of nitrogen budget and carbon budget [7]. 
Direct methods can be classified into (i) destructive 
techniques such as soil coring [9], sequential soil cor-
ing [5], in-growth cores [5, 10], monoliths [11–13] and 
soil pits [14–16], and (ii) nondestructive in situ methods 
including isotope quantification [17], ‘root windows’ 
or rhizotrons [18–21] and minirhizotrons [3, 22, 23]. 
Although there are several criticisms concerning these 
techniques [17], rhizotrons and minirhizotrons are 
considered as efficient approaches and are commonly 
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used to characterize fine root growth [24–26]. Rhizo-
trons can be used to monitor (from initiation to mor-
tality) specific root segments at frequent time intervals 
without significantly impacting root processes [15]. 
However, the drawbacks of these techniques are related 
to the cost of installation and potential changes in soil 
hydrology and physics, which would affect estimates of 
root production [7, 27].

Although many studies on root growth using minirhi-
zotrons have been performed [23, 28], only a small part 
of the root system can be observed. Techniques for 
observing root growth include recording root images 
with digital cameras [23, 29] and rotating scanners (CID, 
Inc., WA, USA) [3], but equipment is expensive. Results 
from contrasting methods on one single species can also 
be highly variable [15]. The disparity in results obtained 
from different methods [15, 16, 30–33] has also been 
attributed to differences in the software used for image 
analysis [34–36].

The quality of images obtained from minirhizotrons 
and rhizotrons is extremely important for an accurate 
quantification of root growth through image analysis. 
The advantage of rhizotrons over minirhizotrons, is that 
a variety of inexpensive techniques exist for quantifying 
root growth in the field. Root systems can be measured 
by tracing onto a transparent plastic sheet [21], scanning 
with a flatbed scanner [30, 32, 34], or a handheld scanner 
[37]. Scanners have often been considered as the most 
useful tool for obtaining high quality images, but neces-
sitate the use of a power supply in the field and are not 
yet fully automated. A detailed comparison of the dif-
ferent types of scanners available has also not yet been 
performed, especially with regard to the scanners now 
available as digital applications on smartphones and tab-
lets. Such a comparative study would be highly useful, 
especially when choosing a particular scanner for a given 
application and considering its cost, robustness, automa-
tion and the quality of the images produced.

With regard to recording automatically images in the 
field, systems that are independent of an electrical power 
supply are not yet available, although automated flatbed 
scanners using 12v batteries for several days have been 
tested successfully in a teak (Tectona grandis) plantation 
in Lao PDR (Maeght, unpublished data). A fully auto-
mated method for measuring root elongation in the field 
would permit studies of growth in poorly accessible areas 
or with a poor power supply, as well as detailed measure-
ments of e.g. effects of the circadian clock on root growth 
in  situ [38]. To date, most circadian clock studies have 
been performed in the laboratory on young plants [38, 
39]. Therefore, the necessity of developing a fully auto-
mated technique to measure root growth in the field is of 
major importance.

We compared the quality of images obtained, and the 
advantages or disadvantages when using several different 
types of scanner to measure root growth in the field. We 
focused on inexpensive technology that is currently avail-
able on the market and so is accessible to a wide range of 
potential users. We assessed these scanning techniques 
in conjunction with a fully manual method (tracing onto 
a plastic sheet) and a fully automated method (time-
lapse camera). Measurements were performed in hybrid 
walnut (Juglans nigra ×  regia L.) agroforests in France. 
Results are discussed with regard to quality, time, and 
cost criteria.

Methods
Comparison of methods for acquiring images
We examined five methods for acquiring images of root 
systems growing in rhizotrons:

Flatbed scanner
There are two common types of flatbed scanner, the CIS 
(Contact Image Sensor) and the CCD (Charge Coupled 
Device) scanners. A CIS scanner is more compact and 
requires less power than a CCD scanners and can usu-
ally run off battery power or the power from a USB port. 
CCD scanners, however, provide higher-resolution scans 
and are capable of scanning with a good depth of field. 
Accordingly, we used an Epson Perfection V370, high 
optical resolution of 4800 dpi and CCD technology that 
relies on a system of mirrors and lenses to project the 
scanned image onto the arrays. The lid of the scanner can 
be removed and the scanner connected to the computer 
via a USB cable and to a 15  V external battery (Fig.  1). 
The scanner can be placed horizontally or vertically. Four 
horizontal scans and a resolution of 300 dpi are needed 
for one 50 × 50 cm rhizotron.

Handheld scanner
Scanners are lightweight (Fig.  1) and portable. We used 
a Vista Quest HS-500 (USA) to take images at 300 dpi. 
Scans were taken by moving the scanner manually down-
wards on the surface of the rhizotron window. Three A4 
(21 cm wide and 45 cm long) images are needed for one 
50 × 50 cm surface in order to include the borders of our 
rhizotrons (see section on “Rhizotron installation”). The 
images can be saved on a micro Secure Digital memory 
card and the scanner requires only two AA alkaline bat-
teries to function.

Manual tracing
If no electronic devices are available in the field, roots 
can be drawn manually with permanent color pens 
onto a transparent sheet placed over the rhizotron win-
dow. Colors indicate different observation times and 
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the date of the observation is noted on the transparent 
sheet. Transparent sheets are then scanned in the labo-
ratory using e.g. a scanner at a resolution of 300 dpi. 
(Sharp MX-3640 N PCL6, Canada). The manual tracing 
technique is not usually adequate for measuring root 
diameter precisely, because root diameter is not known, 
therefore it is not possible to select a pen with the appro-
priate point thickness. Nevertheless, manual tracing can 
be suitable for giving an estimate of root diameter class 
(e.g. Mao et al. [21]). In this study, we visually estimated 
root thickness and tried to use pens with the correct 
point thickness for tracing roots, so that we could com-
pare results with those from the other methods.

Smartphone scanner application
To our knowledge, smartphone scanners have not yet 
been used for imaging root system growth. We took 
images using a scanning application on a smartphone 
(CamScanner INTSIG Information Co., Ltd, Shanghai, 
China) (version 3.9.5). The CamScanner application auto-
matically detects object borders and removes background 
noise using image-processing technologies. This software 

adjusts image details, brightness and contrast and can 
return processed data in a JPG or PDF format. We also 
compared several generations of smartphone (iphone6, 
iphone4, and CAT® S40) to compare the performance of 
the smartphone technology. To use the application on a 
rhizotron in the field, the smartphone must be held at a 
given distance (68 cm in our case) and a fixed scale (tape 
measure) must be scanned simultaneously to calibrate 
the scan (Fig. 2).

Time‑lapse camera
Although often used to monitor the aerial phenology of 
vegetation, to our knowledge, time-lapse cameras have not 
yet been used for automated measurements of root growth 
and phenology in  situ. Time-lapse cameras take photo-
graphs at regular intervals, determined by the user before-
hand. We tested a Cuddeback Attack (U.S.A.) time-lapse 
camera with flash that takes photographs in color using 
LED bulbs (Fig. 1). Each camera was placed on a wooden 
cleat at a distance of 90 cm from the rhizotron. Photographs 
can be taken every 30 s (in our case, we took one photo-
graph at 2 a.m. and at 12 h intervals thereafter). Time-lapse 

Fig. 1 Four different methods were used to take images of walnut tree roots in rhizotrons: a flatbed scanner, b handheld scanner, c smartphone 
scanning application and d time‑lapse camera. In (d), the time‑lapse camera and rhizotron were placed into insulated boxes so that variations 
in temperature did not affect root growth. In the other rhizotrons, insulating material was placed over the rhizotron Plexiglas pane and removed 
before scanning
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cameras can run for several months on an Alkaline battery 
(C (LR14) 1.5 V) without any human intervention.

Comparison of methods
Test 1: previously scanned and measured root systems
To allow for a fully comprehensive comparison of data 
between scanning, manual and automated methods, we 
tested each method on previously scanned and measured 
root system (n = 35), and likewise on a measuring tape 
placed in different positions (Fig. 3) of known dimensions 
in a rhizotron (50 ×  50  cm). The scanned root systems 
were measured using four methods: flatbed scanner, 
handheld scanner, smartphone scanners and the time-
lapse camera. Data were imported to the SmartRoot 
software.

Test 2: Measurements in rhizotrons using scanners 
and manual tracing
We performed measurements at Le Beil, Madic, in the 
Cantal region, France (45°22′7.95″N, 2°28′1.46″E) (see 
section on study site for more details). We started the 

observations in October 2014 and fine root growth 
was measured every month from April to June 2015 
using four methods: flatbed scanner, handheld scan-
ner, smartphone scanner (iphone4) and the manual 
tracing (n  =  25). Walnut fine roots are quite thick 
and so roots ≤ 4 mm in diameter were classed as fine 
roots.

Test 3: Measurements in rhizotrons using a time‑lapse 
camera
A third set of measurements was performed at Cor-
mont, in the Pas de Calais region, France (50°33′27.87″N, 
1°44′3.08″E), (see section on study site for more details). 
Root growth was monitored in six rhizotrons twice a 
day from May to September. We focused our study on 
21 roots growing over a period of 10 days for un easier 
understanding and comparison of results.

Image analysis
Once images of root growth had been acquired, we con-
ducted analyses of images using the semi-automated 

Fig. 2 Examples of images taken by a flatbed scanner, b handheld scanner, c manual tracing on a transparent sheet and d smartphone scanner in 
the same rhizotron at the same date
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SmartRoot software [36]. SmartRoot is an operating 
system independent freeware based on ImageJ and uses 
cross-platform standards (RSML, SQL, and Java) for 
communication with data analysis softwares [36, 40]. 
Before analyzing roots with SmartRoot, when necessary, 
images need “stitching” together (e.g. with Adobe Pho-
toshop CS3 software), if several have been taken (when 
the rhizotron surface area was greater than the field of 
the scanner). In our case, we transformed all images to 
8 bit gray scale and then inverted them using ImageJ 
software so that roots were darker than the background 
of the image. The length and diameter of each root pro-
duced during one interval time (i.e. one month) were 
calculated for each rhizotron. Before analyzing a new 
sequence of images, SmartRoot provides the user with 
an icon to import the traces of the same roots from 
the previous image data file to superimpose them on 
this new image, which helps root elongation. This pre-
ceding image also helps determine whether the root is 
live (usually cream in color) or in a phase of senescence 
(shriveled, transparent or turning black) [3, 41–44]. We 
declared a root dead when it became completely black 
in color.

Study sites
We measured fine root growth in  situ in two agrofor-
ests. One was located at Le Beil, Madic, in the Cantal 
region, France (45°22′7.95″N, 2°28′1.46″E) at an eleva-
tion of 530  m, hereafter termed ‘continental’ climate. 
The agroforest comprised three transplanted tree spe-
cies: hybrid walnut (Juglans major (MJ209) ×  Juglans 
regia L.), cherry (Prunus avium L.), sycamore maple 
(Acer pseudoplatanus L.) at 12  m ×  8  m tree spacing 
and intercropped with permanent pasture (ovine or 
bovine pasture). All national guidelines and legisla-
tion were complied with when using these cultivars. 
Mean diameter at breast height (DBH) of all walnut 
trees at the site was 0.20 ±  0.02  m and mean height 
was 12.09 ±  1.30  m. Data are mean ±  standard error. 
All trees were planted in 1994 at a density of 100 trees 
ha−1. Hybrid walnut at this study site starts leafing in 
early May and shedding in mid-November. The cli-
mate is continental with a mean annual temperature of 
9.95 °C and a mean annual rainfall of 1174 mm (Météo 
France). The soil is silty and not deep, attaining an 
average maximum depth to bedrock of approximately 
110 cm, on a 5°–10° slope.

Fig. 3 We tested the accuracy of a flatbed scanner, b handheld scanner, c smartphone scanner and d time‑lapse camera by measuring root 
systems of known dimensions in the laboratory. A zoom of one root shows the quality of the images taken using each method before and after 
transforming the image to an 8 bit gray scale
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The second agroforest was located at Cormont, in the 
Pas de Calais region, France (50°33′27.87″N, 1°44′3.08″E), 
hereafter termed ‘oceanic’ climate. The site is at an 
altitude of 40  m. The climate is oceanic, with a mean 
annual temperature of 11  °C and a mean annual rainfall 
of 777.9  mm (Météo France). Tree species comprised 
hybrid walnut (Juglans nigra × regia L.) and Maple (Acer 
laurinum L.) at 13  ×  7.5  m tree spacing intercropped 
permanent pasture (ovine pasture). All trees were 
planted in 1999. The soil is silty clay and <2.5 m deep. The 
site is next to La Dordonne River. Mean DBH of walnut 
trees at the site was 0.30 ± 0.03 m and mean height was 
14.75 ± 3.50 m. Hybrid walnut at this site starts leafing in 
early May and shedding in mid-November.

Rhizotron installation
In the continental agroforest (Madic), we dug eight 
(1  m ×  1  m ×  1  m) trenches by hand in three rows of 
trees. Each trench was at a distance of 2 m from the near-
est tree stem. Eight rhizotrons, or root windows (50 cm 
long ×  50  cm wide ×  0.5  cm thick), were installed. In 
the oceanic agroforest (Cormont), soil was deep (4  m) 
and comprised four (2 m long × 1 m wide × 2 m depth) 
trenches in one row of trees placed at 2 m from the near-
est tree stem. One rhizotron was installed on two oppos-
ing faces of the trench (n =  8 rhizotrons in total). All 
rhizotrons were placed vertically at an angle of 15° from 
the face of the profile. This angle will permit the roots 
to grow downwards due to positive geotropism [21, 41]. 
Where the rhizotrons were to be placed on the trench, we 
gently removed the soil to make a flat surface and cut all 
roots on the profile with secateurs. The soil removed dur-
ing the digging of the trenches was kept aside, and then 
sieved through a 5 mm size sieve and air-dried for several 
hours. The sieved and air-dried soil was then poured into 
the space between the window and the soil profile and 
slowly compacted using a wooden plank. Each rhizotron 
was covered with foil backed felt insulation and black 
plastic sheeting to protect roots from light and air tem-
perature variations. All trenches were then covered with 
wooden boards and corrugated plastic to avoid damage 
from passing animals and to prevent direct rainfall and 
sunlight onto the rhizotrons. In the first three months 
after installation, no root growth was recorded to avoid 
over estimations of root growth [17].

Root indicator calculation
We used the following method to estimate root elonga-
tion rate: individual root growth was evaluated by calcu-
lating the difference between the root length at t−1 and 
at t. To determine the daily root elongation rate (RER), 
the mean of all individual root lengths produced between 
time t and t−1 was divided by the duration of the 

corresponding period [3]. According to the literature, the 
characterization of dead roots is not obvious, particularly 
behind a transparent window [42]. We considered a root 
as live when it had a cream color and dead when it had 
turned black with no growth between two or more suc-
cessive sessions until the last observation date occurred 
[3].

The equation we used to calculate RER was:

where, RERt−1, t is the daily root elongation rate (in mm/
day) from inventory time t-1 to t; lent−1 and lent are the 
lengths of the root n at inventory time t−1 and t, respec-
tively; pt−1, t is the period in days between inventory time 
t−1 and t.

At the oceanic site, as we took two photos per day 
(using the time-lapse camera), we aimed at testing 
whether our method could be used to estimate differ-
ences in RER during the day and at night [38]. Root elon-
gation during 12  h during the daytime and night was 
calculated using: 

where REday and REnight are root elongation lengths (in 
mm) during 12 h during daytime and night, repectively; 
lentd1, lentn1 and lentd2 are the lengths of a root succes-
sively observed at daytime 1 (2  pm), night time (2  am) 
and daytime 2 (2 pm), respectively.

Semi‑quantitative scoring decision matrix
Three criteria were taken into account to evaluate the 
five methods: (i) accuracy (image quality and resolu-
tion, deformation and contrast), (ii) effectiveness (time, 
expenditure and labour) and (iii) adaptability (ease of use 
in field and necessity of accessories).

Statistical analysis
Root length and diameter obtained using each method 
were correlated with the previously scanned and meas-
ured root systems, to determine which method gave the 
best fit. Similarly, results from different generations of 
smartphones were compared. We then calculated rela-
tive values for cumulative length, mean diameter and 
RER, with regard to the flatbed scanner (reference value), 
which we assumed gave the most accurate dimensions 
[30, 32]. To calculate the relative value, we divided the 
value obtained for individual roots (using each method) 
by that obtained using the flatbed scanner.

A Shapiro–Wilk test was performed before each test 
to ensure if the investigated indicator followed a normal 
or non-normal distribution. Homogeneity of variances 

RERt−1, t =
lent − lent−1

Pt-1, t

REday = lentn1 − lentd1
REnight = lentd2 − lentn1
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was checked. For data not normally distributed, analyses 
were followed by a Kruskal–Wallis Test for each factor. A 
post hoc analysis between root diameters was performed 
using the Nemenyi test of Kruskal–Wallis at p < 0.05 to 
determine which levels of the independent variable differ 
from every other level. All analyses were performed using 
R software, Version 2.15.3 (R Development Core Team 
2013) at a significance level of <0.05.

Results
Test 1: Previously scanned and measured root systems
When images from the different generations of smart-
phone were compared, no significant differences were 
found with regard to root length and diameter between 
any models. When all methods (except for manual trac-
ing) were compared together, there were no significant 
differences in the relative cumulative length of previ-
ously scanned and measured root systems. However, the 
time-lapse camera significantly overestimated the relative 
mean diameter of previously scanned and measured root 
systems compared to the other three methods (p < 0.001, 
Fig. 4). Although our time-lapse cameras had a high reso-
lution (20 megapixels), this overestimation was likely due 
to the low optical resolution leading to a poorer quality of 
image. The SmartRoot software estimates the diameter of 

the root by diagonally measuring nodes along each root, 
but if the image is of low quality, SmartRoot will not be 
able to detect and distinguish correctly the border of the 
root (Fig. 3).

Test 2: Measurements in rhizotrons using scanners 
and manual tracing
There were no significant differences in relative RER 
between the four scanning methods (Fig.  5). However, 
manual tracing on transparent sheets significantly over-
estimated the relative mean diameter of roots (p < 0.001, 
Fig.  6). This overestimation was due partly to human 
error, as the Plexiglas window and the plastic sheet 
resulting in multiple layers, obscuring the root outlines, 
as well as the pens being either too thick or too fine for 
matching root diameter exactly.

Test 3: Measurements in rhizotrons using a time‑lapse 
camera
Some individual roots were found to elongate up to 
20  mm in a single day (Fig.  7) and when mean elon-
gation was cumulated over a period of 10  days, up to 
48  mm of growth occurred  (Fig.  8). When comparing 
root elongation between day and night (with a period 

Fig. 4 Comparison of the relative mean diameter (mm) of roots from 
root systems of known dimensions. The time‑lapse camera signifi‑
cantly overestimated the diameter of roots compared to the three 
scanning methods (p < 0.001). Each circle represents diameter data 
for one root. Differences in shading intensity of circles indicate that 
one or more data points are superimposed. The lower edge of the box 
corresponds to the 25th percentile (Q1) data point, while the top edge 
of the box corresponds to the 75th percentile data point (Q3). The line 
within the box represents the median and the whiskers indicate the 
range of the data. The two horizontal dashed lines represent an interval 
of 10% above and below the median of the reference method (flat‑
bed scanner). Different letters above the boxplots indicate statistically 
significant differences (p < 0.05) between methods

Fig. 5 Comparison of the relative root elongation rate (RER) between 
the different image acquisition methods. Each circle represents RER 
for one root. Differences in shading intensity of circles indicate that 
one or more data points are superimposed. There were no significant 
differences in RER between the four methods. Each circle represents 
diameter data for one root. Differences in shading intensity of circles 
indicate that one or more data points are superimposed. The lower 
edge of the box corresponds to the 25th percentile (Q1) data point, 
while the top edge of the box corresponds to the 75th percentile data 
point (Q3). The line within the box represents the median and the 
whiskers indicate the range of the data. The two horizontal dashed 
lines represent an interval of 10% above and below the median of the 
reference method (flatbed scanner). Different letters above the boxplots 
indicate statistically significant differences (p < 0.05) between meth‑
ods
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of 12  h between the two measurements) no overall sig-
nificant differences were found over the 10  day period 
examined (Fig. 7) or over the whole lifetime of individual 
roots (Fig.  8). This method therefore also allowed us to 
estimate differences in root elongation between day and 
night. 

Discussion
Studies on root growth have been numerous over the last 
decade and a significant progress in evaluating root mor-
phology has been made. However, research remains chal-
lenging and costly especially in the natural environment. 
Many nondestructive methods, such as rhizotrons [18–
21] and minirhizotrons [3, 22, 23] have been developed to 
overcome some of the limitations of observing root sys-
tems in the natural environment and to offer direct and 
repeated observations of root system morphology. Image 
quality obtained from rhizotrons and minirhizotrons 
is crucial for an accurate quantification of root growth 
through image analysis.

We showed that all five methods for imaging root sys-
tems can be used to determine root length, but that if 
accurate measurements of root diameter are required, a 
scanner must be used, and not the time-lapse camera nor 
manual tracing. The smartphone scanning application 

was found to be perform best overall when considering 
image quality. Images were sharply contrasted, of high 
resolution and deformation was minimal. The applica-
tion was free for smartphones and did not need any 
accessories. Only a short amount of time was spent in 
the field acquiring data and image treatment can be car-
ried out directly in the application (Table  1). Another 
advantage of the smartphone is its genericity and wide 
community of developers and any of the models tested 
could be used, with no consequences for results obtained. 
Many third party hardwares (such as additional lenses, 
holders, batteries) and software tools (automated cloud 
backup, automated geographical tagging, etc.) are avail-
able, often at minimal cost. It should also be noted that 
the quality of the smartphone camera and the lifetime 
of batteries have been constantly improved by manu-
facturers, probably at a much faster rate than for spe-
cialized equipment. In contrast, the flatbed scanner has 
many accessories so it is not easily transportable and 
needs four images for one 50 × 50 cm rhizotron, there-
fore much time is needed in the laboratory to merge 
images before analyzing them. Additionally, automatic 
flatbed scanners have not been developed yet. Thus, the 
scanner cannot automatically acquire images in the field 
over a long period because of the need for a power sup-
ply in the field. However, the method was rapid, easy to 
use and inexpensive. Image quality was very high as also 
found by other users [30, 32, 45] (Table 1). Likewise, the 
advantage of the handheld scanner is that it is quick, 
portable and the images are of good quality [37]. Three 
images were needed for one 50  ×  50  cm surface with 
this method, and the major constraint with this scanner 
is the size of images (29.7 ×  21.0  cm), so more time is 
needed for merging images manually before analyzing 
them (Table  1). The distinct advantage of tracing onto 
transparent sheets is their inexpensive price (Table  1), 
but inaccuracies due to human error and optical effects 
occur, resulting in an overestimation of root diameter. 
As scanning methods are not yet automated for use in 
the field, the main advantage of the time-lapse camera 
is that it can be left in place for several months without 
any manual intervention and it is relatively inexpensive 
(Table  1). However, the quality of images taken with 
the time-lapse cameras was poor and a certain amount 
of reflection occurs due to the flash, leading to an ulti-
mate overestimation of root diameter. The low quality of 
images taken is because the lenses have less optical reso-
lution compared to e.g. a smartphone camera, resulting 
in blurred photos. The optical resolution represents the 
physical resolution to resolve detail in the object that is 
being imaged via an imaging system. Smartphone cam-
eras and digital cameras have been developed to be capa-
ble of defining the smallest discernible detail in an image, 

Fig. 6 Comparison of the relative mean diameter (mm) of roots 
growing in rhizotrons in situ. Manual drawing on transparent sheets 
significantly overestimated the mean diameter of roots compared to 
the three scanning methods (p < 0.001). Each circle represents diam‑
eter data for one root. Differences in shading intensity of circles indi‑
cate that one or more data points are superimposed. The lower edge 
of the box corresponds to the 25th percentile (Q1) data point, while 
the top edge of the box corresponds to the 75th percentile data point 
(Q3). The line within the box represents the median and the whiskers 
indicate the range of the data. The two horizontal dashed lines repre‑
sent an interval of 10% above and below the median of the reference 
method (flatbed scanner). Different letters above the boxplots indicate 
statistically significant differences (p < 0.05) between methods
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resulting in a better spatial resolution which states the 
clarity of an image and this resolution refers to the num-
ber of pixels used to construct the image. This spatial 
resolution depends on properties of the system creating 
the image, not just the pixel resolution (pixels per inch). 
For example, in our study, although the smartphone had 
less resolution (5 megapixels) than the time-lapse camera 
(20 megapixels), it produced a better quality of image. 
This quality is because the smartphone imaging system 
can detect spatial differences and this spatial resolution 
can be influenced by diffraction, aberrations, imperfect 

focus, lens, size of the sensor and other imaging system 
components. Furthermore, as the automated time-lapse 
camera was programmed to autofocus mode, the cam-
era may focus on the wrong part of the image depend-
ing on the environment where the image is captured. We 
successfully used the time-lapse camera to compare root 
elongation during the day and at night, but no significant 
differences were found. Nevertheless, from Figs. 7 and 8, 
it can be seen that some roots grow mostly at night and 
others grow mostly during the day, although the reason 
for this disparity between roots is not known.

Fig. 7 Root elongation reached 20 mm day−1 in certain roots. No significant differences were found in elongation between day and night over an 
interval of 10 days measured using a time‑lapse camera. The red color represents root elongation during the day (data above the 0 on y axis) and 
the blue color represents root elongation during the night (data below the 0 on y axis). If no bars are present, roots did not grow during that period 
(even though they were still alive). The date above the first data point indicates when root growth started
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To the best of our knowledge, the smartphone scanning 
application and an automated time-lapse camera have 
never been used to measure root growth in the field. Both 
methods are inexpensive and easy to use, especially com-
pared to more sophisticated techniques such as minirhi-
zotron scanners. The advantage of rhizotrons over 
minirhizotrons is that the above variety of inexpensive 
techniques exist worldwide for quantifying root growth 

in the field. The equipment needed to observe and record 
color video pictures of roots in minirhizotrons [9, 46] is 
commercially available at a cost of approximately 10,000 
euros for one circular scanner [3] or one camera video. 
Additionally, the field of vision in a minirhizotron is small 
(20 × 20 cm) and is not suitable for heterogeneous for-
est stands, where the spatial position of roots of differ-
ent diameter classes can lead to root-free patches in the 

Fig. 8 Root elongation (mm) in the daytime and at night, estimated using a time‑lapse camera. Symbols: circles root elongation during the day, 
triangles root elongation during the night. For (a–s), each graph represents the elongation rate of one root randomly selected from a rhizotron 
throughout its entire lifespan
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soil. The 50 ×  50  cm rhizotrons we used in our study 
enable more tree roots to be captured in one image, thus 
increasing statistical robustness.

Conclusion
We tested several methods for monitoring root growth 
and acquiring images in rhizotrons in the field. Our 
results show that scanners and time-lapse cameras pro-
vide correct measurements of root growth and length 
in the field but users should be aware of possible arti-
facts. Time-lapse cameras overestimate root diameter 
but are useful for taking frequent images of root elon-
gation in the field over several months, without any 
manual intervention. Taking into account image accu-
racy, time spent and cost, we found the smartphone 
scanner to be the optimal method for monitoring root 
growth in the field. Future generations of smartphones 
could scan images and transfer data automatically, with 
a minimum of human intervention, thus improving 
the methodology. Likewise, the development of digital 
time-lapse cameras with a higher optical resolution, or 
similar to the optical resolution of smartphones, should 
also be undertaken.
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