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Abstract 

Numerical plant models can predict the outcome of plant traits modifications resulting from genetic 

variations, on plant performance, by simulating physiological processes and their interaction with the 

environment. Optimization methods complement those models to design ideotypes, i.e. ideal values of 

a set of plant traits resulting in optimal adaptation for given combinations of environment and 

management, mainly through the maximization of a performance criteria (e.g. yield, light 

interception). As use of simulation models gains momentum in plant breeding, numerical experiments 

must be carefully engineered to provide accurate and attainable results, rooting them in biological 

reality. Here, we propose a multi-objective optimization formulation that includes a metric of 

performance, returned by the numerical model, and a metric of feasibility, accounting for correlations 

between traits based on field observations. We applied this approach to two contrasting models: a 

process-based crop model of sunflower and a functional-structural plant model of apple trees. In both 

cases, the method successfully characterized key plant traits and identified a continuum of optimal 

solutions, ranging from the most feasible to the most efficient.  

The present study thus provides successful proof of concept for this enhanced modeling approach, 

which identified paths for desirable trait modification, including direction and intensity. 
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Introduction 

Using simulation models to optimize phenotype 
Global demand for agricultural products to supply food, feed, and fuel is rapidly increasing (Edgerton 

2009). One option to meet this growing agriculture need is to continue improving plant productivity 

per unit of cultivated land area. However, after decades of increase, many major crops have recently 

shown slower rates of yield improvement, stagnation, or even loss of productivity (Ray et al. 2012). 

This situation likely results from the negative effects of global climate change and societal prejudice 

that perceives environmental costs and limits agricultural resources, for example, public policies to 

reduce the use of chemicals in disease management programs (Sutton 1996). Overcoming these 

challenges will require that breeders continue the genetic improvement of major crops accounting for 

changing agricultural practices towards sustainable production systems (Vanloqueren & Baret 2009). 

In general, selecting plant traits associated with improvements in crop yield is difficult. Improvements 

at the organ or plant level must scale to the field level and these increases must not be gained at the 

expense of other traits that may ultimately offset yield advances (Sinclair et al. 2004). In addition, the 

specific environment where the crop is grown has a significant effect on yield. These genotype   

environment (G   E) interactions require considerable experimental effort to identify the persistent 

traits that contribute to yield increases across many environments. The effort required is redoubled in 

pluri-annual crops where data, collected over changing environments, are difficult to interpret for 

complex phenotypes or at a fine scale. Computer-based modeling approaches have recently emerged 

as a method to save time, labor, and resources and to infer traits value beyond field experiments (Da 

Silva et al. 2014b; Martre et al. 2015a; Casadebaig et al. 2016b ). 

This computer-based strategy has been developed over the past two decades using a number of 

simulation models. These software models derive from mathematical equations that represent the 

biological processes that influence plant growth and development as a function of time, environment 

(climate, soil, and management), and genotype-dependent parameters. Those parameters are expected 

to be more heritable than complex traits, less prone to G x E interactions and to have a less complex 

genetic architecture (Heslot et al. 2014). These parameters also represent a range of functional traits, 

i.e any morphological, physiological, phenological or behavioral feature that is measurable at the 

individual level (Violle et al. 2007). In this case, simulation is used as a tool to predict trait   trait and 

trait   environment interactions when scaling from the individual plant to the field level. 

Depending on their structure, simulation models can be referred to as process-based crop models or 

functional-structural plant models. Process-based models are defined at the plot scale, often without 

an explicit representation of individual plants and focus on predicting crop performance, mainly 

harvestable organ yield or quality. Differences in the physiological framework (e.g radiation-based or 

water-based biomass production) lead to distinct families of process-based model that have been used 

worldwide (Ritchie & Otter 1985; Keating et al. 2003; Brisson et al. 2003; Stockle et al. 2003). Such 

models are used to explore the G   E landscape and assist breeding programs by taking advantage of 

genetic and environmental resources (e.g. Chapman et al. 2003; Hammer et al. 2006; Jeuffroy et al. 

2014). By contrast, functional-structural plant models particularly represent the plant structure (i.e. its 

topology and geometry) linked with the functions that allow the plant to interact with its environment, 

i.e. light interception, photosynthesis, carbon allocation, etc. (DeJong et al. 2011). Depending on the 

objectives, these models focus on specific plant structure such as trunk and wood (Nikinmaa et al. 

2003) vegetative development (Fournier & Andrieu 1999; Costes et al. 2008; Lopez et al. 2008), or 

fruit development (Allen et al. 2005). 

The concept of ideotype describes the idealized realization of a plant phenotype, "a biological model 

which is expected to perform or behave in a predictable manner within a defined environment" 

(Donald 1968). This definition provides the breeder with a guide for characterization of cultivar by 

identifying and selecting for particular features in progenies. Model-assisted phenotyping and 

ideotype design is a research domain with recent developments (Martre et al. 2015b). These advances 

formulates ideotype design as an optimization of model inputs related to plant traits (Quilot-Turion et 

al. 2012; Semenov & Stratonovitch 2013; Da Silva et al. 2014b; Semenov et al. 2014; Paleari et al. 
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2015; Ding et al. 2016), allelic combinations (e.g. Letort et al. 2008; Quilot-Turion et al. 2016), or 

management options (Grechi et al. 2012; Wu et al. 2012). These approaches have been used for 

different goals, including understanding crop adaptation to climate change (Semenov & Stratonovitch 

2013; Semenov et al. 2014; Paleari et al. 2015), sustainable production (Quilot-Turion et al. 2012) or 

integrated pest management (Grechi et al. 2012). 

Research objectives and challenges 
Despite the observation of trait correlation, i.e. traits covary among individuals within a population, 

current model-based ideotype designs do not formally consider these correlations. This failure to 

account for trait correlations can lead to numerical experiments that are not well rooted in biological 

reality and ultimately fail to provide meaningful data to the breeder. These correlations are observed 

at the phenotypic level and result from differences in the variances and covariances at the genetic (G) 

and environmental (E) level (and their interactions, GxE), or between consecutive years or branching 

orders in perennial plants (Segura et al. 2008). Multi-environmental trials allow separation of the 

variance and covariance components for G, E and GxE. However, this process is generally based on 

the assumption that covariance structure for E does not depend on the genotype, and vice versa. 

Here, we propose a notion of feasibility, that can be viewed as the probability that the breeder will be 

able to find progenies having the expected ideotype from a cross between given parents, based on 

meiosis. The distribution of a trait reflects its dispersion and the possibility of its selection. Thus, 

many individuals will have values close to the mean value of the progeny while some individuals will 

have a phenotype more extreme than the parents (heterotic or transgressive traits). In this perspective, 

some trait associations may be unlikely due to negative correlations between the traits, possibly from 

physiological antagonisms. Other traits may be difficult to dissociate due to close proximity of their 

respective key genes (linkage), which can result in a lack of genetic recombinants. In addition, several 

genes may interact and have a combined effect on a given trait (epistasis) or one gene may 

simultaneously affect several traits (pleiotropy). Thus, the architecture of variances and correlations 

between traits reveals the feasibility of jointly selecting traits to bolster genetic gain. 

In our approach, we define a feasibility criterion, based on the observed joint distribution of the traits 

used as model parameters, as a possible means of improving the validity of ideotype design. 

Introducing real data is a means to control the optimization process and can be used to improve 

predictions similar to data assimilation for dynamic models. From an operational point of view, we 

focus on empirical correlations observed at the plant level (in agronomic plant populations); the 

aforementioned distinctions between genetic and environmental variances are not considered in this 

work. Indeed, due to the sample size, these empirical, phenotypic correlations were expected to be 

more robust than inferred genetic correlations. 

The present work evaluated an apple tree orchard and a sunflower crop to design realistic and efficient 

plant ideotypes. The study relied on two numerical models: a functional-structural plant model for the 

apple tree (MAppleT, Costes et al. 2008) and a process-based model for the sunflower crop 

(SUNFLO, Casadebaig et al. 2011; Lecoeur et al. 2011). These examples targeted different steps in 

the breeding process and considered different sources for genetic variability:(1) upstream sources, 

with a segregating population of apple tree, and (2) downstream sources, with a collection of 

sunflower cultivars. In both cases, we used a unified multi-objective optimization formulation to solve 

the ideotyping problem. We used a metric of performance returned by the numerical model, and the 

introduced metric of feasibility based on observations. The main objective of our approach was to 

improve the realism of model-based ideotype design, and no modification of the simulation models 

was required: the approach we propose is therefore suitable for different types of simulation models 

(process-based, functional structural, etc.) or input data. 
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Materials and methods 

Apple tree orchards 
Breeding programs for apple have primarily focused on major traits, such as disease resistance and 

fruit quality, despite the desirability of additional traits, such as bearing regularity or an optimized 

fruit distribution in the canopy (Lespinasse et al. 1992 ; Laurens et al. 2000). More recently, new 

selection criteria have been proposed that allow adaptation to climate change. Such traits include tree 

architecture (leaf area, branching), phenology (flowering, vegetative shoot, and fruit maturation), and 

the ability to tolerate periods of water deprivation during the growing season. 

The architecture of a tree determines the three-dimensional foliage distribution and consequently the 

efficiency of light interception. It thereby impacts water transport and transpiration as well as carbon 

acquisition and allocation (Costes et al. 2006). Thus improvement of light penetration within tree 

canopies has been an objective of management options for physically constraining plant growth (Lauri 

2002). The optimization of tree architecture could also be achieved through genetics and breeding to 

complement and eventually reduce human intervention with training systems. Ideally, the within-

species genetic variability could be used for defining ideotypes in plant breeding. However, it remains 

difficult to integrate architectural traits in breeding programs due to the complex changes in trait 

values during tree development (Laurens et al. 2000). 

Model description 
There exist few methods to quantify and objectively compare the impact of training systems and 

cultivars on light interception efficiency. Moreover, the complexity of fruit tree structure, the large 

number of trees required for experiments in quantitative genetics, and the long growth period makes it 

difficult to use real trees to explore the link between the genetic variation of tree architecture and light 

interception throughout tree development. 

In this context, MAppleT was developed to explore wide ranges of tree geometries and topologies in 

silico. MAppleT is a functional-structural plant model that simulates apple tree development over 

years, considering both topology and geometry in interaction with the environment (including gravity 

in regard to branch bending) (Costes et al. 2008). The growth and branching processes are simulated 

with Markov chains and hidden semi-Markov chains, respectively, estimated based on previously 

collected data (Costes & Guédon 2002; Costes et al. 2003; Renton et al. 2006). For geometrical 

development, branch bending is supported by a biomechanical model (Alméras 2001; Taylor-Hell 

2005), taking into account the intra-year dynamics of primary, secondary and fruit growth. A detailed 

documentation on the model variables, parameters, and implementation can be found online at the 

MAppleT project repository (Cokelaer 2017). 

Initially parameterized for the Fuji cultivar, MAppleT outputs represent the progression of tree form 

and topology over time and were assessed by comparing descriptors between simulated and digitized 

trees (Costes et al. 2008). The model was used in virtual experiments in which apple trees were 

simulated and coupled with  SLIM, i.e. MultiScale Light Interception Model, which estimates 

radiation attenuation from statistical description of foliage at different scales (Da Silva et al. 2008). In 

silico experiments explored different combinations of geometrical and topological traits and their 

effects on light interception, considered as one of the key parameters to optimize fruit tree production 

(Han et al. 2012; Da Silva et al. 2014a b). 

Design of experiments 
Our work focused on four key geometrical traits: branching angle (BA), internode length (IL), top 

shoot diameter (TSD), and leaf area (LA). These traits were selected based on previous investigations 

by (Han et al. 2012; Da Silva et al. 2014a) because of the assumed influence on the three-dimensional 

distribution of leaves and therefore on light interception. The performance metric in this study is the 

integrated projected leaf area (iPLA) for five-year-old trees, a global descriptor of the light 

interception efficiency of a tree. The iPLA is the result of a weighted mean of 46 directional projected 

leaf areas. The 46 used directions are the central directions of 46 solid angle sectors of equal area 

discretizing the sky hemisphere according to the 'Turtle sky' proposed by (Dulk 1989). Each direction 
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is associated with a weighting coefficient related to its elevation, the lower the elevation, the smaller 

the coefficient as is the sun radiance. 

Since petiole angles are constant in the current version of MAppleT, the leaf orientation was assumed 

to be primarily influenced by branching angle and branch bending. The latter depends, for a given 

wood elasticity, on the weights imposed by leaves and internode widths along an axis. The internode 

widths are recursively accumulated from the shoot top to the shoot base. Thus, the top shoot diameter 

is expected to have an impact on branch bending and consequently on leaf spatial distribution. 

Internode length, which determines the distance between leaves, may impact leaf density and 

branching. Finally, the area of each individual leaf is, along with the number of leaves, a major 

component for total interception surface of the tree. However, not all leaf area captures light and the 

projected leaf area accounts for overlaps and mutual shading of leaves in the canopy.      is thus 

considered as a proxy of the intercepted light by the whole tree. 

Topological variables were not considered in this study. However, because we used Markov chains, 

the topology was not constant over all geometries. To avoid drawing conclusions specific to a 

particular configuration, the performance is taken as the mean over three distinct topologies, obtained 

from given values of the four input parameters. In summary, denoting          the topologies, the 

performance can be defined as: 

with $\x = \{BA, IL, TSD, LA \}$ being the set of values of input parameters. 

The genotype-dependent parameters were obtained by measuring 123 apple tree hybrids developed 

from the biparental cross between Starkrimson and Granny Smith. These trees were planted and 

measured during several years in an experiment reported by Segura et al. (2008). Briefly, 246 trees 

(two replicates) were planted in March 2004 at the Melgueil INRA Montpellier experimental station 5 

x 1.5 m apart in an east–west orientation in six-tree microplots randomly scattered throughout the 

field. All the trees were grown with minimal training, that is, they were not pruned and the trunks 

were staked up to 1 m. They were regularly irrigated using a microjet system to avoid soil water 

deficits. Pests and diseases were controlled by conventional means in line with professional practices 

throughout this study. This dataset provides 6,150 average measurements from the individual trees for 

the four geometrical traits. The interval of variation for each trait is reported in Table 1. The minimum 

and maximum values for the four studied parameters correspond to the minimum and maximum 

values observed within the progeny. For reference, those extremes can be compared to the parameters 

for the Fuji cultivar: 45 for BA, 0.03 for IL, 0.003 for TSD and LA. 

Table 1: Description and variation range for input parameters of the MAppleT model. 

Sunflower 
Sunflower is adapted to a wide range of environmental conditions (de la Vega & Hall 2002) and 

breeders mainly focus on productivity, disease resistance and fatty acid composition, while targeting 

large climatic zones within geographical Europe (including Ukraine and Russia) or Argentina (de la 

Vega & Chapman 2006). Variability in the duration of vegetative growth and grain filling is the main 

lever to adapt the cultivar to farming environments, primarily by growing earlier maturing cultivars in 

colder zones. Overall, this broad-adaptation strategy is also more economical for the breeding industry 

since it reduces the number of cultivars to be handled in seed production and distribution networks. 

Sunflower grown in Southern Europe is mostly cultivated in low rainfall areas, without irrigation, and 

on shallow soils (Tuck et al. 2006) that result in frequent exposure to water deficits (Olesen & Bindi 

2002). Drought tolerance involves a wide range of component processes and their spatial and 

temporal combination (Jones 2007). Consequently, different phenotypes can support diverse drought 

adaptation strategies. For example, minimization of water loss can be achieved by lowering either leaf 

area, transpiration per unit leaf area (stomatal conductance) or reducing the energy load of the plant 

(extinction coefficient) (Sadras et al. 1993). The regulation of stomatal conductance, as a function of 

water deficit, was found to present genotypic variability (Casadebaig et al. 2008) and to be a strong 

determinant of crop productivity under drought (Casadebaig et al. 2011). 
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Model description 
SUNFLO is a process-based model for sunflower that was developed to simulate the grain yield and 

oil concentration as a function of time, environment (soil and climate), management practice and 

genetic diversity (Debaeke et al. 2010; Casadebaig et al. 2011; Lecoeur et al. 2011). This model is 

based on a conceptual framework initially proposed by Monteith (1977) and now shared by a large 

family of crop models. In this framework, the daily crop dry biomass is calculated as a difference 

equation function of incident photosynthetically active radiation, radiation interception efficiency 

(RIE) and radiation use efficiency (RUE, g MJ
-1

). The radiation interception efficiency is a function of 

leaf area index (LAI) and light extinction coefficient (k), based on Beer-Lambert's law (      
        ). The RUE concept (Monteith 1994) is used to represent photosynthesis at the crop scale. 

Broad scale developmental or physiological processes of this framework, the dynamics of LAI, 

photosynthesis (RUE) and biomass allocation to grains were split into finer processes (e.g leaf 

expansion and senescence, response functions to environmental stresses) to account for genotypic 

specificity, thus exhibiting G   E interactions. Globally, the SUNFLO crop model has about 50 

equations and 64 parameters (43 plant-related traits, among which eight are genotype-dependent and 

21 environment-related). In cropping conditions, these physiological processes are affected by 

numerous abiotic or biotic factors. Therefore, predictions with the SUNFLO model are restricted to 

obtainable yield (Van Ittersum & Rabbinge 1997): only the main limiting abiotic factors (temperature, 

light, water and nitrogen) were considered. A report that summarizes the equations and parameters 

used in the model is available as supplementary information. The source code is available on INRA 

software repository (git, tag 1.4, commit SHA 4d5c30d3) and the VLE-RECORD environment 

(Quesnel et al. 2009; Bergez et al. 2013) is used as simulation platform. 

SUNFLO was evaluated on both specific research trials (40 trials, 110 plots) and agricultural 

extension trials that were representative of its targeted use (96 trials, 888 plots). Over these two 

datasets, the model was able to simulate significant G   G interaction and rank genotypes 

(Casadebaig et al. 2011, 2016a). The prediction error for grain yield was 15.7% when estimated over 

all data (9% - 30% in individual trials). From these two evaluations, it was determined that SUNFLO 

is accurate enough to support optimization methods, i.e. allows discrimination between two given 

cultivars. 

Design of experiments 
Previous studies suggested that high yields could be obtained by several specific trait combinations 

(Casadebaig & Debaeke 2011; Lecoeur et al. 2011). SUNFLO inputs include genotype, environment 

(soil and climate), management actions, and initial conditions. In this study eight genotype-dependent 

input parameters were included for optimization (Table 2) whereas management actions (sowing on 

2012-04-16, 7 plants m
-2

, no irrigation nor fertilization), soil characteristics (150 mm soil water 

capacity), and initial conditions (full initial soil water capacity, 30 kg ha
-1

 residual mineral nitrogen) 

were fixed. These conditions are representative of the average low-input farming operations for the 

sunflower crop in France (Barbet-Massin 2011). 

Performance was defined as the mean grain yield over five model evaluations. To capture basic 

climate variability in these models, data was collected from five diverse sunflower production regions 

in France in 2012 (Avignon, Toulouse, Reims, Poitiers, and Dijon) using neighboring stations (< 

5km) of the French meteorological network (Meteo-France). 

In summary, denoting                the five climatic conditions, the performance can be defined as: 

with $\x = \{TDF1, TDM3, TLN, LLH, LLS, K, LE, TR\}$ (see Table 2). 

A collection of 89 sunflower hybrid cultivars was phenotyped for phenology (two traits), architecture 

(four traits), and response to abiotic stress (two traits) (Casadebaig et al. 2011; Lecoeur et al. 2011). 

The corresponding model parameters are presented in Table 2. The minimal and maximal bounds 

were determined for 89 hybrids and assumed to represent the cultivated genetic diversity. 

http://mulcyber.toulouse.inra.fr/anonscm/git/sunrise/sunrise.git
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The values of the genotype-dependent parameters were obtained by measuring those eight phenotypic 

traits in dedicated field platforms and controlled conditions. Our aim was to measure potential trait 

values, so different environmental conditions were targeted depending on the set on traits: field non-

limiting conditions (deep soil) for phenological and architectural traits, field limiting conditions 

(shallow soil) for allocation traits, and a range of controlled water deficit (greenhouse) for response 

traits. For field experiments, 89 hybrids were phenotyped on ten trials (two locations, five years: 

2008-2012), using randomized complete block designs with three repetitions of 30 m
2
 plots (6-7 plant 

m
-2

), see Debaeke et al. (2010) and Casadebaig et al. (2016a) for additional details. For controlled 

conditions, 82 hybrids were phenotyped in 10 liters pots, during six greenhouse experiments to 

determine the response of leaf expansion and transpiration at the plant scale after stopping watering 

and leaving the soil progressively drying (dry-down design). We used randomized complete block 

designs with two water treatments (control, stress) and six repetitions (7 pots m
-2

), see Casadebaig et 

al. (2008) for additional details. 

Table 2: Description and variation range for input parameters of the SUNFLO model. 

Phenotype optimization 
Phenotype optimization tends to solely focus on performance. Here, we propose to add a feasibility 

metric, and to solve a bi-objective problem. 

Performance 
Phenotypes with the best performance can be identified by solving the following optimization 

problem (Semenov & Stratonovitch 2013; e.g. Martre et al. 2015b). 

with $\x$ representing the phenotype traits and $P(\x)$ the performance (respectively,      and grain 

yield). $\Xset \subset \Rset^d$ defines the ensemble of potential phenotypes and $\x_P^*$ the 

optimal phenotype (ideotype). The dimension of the problem   is equal to the number of input 

parameters, four for MAppleT and eight for SUNFLO (see Tables 1 and 2). 

Choosing $\Xset$ is, in itself, a difficult task. Typically, one may define realistic lower and upper 

bounds for each trait; allowing the traits to take any value between the bounds. However, solving 

equation  without any further consideration may lead to unrealistic (and eventually useless) solutions, 

as some trait combinations are very unlikely to be obtained. In particular, extreme values (or 

"corners") of $\Xset$, when all traits take their upper or lower bound values, are highly improbable. 

Hence, accounting for correlation between traits, and more generally for the capacity to obtain a given 

phenotype, introduces a second objective function, called feasibility. 

Feasibility 
Datasets of observed phenotypes were available for both models and used to define a function that 

indicates the likelihood of a new phenotype. These measures provide us with a rough indication of the 

domain of potential existence of the traits combinations (both in terms of bounds and co-occurrence), 

and a simulated phenotype may be considered less unrealistic as it is far from the cloud of 

observations. Therefore, we require a function that measures the proximity of a simulated phenotype 

to the observed phenotypes. 

A simple yet sensible solution consists in fitting a multivariate probability density function to the 

observations. Such a function would be maximal at the center of the observation cloud, decrease when 

moving away from the center, and naturally take into account the correlations between traits. Hence, 

this function could be used as the feasibility function. 

As shown in the Results section, Estimation of feasibility on the parameter space, the multivariate 

Gaussian distribution is a reasonable choice for our data. Then, using the maximum likelihood 

estimates for the distribution moments, the density function is: 

with  [Please refer to LaTeX source] and [Please refer to LaTeX source],   being the number of 

observations (respectively, 123 and 89 in our use cases) and    the observed phenotypes. 
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Finally, for numerical convenience the feasibility function is defined as the logarithm of the density, 

and the feasibility optimization problem as: 

A multi-objective formulation for phenotype optimization 
To identify the most efficient phenotypes, while also favoring those more likely to be obtained, the 

initial optimization (equation ) was reformulated as a bi-objective problem: 

These two objectives are likely to be conflicting, as the most feasible phenotypes are not necessarily 

the most efficient ones. So, there will not exist a common maximizer $\x^*$ for the two objectives. 

The goal is then to identify the set of optimal solutions, called a Pareto set (Collette & Siarry 2003), 

which relies on the concept of Pareto dominance. A point dominates another if both its objectives are 

better. Hence, an ensemble of solutions, ranging from the most feasible to the most efficient is sought. 

Optimization algorithms 
The two models differed substantially in terms of computational need, as the performance function 

$P(\x)$ computation took 0.5s for the SUNFLO model (annual crop) while it required 135 min for 

MAppleT (5 year-old tree), using a 2.90GHz quadcore processor with 8Go RAM. Hence, different 

algorithmic families were used to solve the two optimization problems. 

For MAppleT, the time cost was prohibitive for using standard multi-objective optimization 

algorithms. In a previous study, metamodel-based optimization strategies were found well-adapted for 

this problem with the ability to return a good approximation of the Pareto set using a very reasonable 

number of calls to the simulator (Picheny 2014). In short, this strategy is based on the use of a 

Gaussian process approximation model (called metamodel, Rasmussen & Williams (2006)), built 

from a small number of well-chosen simulations (the experimental design). This metamodel is then 

used as a guide to sequentially choose the most interesting simulations to run (as in the classical EGO 

algorithm for single objective problems of Jones et al. 1998). The optimization process relied on the  

statistical computing environment (R Core Team 2016) and  package  (v1.5.5, Roustant et al. 2012) 

and  (v1.0.3, Binois & Picheny 2016). 50 initial simulations were based on a latin hypercube design 

(McKay et al. 1979) to build the initial metamodel and 50 simulations were iteratively added to the 

experimental design (for a computational time around 24 hours). 

For SUNFLO, population-based optimization algorithms that require an important number of 

simulations were used, since computational time was not critical and such algorithms are known to be 

efficient and reliable (Collette & Siarry 2003). Two state-of-the-art algorithms were tested, namely 

Non-dominated Sorting Genetic Algorithm-II (NSGA-II, Deb et al. 2002) and Multi-objective Particle 

Swarm Optimization with Crowding Distance (MOPSO-CD, Raquel & Naval 2005) available in the  

packages  (v1.0-15.1, Mersmann 2014) and  (v0.5.1, Naval 2013), respectively. The NSGA-II and 

MOPSO-CD algorithms returned slightly different results. Better convergence was observed with 

NSGA-II, but wider Pareto front coverage with MOPSO-CD. Thus, both algorithms were run and the 

results combined by extracting all non-dominated solutions from both Pareto sets. This generated a 

better overall Pareto front. In these experiments, NSGA-II was run with 200 generations of 100 

individuals and MOPSO-CD was run with 100 generations of 200 individuals, for a total of 202,000 

simulations. These computations had a computational time approximating nine hours. 

Results 

Estimation of feasibility on the parameter space 
Graphical representations of the feasibility functions for the MAppleT and SUNFLO models, along 

with empirical correlations between traits (Figure 1) are reported here for the first time. For both 

models, the normality hypothesis was observed to be reasonable (except for K and LE traits in 

SUNFLO, p < 0.1), since contour lines match observations on the projected spaces. The observed 

variability was important in all traits, which leads to positive expectations for selection. The 

orientation of the ellipsoids shows how correlation between traits is taken into account in the 

feasibility estimation. 



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Picheny, V., Casadebaig, P., Trepos, R., Faivre, R., Da Silva, D., Vincourt, P., Costes, E.

(2017). Using numerical plant models and phenotypic correlation space to design achievable
ideotypes. Plant, Cell and Environment, 40 (9), 1926-1939.  DOI : 10.1111/pce.13001

 

 

This article is protected by copyright. All rights reserved. 

In apple tree, correlations between the four variables were relatively low. Despite the usual 

consideration of allometric relationships between organ dimensions, especially between internode 

length and leaf area, these relationships appeared moderately conserved after genome recombinations. 

In sunflower, correlations between traits were globally low, with the exception of four cases, 

specifically TDF1 and TDM3; K and TR; TLN and LLS; TLN and K. Among these exceptions, some 

observed correlations were expected, such as the positive correlation in development stages (earliness 

at flowering, TDF1 and at maturity, TDM3) or the positive correlation in plant architecture (high leaf 

number, TLN and potential leaf area, LLS). The strong negative correlation between light extinction 

coefficient (K) and control of stomatal conductance (TR, i.e. how strongly plant transpiration is 

reduced with water deficit) was not expected, as these two traits were measured by different methods 

in different environments (field versus greenhouse). This correlation suggests that cultivars that are 

more efficient at intercepting light for a given leaf area (high extinction coefficient) are also 

maintaining their stomatal conductance under water deficit (high response parameter). 

Figure 1: Bi-dimensional projections of the observed input traits and section views of the 

feasibility function 

Optimization of input traits 
The two Pareto fronts obtained by the optimization algorithms and the objective values (performance) 

of (1) the phenotypes corresponding to the initial experimental design for MAppleT and (2) 50 

randomly selected phenotypes in [Please refer to LaTeX source] for SUNFLO are given in Figure 2. 

In both cases, the Pareto fronts were relatively smooth and the first point on the front (top left) 

corresponded to the center of the cloud of phenotypes (i.e. to the most feasible phenotype). The 

performance varied from 60 to 120 for MAppleT, doubling from the most feasible to a very "atypical" 

phenotype. The range of variation in the optimal set is smaller for SUNFLO, from 2.49 to 2.72 t ha
-1

, 

yet the values of the 50 random phenotypes indicated that the Pareto-optimal phenotypes were 

substantially better than average: the mean performance of the optimal set was around 2.62 t ha
-1

 

compared to 2.48 t ha
-1

 for the random set. The most efficient phenotype (far right on the Pareto front) 

reached a performance level of 2.72 t ha
-1

. 

Figure 2: Performance and feasibility of sampled and optimized individuals for the apple and 

sunflower models. 

The relationship between the feasibility and performance criteria was illustrated by displaying the 

Pareto sets (input values) using two-dimensional subspace projections (Figure 3). The most central 

points are the most feasible, and the points closest to the boundaries are the most efficient. In both 

models, the Pareto sets took the form of a 'path', going from the center of the ellipsoids to the bounds 

of the hypercube, with the exception of a few traits that remained constant over the Pareto set (BA in 

apple tree, TDF1 and LLS in sunflower). 

For the apple tree (Figure 3A), the path notably extended outside the ellipsoids for LA suggesting that 

efficient phenotypes could exist, but with very low feasibility. Such phenotypes would rely on a 

broken correlation between LA and the three other variables. 

For sunflower (Figure 3B), the path followed the lowest feasibility gradient, as indicated by contour 

lines, where the optimization process globally followed the correlation between traits. The only 

notable exception was for phenology, where the correlation between earliness at flowering (TDF1) 

and at maturity (TDM3) was broken in order to reach an increase in the performance criterion. 

Figure 3: Position of optimal phenotypes as a function of observed traits correlations in sampled 

cultivars. 

To better characterize those paths and the performance:feasibility trade-off, the value of each trait was 

plotted for the optimal phenotype as a function of performance (Figure 4). Since the mean and 

variance of each trait were different, we standardized the trait values (i.e. substract the mean and 

divide by the standard deviation of average individual). Based on this visualization, values exceeding 

       were considered as difficult to access based on the sampled diversity. In addition, we 

approximated each curve using a linear model (or piecewise linear model for the IL trait) to improve 

readability. 
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The resultant graph allowed identification of traits whose value was almost constant in the optimal set 

of solutions, such as BA for apple tree (Figure 4A), indicating minimal importance in the 

performance:feasibility trade-off. In contrast, lines with larger slopes corresponded to traits for which 

the "price" to pay for feasibility was the highest, yet changing their value had the strongest impact on 

performance. 

For the apple tree (Figure 4A), BA clearly stayed at its mean value, while IL and LA increased rapidly 

with performance, reaching atypical values early. In comparison, the TSD also increased, but at a 

lower rate. For sunflower (Figure 4B), the traits could be grouped into sets of high slopes (TDM3, TR, 

TLN, K, LLH) or low slopes (TDF1, LE and LLS). Interestingly, each group contained traits 

associated with different plant characteristics, e.g architectural traits controlling leaf profile (LLH and 

LLS). These results suggest that the breeding process released genotypes that perform using diverse 

physiological strategies, and opportunities exist for new plant types. 

Figure 4: The performance:feasibility trade-off in the Pareto set for the apple and sunflower 

models. 

Finally, we reported four optimal plant phenotypes evenly distributed along the Pareto front for apple 

tree and sunflower (Table 3). 

Table 3: Eight optimal phenotypes identified with the MappleT and SUNFLO models. 

Discussion 
The use of phenotypic measurements of existing cultivar populations and simulation-based 

optimization allowed us to virtually recombine plant traits to identify a set of optimal phenotypes that 

maximize performance and feasibility (Figure 2, Tables 3-4). This result is first discussed from a 

biological perspective, i.e the morphological and physiological characteristics in the optimal set of 

phenotypes for apple tree and sunflower. We then discuss the influence of the input dataset on the 

outcome of our approach and how the feasibility criterion could be defined in relation to the type of 

genetic material (e.g recombinant inbred lines or hybrids). Finally, we discuss how this multi-

objective optimization method is a less data-intensive alternative than emergent molecular breeding 

methods such as genomic selection or gene-based modeling to estimate the breeding value of plant 

phenotypes. 

Morphological and physiological characteristics of the optimized phenotypes 
Considering both apple and sunflower use cases, the performance:feasibility optimization approach 

resulted in paths of improvement that can be used in trait-based breeding (Figure 4A and 4B). Such 

paths could be used to follow target values for the most promising traits. These paths also use trait 

covariance to indicate when modifications would yield an unlikely plant phenotype. 

Apple tree use case: longer internodes and higher leaf areas improve light interception 
Branching angle (BA) in apple trees can range from 20 to 120 degrees (Table 1), but values 

approximately 80° from the vertical (open branches) were identified as both the most feasible and 

most optimal (Table 3). Morever, due to branch bending, this basal branching angle will result in 

higher top branching angles. However, no significant improvement in this trait can be expected, since 

there was no increase in the performance value associated with its variation (Figures 4A and 4B). This 

result is consistent with observations in more erect trees with low branch angles where light capture 

efficiency is reduced, likely from higher leaf overlap (Da Silva et al. 2014b). 

In contrast, significant increases in performance could be expected by increasing internode length, 

leaf area, and to a lesser extent top shoot diameter (Table 3, Figure 4A). Interestingly, the highest 

value in the explored range of internode length was reached prior to maximum performance 

suggesting that internodes longer than five cm could increase      and therefore light interception. 

However, this extreme phenotype is less feasible than other phenotypes, as well as unstable from a 

biomechanics point of view; the corresponding shoots would likely be unable to support the weight of 

the apple fruit (Alméras & Fournier 2009). 
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The existence of such tradeoffs among traits has been shown in other species, especially long 

internodes increasing light interception but being detrimental to biomechanics (Pearcy et al. 2005). 

These tradeoffs are likely to result from developmental, biomechanical and hydraulic constraints in 

plants and to be responsible for the general rules observed across species between stem diameter and 

leaf area (Corner 1949), as well as for limits in plant plasticity (Valladares et al. 2007). 

No limitation was observed for leaf area or top shoot diameter where increases continued to be 

associated with higher performance (Figure 4B).These results suggest that values beyond the scope of 

this work could be explored for increased light interception, with the caveat that such phenotypes 

would be associated with low feasibility (Table 3). Performance advantages from increased top shoot 

diameter were less rapid than with leaf area. This result further suggests that exploring values beyond 

those tested here present additional opportunities for improvement of performance, at least in terms of 

light interception. 

As previously mentioned for internode, tradeoffs may exist between leaf structure and its functions. 

Leaf morphology and specific weight, which depend on the intercepted light during organogenesis, 

are tightly linked to leaf functions, photosynthesis and transpiration. Moreover, whatever the trait 

considered, dimensions are correlated to biomass and organ construction and maintenance have a cost 

that may counter-balance the expected advantages (Poorter et al. 2006a). Even though the space of 

correlation values explored here was less than in ecological studies (e.g. Niklas 1994; Poorter et al. 

2006b), both constraints and costs are likely to limit plant plasticity and the domain of possible 

phenotypes (Valladares et al. 2007). Accounting for leaf respiration and transpiration would certainly 

limit the performance of plants with large leaf areas. The fact that no plants were observed with such 

large leaf areas could mean they are sub-optimal. Making models more complex, including more 

constraints among traits and criteria to define optimality would help detecting such trade-off but 

remain challenging. 

The optimal phenotypes designed in the present approach exhibit characteristics quite different from 

those of the Fuji variety used in the initial version of MAppleT (Costes et al. 2008; Da Silva et al. 

2014b). Indeed, longer internodes, and higher leaf areas would be preferable for optimizing light 

interception. 

Sunflower crop use case: late maturation, lower leaf area and adaptive traits improve 

performance 
The values for two sunflower leaf traits, specifically LLS and LE, remained relatively constant across 

the optimal set of solutions, indicating that once fixed to their optimal values, these traits had no 

impact in the performance:feasibility trade-off (Figure 4B). The designed sunflower ideotype, for the 

considered growth environments, had a less than average potential individual leaf area (low LLS in 

Table 3) and leaf expansion was more sensitive to water deficit (high LE in Table 3), compared to the 

overall population of phenotyped hybrids (Table 2). For these two traits, the convergence towards a 

fixed value indicated that they were central for cultivar adaptation in the sampled environments: any 

modifications in these traits would lead to sub-optimal solutions (either in performance or feasibility). 

In contrast, modification of the other six traits had an impact on the performance:feasibility trade-off 

of the ideotypes (i.e. important slopes in Figure 4B; Table 3). The most efficient ideotype had a late 

maturity date (TDM3) and mid-late flowering date (TDF1). Its aerial architecture was defined by a 

low leaf number (TLN), a symmetric leaf profile (LLH), and a low extinction coefficient (K). 

Sensitive control of the stomatal conductance (TR), where stomatal conductance starts to decline at 

moderate water deficits, was also found to be an important characteristic. These optimal 

characteristics were difficult to obtain, at least for maturity and control of stomatal conductance, as 

the values were out of the         feasibility range. 

Interestingly, the characteristics of the designed ideotype portrayed a plant well-adapted to water 

deficit: moderate leaf area, low light extinction, and possessing adaptive traits (LE, TR). These 

characteristics lead to water-efficient plants, with a lower water loss due to transpiration, because the 

leaf area is lower or because transpiration rate is reduced under water deficit (higher LE value). 
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Improving genotype-to-phenotype prediction in simulation-based ideotype design 

Genericity and limits of the results depend on model complexity and targeted cropping 

environments In our experiments, the input phenotypic space was bounded by observed values, 

thereby avoiding the question of extrapolating plant performances for unseen-before traits values. 

Although our approach indicates "directions" for ideotypes, extrapolation should only be done with 

caution. For example, Haile et al. (1998) and Srinivasan et al. (2017) report empirical evidences that 

leaf area is already supra-optimal for the soybean crop (see also Conley et al. 2008, 2009), whereas 

our approach indicates a positive value of increasing leaf area-related inputs (Figure 4, strong value 

for apple trees, lesser for the sunflower crop). 

This discrepancy can first result from the model content and validity domain. Plant models are a 

simplified description of the real biological system, and some physiological processes might not be 

represented (e.g respiration, biotic stresses) leading to an erroneous simulated cost for biomass 

production and thus plant performance. We argue that making models complex enough to detect such 

trade-offs might be much more difficult than operating optimization in a bounded phenotypic input 

space and incorporating a measure of feasibility. 

The definition of cropping environments in the model-based approach can also lead to differences in 

trait value. In our approach, average cropping conditions only were used. Considering additional 

diverse environmental and management factors (for instance, drought-prone environments) led to 

negative value for leaf area increase (Victor Picheny 2017). However, considering additional diverse 

environmental and management factors (for instance, drought-prone environments) would likely 

affect the characteristics of the optimal set of ideotypes (e.g negative value for leaf area increase as 

observed in Victor Picheny (2017)) and eventually lead to ideotypes for specific growth conditions. 

We suggest that a few key traits are thus responsible for cultivar global adaptation capacity. 

Secondary traits are needed to adapt to uncertain environmental conditions and support alternative 

resource use strategies. 

Is the feasibility function a reasonable representation of the biologic reality? The feasibility 

function is entirely dependent on the dataset at hand. This implies that the diversity of optimal 

phenotypes selected by the optimization process results from the trait variance present in the 

considered population. This variance corresponds to heterosis (biparental progeny), in which case it 

also depends on chosen parents, or to genetic variability (collection of hybrids). When more 

polymorphisms are available, with multiple alleles at a locus, more diverse phenotypic traits can be 

obtained. The genetic distance between the parents will also impact this capacity; more distantly 

related parents increase the chance of different alleles at a locus. 

In this study, the variation observed in the apple tree case resulted from a biparental segregating 

population with low parental relatedness (Allard et al. 2016). A larger distribution of the traits, and 

possibly different correlations could be expected from different crosses or in populations with 

increased genetic diversity, such as multi-parental populations (Bink et al. 2002; Blanc et al. 2006) or 

core collections (Lassois et al. 2016). In the sunflower case, the observed variability in the traits 

resulted from the upstream selection of the commercial hybrids. The variability observed in this 

material likely covers only a small portion of the diversity present in core collections. The lack of 

kinship information on this material assumes average values for each trait are most feasible. This is 

reflected by our definition of the feasibility function: maximal at the center of the cloud and lowest at 

the edges of the domain. Using plant material with a more complex genetic structure would 

necessitate accounting for kinship matrices comparable to pedigree-based (Bink et al. 2002) or 

genome-wide association study (GWAS) analyses. This would account for genetic correlations 

between individuals and between traits as proposed herewith. 

More specifically, this approach could consider alternative feasibility functions depending on the type 

of genetic material screened in the optimization process. In the proposed function (Equation 5), the 

proximity of a virtual phenotype to a particular existing individual will only indirectly be accounted 

for. In the sunflower case, where hybrids were produced by breeding, an alternative feasibility 

function could be defined that would reach its maximum at those particular trait combinations (Figure 
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5). In this case, virtual phenotypes matching existing phenotypes would be more present in optimal 

solutions, even if they are farther from the population mean. We did not conduct these tests because it 

was not central to our proof of concept study. However, the global approach and optimization 

algorithm would support alternative feasibility functions without modifications. 

Figure 5: Feasibility function used in the study (blue) and alternative function (black). 

How does our approach fit into gene-to-phenotype prediction strategies ? The efficiency of the 

breeding process benefits from gene-to-phenotype predictions to assign an accurate breeding value to 

genotypes. Hybrid modeling approaches have recently emerged between statistical modeling 

(forward, gene to phenotype) and process-based modeling (reverse, phenotype to gene) (Bustos-Korts 

et al. 2016). 

On the one hand, gene-to-phenotype predictions are generally undertaken from the molecular level 

where genomic selection (Meuwissen et al. 2001) is used to predict the breeding value from genome-

wide informations and statistical modeling. The difficulty with this method lies in the prediction of 

non-additive gene effect and gene   environment interactions. These predictions can stem from 

environmental covariables (Heslot et al. 2014) or computed from simulation modeling (Technow et 

al. 2015). Additionally, as in our approach, phenotypes measured in the training population for 

genomic selection could also be used to estimate feasibility function based on correlations observed 

between traits. This function will likely improve the accuracy of the genomic selection model for 

estimating breeding values in the next generation (e.g. Marulanda et al. 2015). 

On the other hand, gene-based modeling (White & Hoogenboom 2003; Yin et al. 2004), where gene 

or QTL action is represented through linear effects of specific alleles on crop simulation model 

parameters (Messina et al. 2006; Chenu et al. 2008), intrinsically accounts for feasibility at the 

expense of an intensive phenotyping (i.e. on large populations) and modeling process (i.e. to develop 

genetic models for all influent genotype-dependent parameters of the simulation model). 

Consequently, gene-to-phenotype predictions can be improved to account for gene   environment 

interactions by (1) augmenting genomic selection frameworks with new types of predictors or (2) 

relying on numerical models and optimization methods to identify optimal combinations of traits (or 

alleles, depending on the input type). Our approach fits the second option, and can improve the 

realism of ideotypes designed with model-based optimization methods. This requires less phenotyping 

work as compared to the gene-based modeling options, by estimating the feasibility criteria using the 

values of genotype-dependent parameters of the simulation model. 

Conclusion 
Plant numerical models are powerful tools to facilitate ideotype design. These models offer the ability 

to perform large-scale experiments and to explore a large variety of trait combinations. However, as 

stated by Martre et al. (2015b), it is essential to integrate genetic constraints on virtual cultivars 

during trait optimization to avoid impossible phenotypes that breeders cannot produce. We argue that 

an efficient way to increase realism in model-based ideotype design approaches is by introducing 

correlations between genotype-dependent parameters into a feasibility criterion, which is not formally 

considered in current approaches. Multi-objective optimization allowed exploration of potential 

phenotypes that successfully target realistic trait combinations and avoid misleading solutions. This 

feasibility criterion approach successfully demonstrated that it could provide paths for desirable and 

realistic trait modifications (both in direction and intensity), when coupled with trait-based breeding 

methods, for apple trees and sunflower crop in our proof of concept study. 
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Table 1 

Table 1: Description and variation range for input parameters of the MAppleT model. 

Name Description Unit Min Max 

BA Branching angle degree 20 120 

IL Internode length m 0.008 0.051 

TSD Top shoot diameter m 0.001 0.0085 

LA Leaf area m
2
 0.0003 0.011 
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Table 2 

Table 2: Description and variation range for input parameters of the SUNFLO model. 

Name Description Unit Mean Min Max 

TDF1 Temperature sum from emergence to the beginning of 

flowering 

°C.d 836.0 765.0 907.3 

TDM3 Temperature sum from emergence to seed physiological 

maturity 

°C.d 1673.4 1537.6 1831.3 

TLN Potential number of leaves at flowering rank 29.4 22.2 36.7 

LLH Potential rank of the plant largest leaf at flowering rank 16.8 13.5 20.6 

LLS Potential area of the plant largest leaf at flowering cm
2
 449.9 334.3 670.0 

K Light extinction coefficient during vegetative growth - 0.9 0.8 1.0 

LE Threshold for leaf expansion response to water stress - -4.4 -15.6 -2.3 

TR Threshold for stomatal conductance response to water 

stress 

- -9.8 -14.2 -5.8 
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Table 3 
Table 3: Eight optimal phenotypes identified with the MappleT and SUNFLO models. Each line 

is an optimal individual sampled from the Pareto front and ranked by increasing performance. 

Columns present the trait combination associated with the plant phenotype. 

 

Model 

Phenot

ype 

B

A IL TSD LA 

TD

F1 

TD

M3 

TL

N 

LL

H 

LL

S K 

L

E 

T

R 

perform

ance 

feasibi

lity 

Apple 1 8

2 

0.0

40 

0.00

60 

0.00

45 

        60.00 5.08 

 2 8

1 

0.0

48 

0.00

66 

0.00

67 

        88.00 1.59 

 3 8

4 

0.0

51 

0.00

70 

0.00

89 

        110.00 -4.30 

 4 7

7 

0.0

51 

0.00

73 

0.01

07 

        122.00 -11.50 

Sunflo

wer 

1     843

.3 

169

3.3 

28.

4 

17.

3 

478

.1 

0.8

78 

-

3.

76 

-

8.

82 

2.52 6.03 

 2     861

.8 

177

2.6 

25.
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Figure 1 

Figure 1: Bi-dimensional projections of the observed input traits and section views of the 

feasibility function Dots are observations made on (A) 123 apple tree hybrids issued from the 

biparental cross (Segura et al. 2008) and (B) a collection of 89 commercial sunflower hybrids (n = 42 

for LE and TR traits) used as genotype-dependent parameters. The numbers are the empirical 

correlations between traits (red are significant Pearson's  ). The feasibility function was estimated 

using a multivariate normal distribution and was represented with red contour lines (corresponding to 

the 25, 50, 75 and 95th percentiles). See Tables 1 and 2 for trait abbreviation definitions. 
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Figure 2 

Figure 2: Performance and feasibility of sampled and optimized individuals for the apple and 

sunflower models. Optimized individuals (red dots), which together generate the corresponding 

Pareto front (red line) and individuals (black dots) in the initial experimental design (MAppleT, panel 

A) or randomly taken in the search space (SUNFLO, panel B). 
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Figure 3 

Figure 3: Position of optimal phenotypes as a function of observed trait correlations in sampled 

cultivars. The red contour lines represent the feasibility function: the smaller the ellipse, the larger the 

feasibility (cf. Figure 1). The points show all the Pareto-optimal phenotypes (optimized individuals). 

Their intensity of blue color corresponds to the performance value (in t ha
-1

 for panel B), with less 

intense coloration attributed to higher performance. 
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Figure 4 

Figure 4: The performance:feasibility trade-off in the Pareto set for apple and sunflower 

models. Points represent standardized traits values as a function of plant performance, for ideotypes 

in the Pareto set (n=39 for MappleT, panel A and n=109 for SUNFLO, panel B). Lines are a linear 

approximation of the changes in trait values with increased performance. Dashed lines represent 95% 

of available variability (      ), i.e. trait values exceeding this threshold can be considered as 

difficult to access. See Tables 1 and 2 for trait abbreviation definitions. 
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Figure 5 

Figure 5: Feasibility function used in the study (blue) and alternative function (black). The two 

circles and vertical lines correspond to existing phenotypes. The assumption behind the current 

feasibility function is that it is easier to produce a phenotype with average traits, while the alternative 

assumption would be that it is easier to produce a phenotype close to a single existing one. 
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Summary 

 

Given the growing interest in model-based ideotype design, this study aims at identifying 

plant traits with the greatest potential to improve crop performance, while accounting for 

observed correlations between traits. 

We propose a multi-objective optimization formulation that includes a metric of performance, 

returned by the numerical model, and a metric of feasibility, accounting for correlations 

between traits based on field observations. 

We applied this approach to two contrasting models: a process-based crop model of 

sunflower and a functional-structural plant model of apple trees. In both cases, the method 

successfully characterized key plant traits and identified a continuum of optimal solutions, 

ranging from the most feasible to the most efficient. 


