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Abstract

This paper presents existence conditions as well as computation methods for Berge equi-

librium and two refinements: Berge-Vaisman equilibrium and Berge-Nash equilibrium. Each

equilibrium concept is interpreted and illustrated on the basis of relevant examples and general

existence conditions satisfying weak continuity and quasi-concavity conditions are provided.

Keywords: Berge equilibrium, individual rationality, diagonal transfer quasi-concavity,

diagonal transfer continuity.

1 Introduction

Berge equilibrium (BE) (Berge 1957, Zhukovskii and Chikrii 1994) and its refinements (Vais-

man 1994, 1995, Abalo and Kostreva 1996, 2004) have attracted increasing attention recently in

the game theoretic literature for its theoretical contributions to the modeling of social norms and

prosocial behaviors. Colman et al. (2011) define and interpret BE as a mutual support equilibrium.

In playing BE, agents support each other by mutually selecting actions that maximize the welfare

of others. The assumption is that they adopt such behavioral norms because of the reciprocal di-

mension implied. Courtois et al. (2015) develop a situational theory in which players follow either

a Berge or Nash behavior rule. The hypothesis is that agents adopt the behavior rule that is the

most beneficial to them. This means that in social situations such as trust games or social dilem-

mas, players would mutually support each others, while in competitive situations such as zero sum

games, they would simply maximize their welfare independently from the welfare of others.

A key criticism of this theory is that BE is not immune to unilateral deviation. It is not either

necessarily compatible with individual rationality. Two refinements of the concept address partly

these issues. The Berge-Vaisman equilibrium (BVE) (Vaisman 1994, 1995), restricts the set of
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BE to the subset in which the equilibrium gain of each agent is no lower than his maximin payoff.

BVE precludes all BE that are not individually rational (see Crettez (2016) for sufficient condi-

tions for BE to be BVE). Another refinement defined by Abalo and Kostreva (1996, 2004) goes

further and restricts the set of BE to the subset in which Berge strategy is a best reply. Berge-Nash

equilibrium (BNE) combines the properties of Berge and of Nash equilibrium (NE) and admits

the advantage of characterizing the set of BE that are incentive compatible.

The current paper offers general existence conditions as well as computation methods for BE (in

coalitional or individualistic form), BVE, and BNE. Up until now, existence results have only been

proposed for BE in coalitional form (CBE) and for BNE for n-player games in which (1) the strat-

egy spaces are nonempty, convex, and compact, and (2) players have continuous and quasiconcave

payoff functions (Nessah et al. 2007, Larbani and Nessah 2008). Existence results for BVE have

also been proposed, but these results are limited to the case of differential games with quadratic

payoffs (Vaisman 1994, 1995, Zhukovskii and Chikrii 1994). Nessah and Larbani (2014) gave a

general existence result that weakens the concavity and continuity conditions for BE in individ-

ualistic form (also called Berge-Zhukovskii equilibrium (BZE)) in 2-player games. Generalizing

these results, this paper investigates new existence conditions for CBE, BNE, and BVE in n-player

games that satisfy weak continuity and quasi-concavity conditions. The proposed existence con-

ditions for the three equilibrium concepts are theoretically related and based on the notions of

diagonal transfer quasi-concavity and diagonal transfer continuity (Baye et al. 1993). The two no-

tions are weak concepts of quasi-concavity and continuity which adopt a basic idea of transferring

a set of strategy profile(s) to another set of strategy profile(s). The key contribution of the paper

is therefore to provide simple existence and computation methods conditions that allow for BVE,

BNE, BZE and CBE to be used in the largest possible class of games.

The paper is organized as follows. In Section 2, we define CBE, BZE, BVE and BNE and

interpret these equilibrium concepts on the basis of several examples. In Section 3, we provide the

sufficient conditions for their existence, and we derive operational procedures for their computa-

tion Section 4 concludes and makes suggestions for further research concerning this topic.

2 Definitions and Interpretations

Consider the game

G = (Xi, ui)i∈I , (2.1)

where I = {1, 2, ..., n} is the set of players, X =
∏
i∈I
Xi is the set of strategy profiles in the game,

Xi is the set of strategies of player i, Xi ⊂ Ei, Ei is a vector space, and ui : X −→ R is the

bounded payoff function of player i.

Let = denote the set of all coalitions (i.e., nonempty subsets of I). For each coalition C ∈ =,
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we have a complementary coalition set denoted by −C. If C is reduced to a singleton {i}, the

set −C is denoted by −i. We also denote XC =
∏
i∈C

Xi as the set of strategies of the players in

coalition C. Let R = {Ri}i∈M be a partition of the set of players I where M = {1, ..., s} is an

index set. Any strategy profile x = (x1, ..., xn) ∈ X can be written x = (xR1 , xR2 , .., xRs).

We start with a definition of CBE as introduced in Berge (1957, p. 88-89).

DEFINITION 2.1 (Berge (1957)) Consider the game (2.1) and let R = {Ri}i∈M ⊂ = be a

partition of I and S = {Si}i∈M be a set of subsets of I . A feasible strategy x ∈ X is an

equilibrium point for the set R relative to the set S or a coalitional Berge equilibrium (CBE) for

(2.1) if

urm(x) ≥ urm(x−Sm , xSm), for each given m ∈M, any rm ∈ Rm, and xSm ∈ XSm .

A strategy profile x is a CBE if no player in any coalition Rm in R, can be better off when the

players in the corresponding coalition Sm in S, deviate from their BE strategy profile xSm . This

means that at CBE, the players in coalition Sm play a strategy profile that maximizes the payoff of

the players in coalition Rm, but they neglect or ignore their own payoffs (when Sm
⋂
Rm = ∅).

At CBE the payoffs of the players in Sm are taken care of by other players, making this rule of

conduct resemble a reciprocal behavior. This equilibrium concept could be summed up by the

following perspective: “I care about your welfare because you care about mine making both of us

better off”.

EXAMPLE 2.1 (Climate Coalitional Game) Consider an economy consisting of n countries. Let

I = {1, 2, ..., n} be the index set of countries, R = {R1, ..., Rs} be a partition of I and S =

{S1, ..., Ss} be a coalition structure.

Let ei ≥ 0 and qi = gi(ei) denote the emission level and the output resulting from this

emission level for country i. Let z(e1, ..., en) =
∑
i∈I
ei be the total pollution level and vi(z) be

country’s i disutility resulting from this pollution. The net utility of player i is then

ui(e1, ..., en) = gi(ei)− vi(z(e1, ..., en)).

For each coalition Rm, m = 1, ..., s, define the utility of any country in this coalition as

follows:

Ũh(e1, ..., en) =
∑
j∈Rm

uj(e1, ..., en), for each h ∈ Rm.

Then for any given (R,S), we associate a game (Xi, Ũi, R, S)i∈I . Consider n = 4, gi(ei) =

αi
√
ei, vi(z) = βiz + γi , for all i = 1, 2, 3, 4 and assume that Rm = Sm, for each m = 1, ..., s.

If R = {{1, 2}, {3, 4}}, the unique CBE is given by

ei =
α2
i

4(β1 + β2)2
, i = 1, 2 and

3
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ei =
α2
i

4(β3 + β4)2
, i = 3, 4.

If R = {{1, 2, 3}, {4}}, the unique CBE is given by

ei =
α2
i

4(β1 + β2 + β3)2
, i = 1, ..., 3 and e4 =

α2
4

4β24
.

If R = {{1, 2, 3, 4}}, the unique CBE is given by

ei =
α2
i

4(β1 + β2 + β3 + β4)2
, i = 1, ..., 4.

�

If we let j ∈ Sm, and since the family of coalitions R is a partition of the set of players I ,

there exists some p ∈M such that j ∈ Rp. According to the definition of CBE, the players of the

corresponding coalition Sp maximize the payoff functions of the players in Rp, and since j ∈ Rp,
the payoff of player j is also maximized by the players of Sp. We deduce that at a CBE, each

player maximizes the payoff of at least one of the other players and in turn, his own payoff is

maximized by at least one other player. Reformulating this coalitional equilibrium concept from

an individualistic perspective, we obtain what we call a BZE as defined by Zhukovskii (1985).

DEFINITION 2.2 (Zhukovskii (1985)) A strategy profile x ∈ X is a Berge-Zhukovskii equilib-

rium (BZE) of the game (2.1) if

ui(x) ≥ ui(xi, y−i), for each, given i ∈ I and y−i ∈ X−i. (2.2)

In order to show that BZE is a special case of CBE, assume that M = I , Ri = {i}, i ∈ I ,

Si = −i, and i ∈ I . This means that when playing the BZE strategy xi, a player i ∈ I yields

his highest possible utility when other players also play according to their BZE strategy. This also

means that this same player, when following strategy xi, cannot obtain a maximum payoff unless

the remaining players −i are willingly to play the strategy x−i. We deduce that if all players play

x, then all payoffs are maximized but if at least one of the players j deviates from his equilibrium

strategy, then the payoff of any player i in −j, the resulting strategy profile, is at most equal to his

payoff ui(x) in the resulting profile.

EXAMPLE 2.2 (Costly contribution game) Consider a three players contribution game in which

each player can either contribute to a collective action or retract his contribution. Set I = 3 as the

number of players and let Xi = [−1, 1] be the strategy space of player’s i, with i = 1, 2, 3. Let us

first consider a symmetric payoff function such that:

ui(x) = −xi +
∑
j∈−i

xj , i = 1, 2, 3. (2.3)
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We can easily see that x ∈ X is a BZE if and only if max
y−i∈X−i

ui(xi, y−i) = ui(x), for any i =

1, 2, 3. We deduce that x = (1, 1, 1) is the unique pure strategy BZE of this game and ui(x) = 1,

for all i = 1, 2, 3. Notice that by playing BZE, each player ends up better off than by playing

Nash equilibrium (NE). The unique pure strategy NE of this game is indeed x = (−1,−1,−1)

and ui(x) = −1, for all i = 1, 2, 3. When all players support each other, contributions as well as

players welfares are maximized.

Slightly modifying the payoff function of this game reveals that this result does not always hold.

Suppose now that players have a payoff function such that:

ui(x) = −ixi +
∑
j∈−i

xj , i = 1, 2, 3. (2.4)

Again, x = (1, 1, 1) is the unique pure strategy BZE of this game and x = (−1,−1,−1) is the

unique pure strategy NE. Associated payoffs are now ui(x) = 2 − i and ui(x) = i − 2, for all

i = 1, 2, 3. Social welfare remains the same playing BZE or NE, but the distribution of welfare

changes, causing some players to end up worse off when players play BZE. Notice also that in this

case the BZE outcome is not individually rational, as some players obtain less than their security

level defined by αi = max
xi∈Xi

min
y−i∈X−i

ui(xi, y−i), i = 1, 2, 3. We have indeed αi = i−2, i = 1, 2, 3

and α3 = 1 > −1 = u3(x).

If the contribution cost is greater, every player may end up worse off playing BZE than NE even-

tually decreasing social welfare. This is the case, for example, when the payoff function is such

that:

ui(x) = −3xi +
∑
j∈−i

xj , i = 1, 2, 3. (2.5)

In this case, players receive ui(x) = −1 and ui(x) = 1, for all i = 1, 2, 3 respectively. Again, the

unique BZE of the game is not individually rational. �

In order for BE in a coalitional or individualistic form to be compatible with welfare maximi-

sation requirements, and in order to preclude mutual support when BE is not individually rational,

a first refinement adds an individual rationality constraint to the concept. A BE is individually ra-

tional if players receive a payoff that is at least equal to their security or maximin level (Zhukovskii

and Chikrii (1994)).1 If we return to the contribution game depicted above, this is not the case in

( 2.4) and in ( 2.5), that is, in situations where players are either better off by playing selfishly or

where some players end up worse off by playing BE. Adding individual rationality requirements

allows us to discard equilibrium points where for at least one player, resulting payoff is dominated

by the maximin payoff.
1In the following we define Berge-Vaisman equilibrium in an individualistic form as in Zhukovskii and Chikrii

(1994). A related definition can easily be derived for BVE in coalitional form.
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DEFINITION 2.3 (Zhukovskii and Chikrii (1994)) A strategy profile x ∈ X is a Berge-Vaisman

equilibrium (BVE) of the game (2.1) if

1) ∀i ∈ I, ∀y−i ∈ X−i, ui(x) ≥ ui(xi, y−i),

2) ∀i ∈ I, ∀y−i ∈ X−i, ui(x) ≥ αi = sup
xi∈Xi

inf
y−i∈X−i

ui(xi, y−i).

The first condition means that BVE is a BZE (see Definition 2.2). The second condition of

Definition 2.3 means that the strategy profile x is individually rational meaning that for each player

i ∈ I , BVE x yields a payoff that is greater than or equal to his security level, denoted αi.

Considering well-known games, notice that when the unique BZE in a normal form prisoner’s

dilemma and chicken game is individually rational, BVE and BZE coincide. The same result is

obtained in the trust game defined by Kreps (1990, p.100-101) and the stag hunt game introduced

by Rousseau (1964 [1755], p.167). Bertrand oligopoly, n-players public good games and n-player

electoral competition games admit also a BVE.2 Conversely, in two player zero sum games,

if a BZE exists, this is not a BVE, meaning that it is not individually rational to be mutually

supportive. Conjecturing that situational decision-making is first driven by individual rationality,

this would mean that in situations where no BVE exists, mutual support is discarded in favor of

NE. Conversely, if a BVE exists players will play it.

Although less compelling from the perspective of building a situational theory of games, a

further step in refining the BE concept is to add strategic rationality. As for BE in coalitional or in

individualistic form, BVE is not immune from unilateral or collective deviations. In order to have

a BE such that no player can do better by unilaterally changing his or her strategy, this equilibrium

must also be a NE. A second refinement initially defined by Abalo and Kostreva (1996, 2004)

merges the properties of Berge and Nash equilibrium.

DEFINITION 2.4 (Abalo and Kostreva (2004)) A BE which is also a NE is called Berge-Nash

equilibrium. (BNE)

This equilibrium concept is based on the conjunction of BE, BVE, and NE. It can be consid-

ered in a coalitional or in an individualistic form. BNE is a refinement of BE, and this is also a

refinement of NE. Typically, such equilibrium exists in situations where interests are well aligned

and where maximizing selfishly individual utility or being mutually supportive both lead to similar

outcomes.

EXAMPLE 2.3 (non-costly contribution game) Let us once more consider a contribution game,

but let us assume that contribution is now non-costly. As before, set I = 3 as the number of
2Examples are available upon request.
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players, and let Xi = [−1, 1] be the strategy space of player i, with i = 1, 2, 3. Assume a

symmetric payoff function such that:

ui(x) = xi +
∑
j∈−i

xj , i = 1, 2, 3. (2.6)

We know that x ∈ X is a BZE if and only if max
y−i∈X−i

ui(xi, y−i) = ui(x), for any i = 1, 2, 3. We

deduce that x = (1, 1, 1) is the unique pure strategy BZE of this game with ui(x) = 3, for all

i = 1, 2, 3. This BZE is also a NE as x = (1, 1, 1) with ui(x) = 3, for all i = 1, 2, 3, this is a

BNE.

EXAMPLE 2.4 (Climate coalitional game) Considering now the climate coalition game defined

in example 2.1 and assuming that R = {{1}, {2}, {3}, {4}}, the unique coalitional Berge equilib-

rium is given by

ei =
α2
i

4β2i
, i = 1, ..., 4.

This equilibrium is also the unique Nash equilibrium of the coalitional game, this is a BNE �

We obtain the following proposition that can be extended to games in individualistic form.

PROPOSITION 2.1 Consider the game (2.1) and let R = {Ri}i∈M ⊂ = be a partition of I

(coalition structure) and S = {Si}i∈M be a set of subsets of I . If each m ∈ M , we have

rm ∈ Sm, and thus each CBE is also a NE.

PROOF. By the definition of CBE (see Definition 2.1).

BNE is by definition immune from unilateral deviation.

3 Existence Results

In order to establish general existence results for BVE (Definition 2.3), BNE (Definition 2.4) and

CBE3 (Definition 2.1), let us first restate the generalizations of Baye et al. (1993)’s definitions

of transfer continuity and transfer quasiconcavity to a function defined in the product of different

sets.

DEFINITION 3.1 (g-Diagonal Transfer Continuity). Consider X , Y two topological spaces, f :

X × Y → R and g : X → Y two functions. The function f is said to be g-diagonal transfer

continuous if for every (x, y) ∈ X×Y , f(x, y) > f(x, g(x)) implies that there exists y
′ ∈ Y and

a neighborhood Vx of x such that: f(z, y
′
) > f(z, g(z)), for each z ∈ Vx.

3BZE (Definition 2.2) is a special case of CBE.
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The g-diagonal transfer continuity says that if a point x in X is dominated by another point y

in Y (in the sense f(x, y) > f(x, g(x))), then there is an open set of points containing x, that all

can be strictly dominated by a single point y
′
. In other words, g-diagonal transfer continuity refers

to the fact that y may be transferred to some y
′

in order for the inequality to hold for all points in

a neighborhood of x.

PROPOSITION 3.1 Any one of the following conditions is sufficient for f to be g-diagonal trans-

fer continuous:

a) f and g are continuous;

b) f(x, y) is transfer lower semicontinuous in x and f(x, g(x)) is upper semicontinuous in x.4

PROOF. Item a) is a straightforward consequence of the definition of the continuity of f

and g. In order to prove item b), assume that f(x, y) > f(x, g(x)). For some ε > 0, we have

f(x, y) > f(x, g(x)) + 2ε. Since f(x, y) is transfer lower semicontinuous in x and f(x, g(x)) is

upper semicontinuous in x, there exists for ε > 0, a neighborhood Vx of x and a point ỹ ∈ Y such

that for each z ∈ Vx, we have {
f(z, ỹ) ≥ f(x, y)− ε
f(x, g(x)) ≥ f(z, g(z))− ε.

We deduce that for each z ∈ Vx, f(z, ỹ) ≥ f(x, y)− ε > f(x, g(x)) + ε ≥ f(z, g(z)).

DEFINITION 3.2 (g-Diagonal Transfer Quasiconcavity) Let X be a nonempty convex subset of

a vector space E, Y be a nonempty set and g : X → Y be a function. A function f : X ×Y → R
is said to be g-diagonal transfer quasiconcave in y if, for any finite subset {y1, ..., yp} ⊂ Y , there

exists a corresponding finite subset {x1, ..., xp} ⊂ X such that for any subset J ⊂ {1, 2, ..., p}
and any x in the convex hull of the set {xh : h ∈ J}, we have min

h∈J
f(x, yh) ≤ f(x, g(x)).

The g-diagonal transfer quasiconcavity in y says that, given any finite set {y1, ..., yp} ⊂
Y , there exists a corresponding finite subset {x1, ..., xp} ⊂ X such that for any subset

{xjh , ..., xjk} ⊂ {x1, ..., xp}, and for any x in the convex hull of the set {xj1 , ..., xjk}, (x, g(x))

is never dominated by all deviations in {(x, yj1), ..., (x, yjk)}.

PROPOSITION 3.2 Suppose that X = Y . Any one of the following conditions is sufficient for f

to be g-diagonal transfer quasiconcave:

4A function f(x, y) is said to be transfer lower semicontinuous in x, if for each ε > 0 there exists a neighborhood

Vx of x and a point ỹ ∈ Y such that f(z, ỹ) ≥ f(x, y)− ε, for each z ∈ Vx. A function f(x, g(x)) is said to be upper

semicontinuous in x, if for each ε > 0 there exists a neighborhood Vx of x such that f(x, g(x)) ≥ f(z, g(z))− ε, for

each z ∈ Vx.

8
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a) y 7→ f(x, y) is concave or quasiconcave;

b) y 7→ f(x, y) is g-diagonally quasiconcave.5

PROOF. Item a) is a straightforward consequence of the definition of concavity and/or quasi-

concavity. In order to prove item b), fix any finite subset {y1, ..., yp} ⊂ Y . There exists a corre-

sponding finite subset {x1, ..., xp} ⊂ X such that xh = yh, for h = 1, ..., p. Since f(x, y) is g-

diagonally quasiconcave in y, then for any subset J ⊂ {1, 2, ..., p} and any x ∈ co{xh : h ∈ J},
we have min

h∈J
f(x, yh) ≤ f(x, g(x)).

The following generalization of the Ky Fan inequality (Fan 1972) is established in Nessah and

Tazdaı̈t (2013). It generalizes most minimax theorems proposed in the literature, e.g. Tian and

Zhou (1993), Nessah and Larbani (2004), Nessah et al. (2009).6

LEMMA 3.1 (Nessah and Tazdaı̈t (2013)) Let X be a nonempty, compact and convex subset of a

locally convex Hausdorff space E, Y be a nonempty subset of a topological space F . Let g be a

function defined from X into Y and Ω be a real valued g-diagonal transfer continuous function

defined on X × Y . Then Ω is g-diagonal transfer quasiconcave in y if and only if there exists

x ∈ X such that sup
y∈Y

Ω(x, y) = Ω(x, g(x)).

3.1 Berge-Vaisman equilibrium

We now establish the existence of BVE in the game (2.1) by using Lemma 3.1. Let us consider

the set A of individually rational strategy profiles of the game (2.1).

A = {x ∈ X such that αi = max
xi∈Xi

min
y−i∈X−i

ui(xi, y−i) ≤ ui(x),∀i ∈ I}. (3.1)

LEMMA 3.2 Suppose that the following conditions are satisfied:

1) for all i ∈ I , the set Xi is non empty, convex and compact in the Hausdorff locally convex

space Ei,

2) for all i ∈ I , the function ui is continuous and quasiconcave on X .

Then, the set A defined in (3.1) is nonempty, convex and compact.

Let us define two functions we denote g and Γ:

g : A→ X̂

5A function f(x, y) is said to be g-diagonally quasiconcave in y if for every finite subset {y1, ..., yp} ⊂ X and any

y ∈ {y1, ..., yp}, we have min
h=1,...,p

f(y, yh) ≤ f(y, g(y)).
6For more details on these generalizations, see Nessah and Tian (2013).
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defined by x 7→ g(x) = (x−1, ..., x−n), and

Γ : A× X̂ → R

defined by (x, ŷ) 7→ Γ(x, ŷ) =
∑
i∈I
ui(xi, y−i) where ŷ = (y−1, ..., y−n) ∈ X̂ =

∏
i∈I
X−i, and

X−i =
∏
j∈−i

Xj , ∀i ∈ I .

REMARK 3.1 For all x ∈ A, we have

sup
ŷ∈X̂

Γ(x, ŷ) ≥ Γ(x, g(x)).

The next Lemma establishes the relation between BVE of the game (2.1) and the functions Γ and

g.

LEMMA 3.3 The following two assertions are equivalent.

1) x is a BVE of the game (2.1).

2) x ∈ A and sup
ŷ∈X̂

Γ(x, ŷ) = Γ(x, g(x))

REMARK 3.2 Lemma 3.3 transforms the problem of finding BVE of the game (2.1) into finding

a strategy profile x ∈ A satisfying sup
ŷ∈X̂

Γ(x, ŷ) = Γ(x, g(x)).

Let

α = inf
x∈X

[
sup
ŷ∈X̂

Γ(x, ŷ)− Γ(x, g(x))

]
. (3.2)

From Remark 3.1 and Lemma 3.3, we establish the following proposition for games with a finite

number of players.

PROPOSITION 3.3 Suppose that uj is continuous onX and the setXj is compact for each j ∈ I .

The game (2.1) admits at least one BVE if and only if α = 0.

A procedure to compute BVE of a continuous and compact game is immediately deduced from

this proposition. It suffices to prove that α = 0, and show that the corresponding strategy profile

is also a maximin profile. The following example illustrates this computation method.7

EXAMPLE 3.1 Suppose a three player game such that I = {1, 2, 3}, Xi = [−1, 1], i = 1, 2, 3,

and x = (x1, x2, x3). Players’ utility functions are such that:

7Note that efficient algorithmic computation of Berge equilibrium and refinements is a hard problem. Preliminary

results of PPAD completeness for computing Berge equilibrium and refinements in two-player games are provided in

the appendix. We thank an anonymous referee for having raised this important issue.
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u1(x) = x1 + x2 − x23,

u2(x) = x2 − x23,

u3(x) = x1 + x22(x3 + 1).

Notice first that the game is continuous and compact. Notice second that max
y−1

u1(x1, y−1) =

u1(x1, 1, 0), max
y−2

u2(x2, y−2) = u2(y1, x2, 0) and max
y−3

u3(x3, y−3) = u3(1,±1, x3). We have

3∑
i=1

max
y−i

[ui(xi, y−i)− ui(x)] = −x1 − x2 + x3 + 2x23 − x22 − x3x22 + 3.

Notice finally that α = inf
x∈X

[
−x1 − x2 + x3 + 2x23 − x22 − x3x22 + 3

]
= 0 and this minimum is

reached in x = (1, 1, 0). Since α1 = 0, α2 = 0 and α3 = −1, we have x ∈ A. According to

Proposition 3.3, x = (1, 1, 0) is a BVE of this game. �

From Lemmas (3.1, 3.2, 3.3) and Proposition 3.1, we derive the following existence result

which constitutes the first existence result for BVE that has been provided in the literature to date.

THEOREM 3.1 Assume that the sets Xi, i ∈ I , are non empty compact and convex subsets of

locally convex Hausdorff spaces, and the function ui is continuous and quasiconcave on X , i ∈ I .

Then, the game (2.1) admits at least one BVE (Definition 2.3) if and only if Γ is g-diagonal transfer

quasiconcave in ŷ.

PROOF. The assumptions of Theorem 3.1 imply that conditions of Lemma 3.2 are satisfied.

It follows that the set A
′

is nonempty, convex and compact. By Proposition 3.1, the function Γ

is g-diagonal transfer continuous. Then, by Lemma 3.1 and Lemma 3.3, the game (2.1) admits at

least one BVE if and only if there exists x ∈ A such that sup
ŷ∈X̂

Γ(x, ŷ) = Γ(x, g(x)).

Let us now relax the continuity of ui and the quasiconcavity of ui in x. ConsiderA
′

a modified

set of A:

A
′

= {x ∈ X such that αi = sup
xi∈Xi

inf
x−i∈X−i

ui(xi, x−i) ≤ inf
x−i∈X−i

ui(xi, x−i), ∀i ∈ I}.

We have A
′ ⊂ A. Indeed, if x ∈ A′ , then for each i ∈ I , αi ≤ inf

x−i∈X−i

ui(xi, x−i) ≤ ui(x). The

converse is not true in general.

LEMMA 3.4 The set A
′

is nonempty, convex and compact if the three following conditions are

satisfied:

1) for all i ∈ I , the set Xi is non empty, convex and compact in the Hausdorff locally convex

space Ei,

2) for all i ∈ I , the function inf
x−i∈X−i

ui(., x−i) is upper semicontinuous on Xi, i.e. for

each xi, ε > 0, there exists a neighborhood Vxi of xi such that for each zi ∈ Vxi ,
inf

x−i∈X−i

ui(zi, x−i) ≤ inf
x−i∈X−i

ui(xi, x−i) + ε.

11
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3) for all i ∈ I , the function inf
x−i∈X−i

ui(., x−i) is quasiconcave on Xi.

Denoting g
′

= g |A′ the restriction of g on A
′

and Γ
′

= Γ |
A′×X̂ the restriction of Γ on A

′ ×
X̂ , a sufficient existence condition for BVE follows. This existence result is more general than

Theorem 3.1 as we relaxed continuity and quasconcavity conditions.

THEOREM 3.2 Assume that the sets Xi, i ∈ I , are non empty compact and convex subsets of

locally convex Hausdorff spaces, and the function inf
x−i∈X−i

ui(., x−i) is upper semicontinuous and

quasiconcave on Xi, i ∈ I . If Γ
′

is g
′
-diagonal transfer continuous and g

′
-diagonal transfer

quasiconcave in ŷ then the game (2.1) admits at least one BVE (Definition 2.3).

PROOF. The assumptions of Theorem 3.1 imply that conditions of Lemma 3.4 are satisfied.

It follows that the set A
′

is nonempty, convex and compact. By Lemma 3.1, there exists x ∈ A′

such that sup
ŷ∈X̂

Γ
′
(x, ŷ) = Γ

′
(x, g

′
(x)). Since A

′ ⊂ A, we deduce that x is a BVE of game (2.1).

In order to illustrate the generality of this result, let us consider a game example that is neither

continuous nor quasiconcave.

EXAMPLE 3.2 (Discontinuous game) Let I = {1, 2, 3}, Xi = [0, 1], with i = 1, 2, 3, and x =

(x1, x2, x3). Further assume that:

u1(x) =

{
x1 + 2 if x2 ≥ x3
x1 + x2 + x3 otherwise

, u2(x) =

{
x2 + 2 if x1 ≥ x3
x1 + x2 + x3 otherwise

u3(x) =

{
x3 + 2 if x1 ≥ x2
x1 + x2 + x3 otherwise

This game is neither continuous nor quasiconcave on X but for each i = 1, 2, 3,

inf
x−i∈X−i

ui(xi, x−i) = xi, meaning that the function inf
x−i∈X−i

ui(., x−i) is upper semicontinuous

and quasiconcave on Xi. Notice that Γ
′

is g
′
-diagonal transfer continuous. Indeed, let x not

be a BVE. Then, there exists ŷ ∈ X̂ (defined by ŷj = 1, for each j) and a neighborhood Vx
of x such that for each z ∈ Vx, Γ

′
(z, ŷ) > Γ

′
(z, g

′
(z)). Γ

′
is also g

′
-diagonal transfer quasi-

concave in ŷ. Indeed, for any finite subset {ŷ1, ..., ŷp} ⊂ X̂ , there exists a corresponding fi-

nite subset {x1, ..., xp} = {(1, 1, 1)} ⊂ A
′

such that for any subset J ⊂ {1, 2, ..., p} and any

x ∈ co{xh : h ∈ J}, min
h∈J

Γ
′
(x, ŷh) ≤ Γ

′
(x, g

′
(x)). By Theorem 3.2, this game admits a BVE.

3.2 Berge-Nash Equilibrium

We now establish conditions for existence of BNE by using Lemma 3.1. Again, let us consider

two functions we denote g̃ and Γ̃.

g̃ : X → X̂ ×X

12



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Courtois, P., Nessah, R., Tazdaït, T. (2017). Existence and computation of Berge equilibrium

and of two refinements. Journal of Mathematical Economics, 72, 7-15.  DOI : 10.1016/j.jmateco.2017.04.004

defined by x 7→ g̃(x) = ((x−1, ..., x−n), x) and

Γ̃ : X × (X̂ ×X)→ R

defined by (x, (ŷ, z)) 7→ Γ̃(x, (ŷ, z)) = Γ(x, ŷ)+
∑
i∈I
ui(x−i, zi) =

∑
i∈I

[ui(xi, y−i) + ui(x−i, zi)] .

REMARK 3.3 By definition, for all x ∈ X , we have

sup
(ŷ,z)∈X̂×X

Γ̃(x, (ŷ, z)) ≥ Γ̃(x, g̃(x)).

The following Lemma establishes the relation between BNE of the game (2.1) and the func-

tions Γ̃ and g̃.

LEMMA 3.5 The following two assertions are equivalent:

1) sup
(ŷ,z)∈X̂×X

Γ̃(x, (ŷ, z)) = Γ̃(x, g̃(x)).

2) x is a BNE of the game (2.1).

Note that in Lemma 3.5, we deliberately omitted the individual rationality condition x ∈ A.

Indeed it is a well known result that a NE is always individually rational.

Let

β = inf
x∈X

[
sup

(ŷ,z)∈X̂×X
Γ̃(x, (ŷ, z))− Γ̃(x, g̃(x))

]
. (3.3)

We deduce from Remark 3.3 and Lemma 3.5, the following proposition.

PROPOSITION 3.4 Suppose that the function ui is continuous on X and the set Xi is compact,

for each i ∈ I . Then, the game (2.1) has at least one BNE if and only if β = 0.

Notice that the existence and the computation of BNE in continuous and compact games is

immediately deduced from this proposition. To illustrate it, consider again the game described in

Example 3.1.

EXAMPLE 3.3 Let I = {1, 2, 3}, Xi = [−1, 1], i = 1, 2, 3, and x = (x1, x2, x3). Players’ utility

functions are such that:

u1(x) = x1 + x2 − x23,

u2(x) = x2 − x23,

u3(x) = x1 + x22(x3 + 1).

13
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Notice first that the game is continuous and compact. According to Proposition 3.4, there is at

least one BNE if and only if β = 0. By Example 3.1, we have

sup
ŷ∈X̂

Γ(x, ŷ)− Γ(x, g(x)) = −x1 − x2 + x3 + 2x23 − x22 − x3x22 + 3,

and
3∑
i=1

max
zi

[ui(zi, x−i)− ui(x)] = 2− x1 − x2 + (1− x3)x22.

We deduce that β = inf
x∈X

[
5− 2x1 − 2x2 + x3 + 2x23 − 2x3x

2
2

]
= 7

8 and by Proposition 3.4, we

concude that the game has no BNE. �

As for BVE, let us now relax continuity and quasiconcavity conditions. We have the following

existence Theorem.

THEOREM 3.3 Suppose that the sets Xi, i ∈ I , are nonempty, compact and convex subsets of

Hausdorff locally convex vector spaces and the function Γ̃ is g̃-diagonal transfer continuous. Then

the game (2.1) has at least one BNE (Definition 2.4) if and only if the function Γ̃ is g̃-diagonal

transfer quasiconcave in (ŷ, z).

PROOF. The conditions of Theorem 3.3 imply that all conditions of Lemma 3.1 are

satisfied. It follows that by Lemma 3.5, the game (2.1) has at least one Berge-Nash equilibrium

(Definition 2.4) if and only if the function Γ̃ is g̃-diagonal transfer quasiconcave in (ŷ, z).

In order to illustrate the generality of this existence result, consider again the discontinuous

game described in Example 3.2. In this example, utility functions are not lower semicontinuous

and the existence results provided in Larbani and Nessah (2008) do not apply.

EXAMPLE 3.4 (Discontinuous game) Let I = {1, 2, 3}, Xi = [0, 1], i = 1, 2, 3 and x =

(x1, x2, x3). Players’ utility functions are:

u1(x) =

{
x1 + 2 if x2 ≥ x3
x1 + x2 + x3 otherwise

, u2(x) =

{
x2 + 2 if x1 ≥ x3
x1 + x2 + x3 otherwise

u3(x) =

{
x3 + 2 if x1 ≥ x2
x1 + x2 + x3 otherwise

Notice first, that the functions x−i 7→ ui(xi, x−i) are not lower semicontinuous. Indeed, let

x1 ∈ [0, 1] and (x2, x3) = (0, 0). There exists ε = 1 > 0 such that for each neighborhood V of

(0, 0), there exists (x′2, x
′
3) ∈ V (with x′2 < x′3 <

ε
2 ) so as u1(x1, x′2, x

′
3) = x1 + x′2 + x′3 <

x1 + 2 − ε = u1(x1, 0, 0) − ε. We deduce that Theorems (4.2,4.3,4.4) provided in Larbani and

Nessah (2008) cannot be applied.

14
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Notice second that Γ̃ is g̃-diagonal transfer continuous. Indeed, let x not be a BNE. Then, there

exists (ŷ, t) ∈ X̂ ×X defined by ŷj = 1, for each j and t = (1, 1, 1) and a neighborhood Vx of

x such that for each z ∈ Vx, Γ̃(z, (ŷ, t)) > Γ̃(z, g̃(z)). Γ̃ is also g̃-diagonal transfer quasiconcave

in (ŷ, z). Indeed, for any finite subset {(ŷ1, z1), ..., (ŷp, zp)} ⊂ X̂ , there exists a corresponding

finite subset {x1, ..., xp} = {(a, a, a)} (with a = max
i,j,h=1,...,p

{ŷhj , zhi }) such that for any subset

J ⊂ {1, 2, ..., p} and any x ∈ co{xh : h ∈ J}, we have min
h∈J

Γ̃(x, (ŷh, zh)) ≤ Γ̃(x, g̃(x)). By

Theorem 3.3, this game admits a BNE. �

3.3 Coalitional Berge Equilibrium

We now establish conditions for existence of CBE (Definition 2.1) in the game (2.1) from which

we deduce conditions for existence of BZE (Definition 2.2).

Let R = {Ri}i∈M ⊂ = be a partition of I and S = {Si}i∈M be a set of subsets of I .

Again, consider two functions we now denote h and F :

h : X → X̃

defined by x 7→ h(x) = (

rm−times︷ ︸︸ ︷
(xSm , ..., xSm), m ∈M) and

F : X × X̃ → R

defined by (x, ỹ) 7→ F (x, ỹ) =
∑
m∈M

∑
j∈Rm

{uj(x−Sm , ySm)−uj(x)}, where X̃ =
∏

m∈M

∏
j∈Rm

Xj
Sm

and Xj
Sm

= XSm , ∀j ∈ Rm.

Lemma 3.6 establishes the relation between CBE of the game (2.1) and the functions F and h.

LEMMA 3.6 The following two propositions are equivalent:

1) sup
ỹ∈X̃

F (x, ỹ) = 0.

2) x is a CBE of the game (2.1).

Let

γ = inf
x∈X

[
sup
ỹ∈X̃

F (x, ỹ)

]
. (3.4)

By Lemma 3.6, we deduce the following proposition.

PROPOSITION 3.5 Suppose that the function ui is continuous on X and the set Xi is compact,

for each i ∈ I . Then, the game (2.1) has at least one CBE (Definition 2.1) if and only if γ = 0.

15



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Courtois, P., Nessah, R., Tazdaït, T. (2017). Existence and computation of Berge equilibrium

and of two refinements. Journal of Mathematical Economics, 72, 7-15.  DOI : 10.1016/j.jmateco.2017.04.004

As for BVE and BNE, existence and computation of CBE in a game that is compact and con-

tinuous is immediately deduced from this proposition. Computation of BZE is also straightforward

as BZE is a special case of CBE when M = I , Ri = {i}, i ∈ I , Si = −i, and i ∈ I . Let us

illustrate this result with an example.

EXAMPLE 3.5 Let I = {1, 2, 3}, X1 = X2 = X3 = [0, 1] and

u1(x) = x1 + x2 + x3,

u2(x) = −x1 + x2 − x3,

u3(x) = x1 − x2 + x3.

It can be easily seen that this game is compact and continuous.

Consider first the case where M = I , Ri = {i}, i ∈ I and Si = −i, i ∈ I . That is, the case where

there is no coalition but agents playing individually. We can show that the game admits no BZE.

Indeed, X̃ becomes X̃ = X−1 ×X−2 ×X−3 and

F (x, ỹ) = [u1(x1, y−1)− u1(x)] + [u2(x2, y−2)− u2(x)] + [u3(x3, y−3)− u3(x)],

where x ∈ X and ỹ = (y−1, y−2, y−3) ∈ X̃ .

Let x ∈ X , we have:

max
y−1

u1(x1, y−1) = u1(x1, 1, 1) = x1 + 2,

max
y−2

u2(x2, y−2) = u2(0, x2, 0) = x2,

max
y−3

u3(x3, y−3) = u3(1, 0, x3) = x3 + 1.

Therefore
3∑
i=1

max
y−i

ui(xi, y−i) = x1 + x2 + x3 + 3. Since γ = inf
x∈X

[
sup
ỹ∈X̃

F (x, ỹ)

]
. Then, we

have

γ = inf
x∈X

[(x1 + 2− x1 − x2 − x3) + (x2 + x1 − x2 + x3) + (x3 + 1− x1 + x2 − x3)] = 3,

and by Proposition 3.5, we conclude that the game admits no BZE.

Consider second a coalitional case such that R = {i}i∈I and S = {Si}i∈I defined by S1 =

{1, 2}, S2 = {2, 3} and S3 = {1}. The game admits an equilibrium point for the set R relative to

the set S. Indeed, X̃ becomes X̃ = X−3 ×X−1 ×X1 and

F (x, ỹ) = [u1(y
1
1, y

1
2, x3)− u1(x)] + [u2(x1, y

2
2, y

2
3)− u2(x)] + [u3(y

3
1, x2, x3)− u3(x)],

with x ∈ X and ỹ = ((y11, y
1
2), (y22, y

2
3), y31) ∈ X̃ .

Let x ∈ X , we have
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max
y11 ,y

1
2

u1(y
1
1, y

1
2, x3) = u1(1, 1, x3) = x3 + 2,

max
y22 ,y

2
3

u2(x1, y
2
2, y

2
3) = u2(x1, 1, 0) = −x1 + 1,

max
y31

u3(y
3
1, x2, x3) = u3(1, x2, x3) = −x2 + x3 + 1.

Notice that
3∑
i=1

max
ySi

ui(x−Si , ySi) = −x1 − x2 + 2x3 + 4 and
3∑
i=1

ui(x) = x1 + x2 + x3.

As γ = inf
x∈X

[
sup
ỹ∈X̃

F (x, ỹ)

]
, we obtain: γ = inf

x∈X
[4− 2x1 − 2x2 + x3] = 0. By Proposition 3.5,

x = (1, 1, 0) is a CBE of the game. �

We now relax the continuity and quasiconcavity conditions and find sufficiency conditions for

the existence of CBE. As for Theorem 3.1, we have the following existence result.

THEOREM 3.4 Suppose that the sets Xi, i ∈ I , are nonempty, compact and convex subsets of

Hausdorff locally convex vector spaces, and the function F is h-diagonal transfer continuous.

Then, the game (2.1) has at least one CBE (Definition 2.1) if and only if F is h-diagonal transfer

quasiconcave in ỹ.

PROOF. The proof of this theorem is similar to that of Theorem 3.1.

To illustrate the generality of this theorem, consider the discontinuous game described in Ex-

ample 3.2. Again, because in this example ui(.) is not continuous and ui(xi, .) is not lower semi-

continuous, the existence results provided in the literature do not apply.

EXAMPLE 3.6 (Discontinuous game) We have: I = {1, 2, 3}, Xi = [0, 1], i = 1, 2, 3, and

x = (x1, x2, x3). Players’ utility functions are:

u1(x) =

{
x1 + 2 if x2 ≥ x3
x1 + x2 + x3 otherwise

, u2(x) =

{
x2 + 2 if x1 ≥ x3
x1 + x2 + x3 otherwise

u3(x) =

{
x3 + 2 if x1 ≥ x2
x1 + x2 + x3 otherwise

Let Rm = Sm and assume that m ∈ Rm, for each m = 1, 2, 3. Notice that F is h-diagonal

transfer continuous. Indeed, let x not be a CBE. Then there exists ỹ ∈ X̃ defined by ỹj = 1, for

each j and a neighborhood Vx of x such that for each z ∈ Vx, F (z, ỹ) > F (z, h(z)). F is also

h-diagonal transfer quasiconcave in ỹ. Indeed, for any finite subset {ỹ1, ..., ỹp} ⊂ X̃ , there exists

a corresponding finite subset {x1, ..., xp} = {(a, a, a)} ⊂ X (with a = max
j,h=1,...,p

ỹhj ) such that for

any subset J ⊂ {1, 2, ..., p} and any x ∈ co{xh : h ∈ J}, we have min
h∈J

F (x, ỹh) ≤ F (x, h(x)).

By Theorem 3.4 this game admits a CBE . �
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4 Conclusion

The main contribution of this paper is to offer existence conditions for CBE, BZE, BVE and BNE

in n-player games that satisfy weak continuity and quasi-concavity conditions. We use Lemma 3.1

to derive general necessary and sufficient existence conditions (Theorems 3.1, 3.3, 3.4). Another

contribution of the paper is to highlight the relevance of BVE for situational decision-making.

BVE depicts players that consider their maximin value as a benchmark in their deliberation. An

individually rational player should never follow an equilibrium strategy that does worse than his

security level. The resulting conjecture for situational gaming when a game admits both a NE and

a BE is that players would choose BE if the outcome value is at least equal to the security level,

else they would choose NE.

Several research directions are attractive in terms of future work on this topic. The first is

additional perspectives on situational gaming. Situational gaming requires deeper scrutiny of other

possible behavior rules and equilibrium concepts that complement Nash and Berge. The second

avenue for future research concerns mutual support and the question of when BVE is to be applied

and when another equilibrium concept is to be applied. Another interesting line of research would

be to define classes of games where BVE is Pareto optimal and where BVE is always Pareto

dominated.

Appendix A: Proofs

PROOF OF LEMMA 3.2.

1) A is a nonempty set. The conditions 1) and 2) of Lemma 3.2 imply that ∀i ∈ I, αi =

sup
xi∈Xi

inf
y−i∈X−i

ui(xi, y−i) exists. Since the functions ui, i ∈ I , are continuous over the

compact X , then ∀i ∈ I, ∃x̃i ∈ Xi such that

αi = sup
xi∈Xi

inf
y−i∈X−i

ui(xi, y−i) = inf
y−i∈X−i

ui(x̃i, y−i).

Let x̃ = (x̃1, ..., x̃n) ∈ X, we have for all i ∈ I , ui(x̃) = ui(x̃i, x̃−i) ≥
inf

y−i∈X−i

ui(x̃i, y−i) = αi. Thus A 6= ∅.

2) A is convex in X . Let x and x be two elements in A and let λ ∈ [0, 1]. We show that

λx + (1 − λ)x ∈ A. Since x and x are two elements in A, αi ≤ ui(x) and αi ≤ ui(x),

∀i ∈ I . Hence αi ≤ min{ui(x), ui(x)} for each i ∈ I . Since the functions ui, i ∈ I , are

quasiconcave over X , αi ≤ ui(λx + (1 − λ)x), for each i ∈ I , and λ ∈ [0, 1]. Therefore,

λx+ (1− λ)x ∈ A.

3) A is compact in X . Since X is compact, it is sufficient to prove that A is closed. Let {xp}p≥1
be a net of elements in A converging to x. We show that x ∈ A. We have ∀p ≥ 1, xp ∈ A,
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then

∀p ≥ 1, ∀i ∈ I, αi ≤ ui(xp).

Taking into account condition 1) and the continuity of ui of Lemma 3.2, when p →∞, we

obtain: ∀i ∈ I, αi ≤ ui(x), which means that x ∈ A.

PROOF OF LEMMA 3.3.

Sufficiency. Let x ∈ A such that max
ŷ∈X̂

Γ(x, ŷ) = Γ(x, g(x)), this equality implies ∀ŷ ∈ X̂ ,

Γ(x, ŷ) − Γ(x, g(x)) =
∑
i∈I

(ui(xi, ŷ−i)− ui(x)) ≤ 0. For an arbitrarily fixed i ∈ I , we

have ∀ŷ ∈ X̂ , Γ(x, ŷ) = (ui(xi, ŷ−i)− ui(x)) +
∑
j 6=i
j∈I

(uj(xj , ŷ−j)− uj(x)) ≤ 0.

For ŷ ∈ X̂ such that ŷ−i is arbitrarily chosen in X−i and ŷ−j = x−j , ∀j 6= i, we have∑
j 6=i
j∈I

(uj (xj , ŷ−j)− uj (x)) = 0. From the last inequality, we deduce that ∀ŷ−i ∈ X−i,

ui (xi, ŷ−i) ≤ ui (x) . Since i is arbitrarily chosen in I , we have ∀i ∈ I, ∀y−i ∈ X−i,

ui (xi, y−i) ≤ ui (x). Taking into account the fact that x ∈ A, we deduce that x is a BVE

of the game (2.1).

Necessity. Let x ∈ X be a BVE of the game (2.1). The second condition of Definition 2.3

implies that x ∈ A. The first condition of Definition 2.3 implies ui(xi, t−i) ≤ ui(x),

∀t−i ∈ X−i, ∀i ∈ I, hence Γ(x, ŷ)−Γ(x, g(x)) =
∑
i∈I

(ui(xi, ŷ−i)− ui(x)) ≤ 0, ∀ŷ ∈ X̂ ,

i.e. max
ŷ∈X̂

Γ(x, ŷ) ≤ Γ(x, g(x)). Taking into account Remark 3.1, we obtain max
ŷ∈X̂

Γ(x, ŷ) =

Γ(x, g(x)).

PROOF OF LEMMA 3.4.

1) A′ is nonempty. Because function ui is bounded, αi exists for each i ∈ I . The function xi 7→
inf

x−i∈X−i

ui(xi, x−i) is upper semicontinuous on the compact Xi. There exists therefore

xi ∈ Xi such that

inf
x−i∈X−i

ui(xi, x−i) ≥ αi.

Hence, x = (x1, ..., xn) is an element of A
′
.

2) By quasiconcavity of inf
x−i∈X−i

ui(xi, x−i) in xi, A
′

is convex.
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3) A′ is compact in X . Since X is compact, it is sufficient to prove that A
′

is closed. Let {xp}p≥1
be a set of elements of A

′
converging to x. We show that x ∈ A′ . We have ∀p ≥ 1, xp ∈ A,

then

∀p ≥ 1, ∀i ∈ I, αi ≤ inf
x−i∈X−i

ui(x
p
i , x−i).

Since xi 7→ inf
x−i∈X−i

ui(xi, x−i) is upper semicontinuous on the compact Xi, ∀i ∈ I, αi ≤

inf
x−i∈X−i

ui(xi, x−i), i.e. x ∈ A′ .

PROOF OF LEMMA 3.5.

Sufficiency. Suppose that sup
(ŷ,z)∈X̂×X

Γ̃(x, (ŷ, z)) = Γ̃(x, g̃(x)), i.e.

∑
i∈I

(ui(xi, y−i) + ui(x−i, zi)) ≤
∑
i∈I

(ui(x) + ui(x)) , ∀(ŷ, z) ∈ X̂ ×X (4.1)

If we take y−i = x−i, ∀i ∈ I in (4.1), we conclude that
∑
i∈I
ui(x−i, zi) ≤

∑
i∈I
ui(x), ∀z ∈ X ,

which implies that x is Nash equilibrium of the game (2.1).

If we take z = x in equation (4.1), we conclude that x satisfies the property 1) of Definition

2.5 and since x is a Nash equilibrium, it is also individually rational. We conclude that x is

a BVE of the game (2.1).

Necessity. Suppose that x is a BNE of the game (2.1). The fact that x is a NE of the game (2.1)

implies

max
z∈X

∑
i∈I

ui(x−i, zi) =
∑
i∈I

ui(x). (4.2)

The fact that x is a BVE of the game (2.1) implies

max
ŷ∈X̂

∑
i∈I

ui(xi, y−i) =
∑
i∈I

ui(x). (4.3)

The two equalities (4.2) and (4.3) imply max
(ŷ,z)∈X̂×X

Γ̃(x, (ŷ, z)) = Γ̃(x, g̃(x)).

PROOF OF LEMMA 3.6.

Sufficiency. Let x ∈ X such that sup
ỹ∈X̃

F (x, ỹ) = 0, this equality implies ∀ỹ ∈ X̃ , F (x, ỹ) =∑
m∈M

∑
j∈Rm

(uj(x−Sm , ySm)− uj(x)) ≤ 0. For an arbitrarily fixed m0 ∈ M , j0 ∈ Rm0 , we
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have ∀ỹ ∈ X̃ ,

F (x, ỹ) = uj0(x−Sm0
, ySm0

)− uj0(x) +
∑

j∈Rm0/{j0}

(
uj(x−Sm , y

jm
Sm

)− uj(x)
)

+
∑

m∈M/{m0}

∑
j∈Rm

(
uj(x−Sm , y

jm
Sm

)− uj(x)
)

≤ 0.

For ỹ ∈ X̃ such that ySm0
is arbitrarily chosen in X̃Sm0

and yjmSm
=

xSm , ∀m 6= m0, jm 6= j0, we obtain
∑

j∈Rm0/{j0}

(
uj(x−Sm , y

jm
Sm

)− uj(x)
)

+∑
m∈M/{m0}

∑
j∈Rm

(
uj(x−Sm , y

jm
Sm

)− uj(x)
)

= 0. From the last inequality, we deduce that

∀ySm0
∈ XSm0

, uj0(x−Sm0
, ySm0

) ≤ uj0(x). Since m0 ∈ M and j0 ∈ Rm0 are arbitrarily

chosen, then x is a CBE of the game (2.1).

Necessity. Let x be a CBE of the game (2.1). Then, for each ỹ ∈ X̃ ,

F (x, ỹ) =
∑
m∈M

∑
j∈Rm

(uj(x−Sm , ySm)− uj(x)) ≤ 0.

By the construction of F , we have sup
ỹ∈X̃

F (x, ỹ) ≥ 0, for each x ∈ X . We conclude that

sup
ỹ∈X̃

F (x, ỹ) = 0.

Appendix B: Computational Complexity

In what follows, we provide with preliminary results for computational complexity of BZE, BVE

and BNE in two-player games by considering the correspondance between Berge and Nash no-

tions.

For each player i ∈ I in the game G, define a two player subgame

Gi = 〈{1i, 2i}, Xi, X−i, g
i
1, g

i
2〉. (4.4)

Player 1i’s strategy set is Xi and the strategy set of player 2i is X−i. If player 1i chooses xi and

2i play x−i, then the payoffs are gi1(xi, x−i) =
∑
j∈−i

uj(x), gi2(xi, x−i) = ui(x).

We have the following lemma.

LEMMA 4.1 The strategy profile x ∈ X is a BZE of the game (2.1) if and only if for each player

i ∈ I , x = (xi, x−i) is a Nash equilibrium of the subgame (4.4).

PROOF.
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Necessity: Let x ∈ X be a Berge-Zhukovskii equilibrium of the game (2.1). Then, for each player

i, and y−i ∈ X−i, we have

ui(xi, y−i) ≤ ui(x). (4.5)

Let i ∈ I be any player, then for each j ∈ −i, we have for each yi ∈ Xi,

uj(xj , yi, x−{i,j}) = uj(yi, x−i) ≤ uj(x).

Therefore, for each yi ∈ Xi, we have

gi1(yi, x−i) ≤ gi1(x). (4.6)

Then by (4.5) and (4.6), the strategy x is a Nash equilibrium for the subgame (4.4).

Sufficiency: Let x be any strategy in X such that for each player i, x = (xi, x−i) is a Nash

equilibrium of the subgame (4.4). Then for each player i, and for each yi ∈ Xi, y−i ∈ X−i,
we have

gi1(yi, x−i) ≤ gi1(x) and gi2(xi, y−i) ≤ gi2(x). (4.7)

By (4.7) and definition of gi2, we obtain for each y−i ∈ X−i, ui(xi, y−i) ≤ ui(x), i.e.

x ∈ X is a Berge-Zhukovskii equilibrium for the game (2.1).

By Lemma 4.1, we deduce the following corollary.

COROLLARY 4.1 The strategy profile x ∈ X is a BVE of the game (2.1) if and only if for each

player i ∈ I , x = (xi, x−i) is a Nash equilibrium of the subgame (4.4) and x ∈ A.

REMARK 4.1 Lemma 4.1 and Corollary 4.1 can be extended to mixed strategies.

Daskalakis et al. (2009) show that the computation of Nash equilibrium is PPAD-

complete. Since BNE is a Nash equilibrium, we deduce that it pertains to the class of

problems that are PPAD-complete. Furthermore, combining Papadimitriou et al.’s result with

Lemma 4.1,Corollary 4.1 and Remark 4.1, we conclude that the computation of BZE and BVE is

PPAD-complete.

References

ABALO, K., KOSTREVA, M. (1996): Equi-well-posed Games. Journal of Optimization Theory and Appli-

cations, 89, 89–99.

22



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Courtois, P., Nessah, R., Tazdaït, T. (2017). Existence and computation of Berge equilibrium

and of two refinements. Journal of Mathematical Economics, 72, 7-15.  DOI : 10.1016/j.jmateco.2017.04.004

ABALO, K., KOSTREVA, M. (2004): Some existence theorems of Nash and Berge equilibria. Applied

Mathematics Letters, 17, 569–573.

BAYE, M.R., TIAN, G., ZHOU, J. (1993): Characterizations of the existence of equilibria in games with

discontinuous and Non-Quasiconcave Payoffs. The Review of Economic Studies, 60, 935–948.
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