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Designing genotypes with acceptable performance under warmer or drier environments is essential for sustainable crop
production in view of climate change. However, this objective is not trivial for grapevine since traits targeted for genetic
improvement are complex and result from many interactions and trade-off between various physiological and molecular
processes that are controlled by many environmental conditions. Integrative tools can help to understand and unravel these
Genotype x Environment interactions. Indeed, models integrating physiological processes and their genetic control have been
shown to provide a relevant framework for analyzing genetic diversity of complex traits and enhancing progress in plant
breeding for various environments. Here we provide an overview of the work conducted by the French LACCAVE research
consortium on this topic. Modeling abiotic stress tolerance and fruit quality in grapevine is a challenging issue, but it will
provide the first step to design and test in silico plants better adapted to future issues of viticulture.
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Introduction

Exploiting genetic diversity or designing new scion
varieties and rootstocks with better performance
under water stress or high temperature is one of the
possible paths to sustain high-quality viticulture in
view of future climate change (Duchéne, 2016).
However, this breeding challenge is not trivial for
perennial fruit crops, including grapevine, since the
main traits targeted for genetic improvement (e.g.
plant growth and tolerance to abiotic stresses, yield,
fruit quality) are quantitative and complex, as they
result from many interactions and trade-off between
various physiological and molecular processes that (i)
act at different temporal, spatial and structural scales
and (ii) depend on environmental conditions and
management strategies.

Ecophysiological process-based models (PBMs) can
predict quantitative traits of one genotype in any
environment, whereas quantitative trait locus (QTL)
models predict the contribution of alleles under a
limited number of environments (Tardieu, 2003).
Approaches combining both ecophysiological
modeling and QTL analyses have been developed
recently (Hammer et al., 2006 ; Reymond et al.,
2003; Yin et al., 1999), essentially in annual crops, to
overcome the strong GXE interactions in the control
of complex traits in plants and to improve QTL
detection power. The method dissects the genotypic
variation of a given complex trait into simpler
ecophysiological model parameters linked to key
underlying processes involved in this trait. Then, co-
localization (or absence thereof) between QTLs for
the trait and QTLs for model parameters can give
new insights into the contribution of processes
involved in the trait.

Hence, it may help in the choice of candidate genes,
or may give clues about the genomic regions to be
combined in an ideotype. This approach is
particularly well suited for studying plant adaptive
responses to diverse environmental conditions
(Prudent et al., 2011). It appears as a valuable tool to
help make informed decisions with regard to
genotypic adaptation options and ideotype design in
the context of climate change (Ramirez-Villegas et
al., 2015).

Such an approach combining ecophysiological
modeling and genetic analyses is still in infancy in
the international grape community (Duchéne et al.,
2012 ; Marguerit et al., 2012). We report here some of
the pioneering work from the French LACCAVE
research consortium on this topic. Models developed
for plant drought response and berry sugar
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accumulation are outlined. These models consist of
simple response curves for one trait or are able to
simulate more complex physiological processes.
Genetic parameters were defined and their variations
among genotypes or segregating populations
analyzed. The potential use of such models to
simulate grapevine ideotype behavior under future
climatic conditions is discussed.

Gene-by-gene breeding approach remains
elusive for complex traits in grapes

Over the past century, conventional plant breeding
has been used successfully to improve several crops.
With the recent progress in molecular technologies
for genome sequencing and functional genomics,
genes have become tangible rather than virtual
entities (Hammer et al., 2006). It is widely
anticipated that a gene-by-gene approach will
improve plant breeding efficiency. Indeed, there have
been successes in developing plants that are more
resistant to pests or tolerant to herbicides. Those cases
involved single-gene transformations where plant
phenotypic response scaled directly from the level of
molecular action. However, this has not yet been
extended to key complex traits where relationships
among components and their genetic control involve
quantitative multi-gene interactions (Tardieu, 2003).

In grapes, up to now, few physiological functions
have been clearly related to known gene sequences,
and the tremendous progress in gene discovery has
only weakly aided genetic selection (Martinez-
Zapater et al., 2010). This results partly from the
complexity of most of the traits of interest and their
control by multiple interacting genes, which
themselves interact with the environment (Bertin et
al., 2010). Therefore, QTLs for a given trait usually
explain only a low proportion of the observed trait
variations (Fanizza et al., 2005). In addition, as most
of these QTLs depend on the environment and the
genetic background (Chenu ef al., 2009 ; Reymond et
al., 2004), extensive experiments over several years
at different sites or under different environments have
to be performed. Although this approach is useful to
evaluate QTL stability (Prudent et al., 2011), it is
time-consuming and expensive and can be only
conducted with few genotypes and traits (Bertin et
al., 2010).

To understand and unravel these Genotype X
Environment interactions, the use of PBMs has been



proposed (Hammer et al., 2005; Yin et al., 2004 ; Yin
and Struik, 2016).

Modeling plant responses
to future environments is still a challenging
issue in grapes

PBMs have been increasingly used in perennial fruit
crop research during the last 50 years and are
undoubtedly interesting heuristic tools for quantifying
plant responses to environmental and management
factors within a mathematical framework (Génard et
al., 2007 ; Struik et al., 2005). This framework allows
dynamic simulations of the main underlying
biophysical processes that determine plant growth
and development and fruit quality build-up, as well as
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Environmental factors are often considered as input
model-driving variables, and parameters are used to
represent genotype-specific characteristics.
Phenotypes or traits of interest are the emergent
outcomes of the represented system. As PBMs
represent causality between component processes,
they can predict plant behavior beyond the
environment for which model parameters were
estimated. This singular property allows the models
to potentially resolve GXE interactions into
underlying processes and predict plant performance
in any environment. As a result, these models can
offer significant advantages in assessing and
simulating the effects of climate change as compared
to purely statistical or rule-based models derived

Leaf-to-fruit ratio
3
3 .
i'lﬂ@h i‘Low

il

2

RMSE =0.046 g
RRMSE = 0.061

RMSE = 0.061 9
RRMSE = 0.071

¥

¥

§ v

o ©
o

RMSE =0.022 g RMSE =0.009 g
RRMSE =0.11 RRMSE = 0.064

60 70 80 90 100 110 60 70 80 90 100 110
Days after flowering

Berry Dry Weight (g) Berry Fresh Weight (g)
2

Temperature
841 A B B
o
s 23
= b=
£8 0
g o3
> ] .
(ST —— greenhous g f
S — +5°C
-5°C | <
o
T T T T T T T T
5 15 25 35 5 15 25 35

Days after veraison

Figure 1 - Modeling the effects of environmental and management practices on dry

and fresh mass accumulation in ripening grape berries (adapted from Dai ez al., 2008, 2010).
A process-based model was developed to describe the growth of an individual berry on a diurnal basis taking into
consideration only fundamental biophysical processes and their response to external conditions. It accurately
predicted mean berry fresh and dry mass accumulation in response to different leaf-to-fruit ratios or canopy
temperature. Briefly, the model represents a virtual mean berry during the post-veraison developmental stage, which
is assumed to behave as a single cell separated by a composite membrane from the parent vine and the outside
environment. Water accumulation was calculated through the water balance between xylem and phloem water influx
and transpiration water loss, controlled by water potential gradient between the berry and the parent vine.
Meanwhile, dry mass accumulation was simulated with the balance between phloem sugar import and respiration
carbon depletion. The inputs of the model included initial fresh and dry mass, phloem sugar concentration, xylem
water potential, fruit temperature and air humidity.
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from previously collected data, which have no
explanatory power (Soussana ef al., 2010). However,
shortcomings exist. Uncertainty in PBM outputs
could be higher than for the empirical approach due
to greater model parameters and data inputs to
represent the many processes in the system
(Challinor et al., 2009). The addition of processes
and parameters makes it hard to evaluate error
propagation and to understand the different sources
of uncertainty and their relative importance.
Moreover, applied to similar environmental
conditions, different models often provide different
results (Rotter et al., 2015). Finally, modelers must
keep in mind that whatever the level of complexity of
PBMs, it will be impossible to reproduce precisely
the biological reality and to identify all the factors for
all situations that may influence plant performance
(Sinclair and Seligman, 1996).

A large diversity of PBMs exists in grape literature
(see for review Dai et al., 2010; Moriondo et al.,
2015), developed at different time and spatial scales,
ranging from crop models, which aim at simulating
the entire plant growth cycle (e.g. Bindi et al., 1996;
Garcia de Cortazar-Atauri et al., 2006), to functional
models, which focus more on specific processes such
as phenology (Cola et al., 2014; Garcia de Cortazar-
Atauri et al., 2009 ; Parker et al., 2011, 2013), leaf
gas exchanges (Prieto et al., 2012), plant water
dynamics (Lebon et al., 2003), or berry growth and
quality (Dai et al., 2008 ; Figure 1). The choice of
which processes to represent in detail and the level of
complexity achieved for a given process is of course
conditioned by the understanding of underlying
grapevine physiology and the available experimental
dataset. It is also governed by research focus and
intended model use. Therefore, several key processes
are still poorly simulated in current grape PBMs. For
instance, modeling the distribution of acquired
resources among source and sink organs (in
particular to the root system) and its plasticity in
relation to external availability is one of the weakest
features. It is, however, of great importance in plant
growth and yield (Vivin et al., 2002). The perennial
nature of grapevine is also rarely considered, and the
relevant contribution of resource reserves in
simulating the plant growth process is not well
represented (Moriondo et al.,, 2015). An
understanding of below-ground processes and
nutrient assimilation is widely lacking in most
models. Concerning yield and fruit quality, models
are mainly restricted so far to berry growth, focusing
on dry mass accumulation; forthcoming fruit models
must now focus on essential aspects of berry
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composition such as sweetness, acidity, and
secondary metabolites (Dai et al., 2010).

Presently, most PBMs account to some degree for the
effects of environmental variables and basic plant
management. PBMs typically respond to
temperature, plant water status, radiation, and
atmospheric CO, concentration and therefore can be
applied to assess impacts of, and adaptation to, future
climate projections (Mosedale et al., 2016). However,
to deepen this analysis, it is still necessary to enlarge
their ability to capture the effects of climatic
variability and extremes (Soussana et al., 2010). For
example, PBMs often consider the increasing
temperature effects on various processes including
phenology, carbon uptake and assimilation, and
evapotranspiration; however, heat stress impacts or
acclimation feedbacks are not considered explicitly,
which can generate biased predictions in the models
under analysis. Similarly, water and nutrient stresses
are typically captured so far by empirical calibration.
It is also known that increased CO, concentration can
limit water loss through stomata; however, many
models lack explicit details about photosynthesis and
cannot account for the interaction between water use
and production (Roétter et al., 2015). As such, they
may overemphasize the effects of future droughts.
Finally, progress has been made in testing PBMs with
field experiments under a wide range of growing
conditions, even effects of CO, with FACE
experiments (Bindi et al., 2001). However, multi-site,
multi-year experiments studying the effects of
climate change variability are still scarce.

Process-based models could provide
a relevant framework for analyzing genetic
diversity and enhancing progress
in plant breeding

While current PBMs often prove as valuable in
guiding research as in providing quantitative
predictions, they still lack the ability to describe all
the subtle complexities associated with genotypic
differences (Yin and Struik, 2008), and only few
models incorporate knowledge derived from genomic
studies. To become effective tools for addressing
GXxE interactions, existing models first have to be
improved, both in terms of model structure and input
parameters (Bertin et al., 2010). Predicting complex
traits in relation to GXE interactions requires the
design of mechanistic models that represent as much
as possible the underlying physiological processes
and generate the phenotype of the plant as an



emergent consequence of model dynamics (Boote et
al.,2001).

A key feature of the models considered is the level of
granularity that adequately captures the crucial
elements of system dynamics (i. e. models should be
‘as simple as possible, but not simpler’) (Hammer et
al., 2006); therefore, much of the fine detail is not
required in generating a robust prediction of system
behavior (Tardieu, 2010). Secondly, the model
equations describing the mechanisms should ideally
contain a few genotypic parameters independent of
the environment, (i) of which values show a
significant range of variation among the studied
genotypes and (ii) which have significant influences
on model outputs (Bertin et al., 2010), and thus are
likely to induce changes in important emergent
properties. Model parameters - one set of parameters
representing one genotype - must be precisely
estimated at low labor cost on a large number of
genotypes. They should have a biological meaning,
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and mutants for parameters should be available to
allow the validation of theoretical variations in the
models (Bertin ef al., 2010). Sensitivity analysis of
the model to its parameters can also help in
identifying important genotypic parameters and their
putative effect under different climates (Quilot et al.,
2005). Under these conditions, a robust model
provides a dynamic biological framework to analyze
component traits. This can generate improved
connection to the genetic architecture that controls
the trait of interest by identifying model parameters
that link more stably to genomic regions than direct
phenotypic measures (Tardieu, 2003), as illustrated
recently in a tomato sugar model (Prudent et al.,
2011).

In grapes, such an approach combining the
evaluation of genetic parameters from PBMs and the
genetic dissection of the parameters with QTL
analyses is scarce. To our knowledge, it has been
only successfully applied to quantify the effects of
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Figure 2 - Diagram of the different steps to identify QTLs of model parameters

(adapted from Marguerit et al., 2012). 1) Experimental set-up to control water deficit intensity with
balances and to obtain daily transpiration data of 138 genotypes of the mapping pedigree issued from a
cross between Vitis vinifera Cabernet-Sauvignon and Vitis riparia Gloire de Montpellier, 2) Transpiration
response curves to water deficit intensity were fitted for all genotypes and each one was characterized by
its p value. Lower p values were associated with an earlier downregulation of transpiration (in terms of
water stress intensity), 3) QTL identification was carried out and genetic maps with QTL localization
could be represented, 4) Comparison of the localization of measured traits and model parameter.
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allelic variations on parameters of phenological
models (Duchéne et al., 2012) and to analyze
rootstock control of scion transpiration in response to
water deficit (Marguerit ef al., 2012; Figure 2). In
both studies, genetic parameters were defined from
simple response curves for one trait and their
variations among genotypes or Vitis segregating
populations analyzed. Concerning fruit quality, a
PBM predicting post-veraison sugar accumulation in
berries was recently developed (Dai et al., 2009) in
order (i) to dissect the relative influence of three
underlying processes: assimilate supply (S),
metabolic transformation of sugars into other
compounds (M), and dilution by water uptake (D);
and (ii) to estimate the genetic variability of S, M,
and D. Model analysis over three growing seasons in
the progeny from a Riesling x Gewurztraminer cross
showed that a coefficient (k) related to the non-sugar
use of carbon imported in berries was different
between the individuals of the progeny, explaining
part of the variability in sugar (Dai ef al., 2016). The
QTLs linked with this model parameter need to be
determined to identify the underlying gene
candidates that control the utilization of imported
carbon for the non-sugar compounds in grape berry.
The combination of physiological observations with
model analysis provides an alternative way to
identify gene candidates that are involved in berry
quality regulation.

Models integrating physiological processes
and their genetic control are a first step
to design and test in silico plants
for future environments

A well-defined objective, which describes the
desirable features of concerned traits, is a prerequisite
for successful breeding programs, including breeding
new genotypes specifically adapted to the future
environments projected by climate change models.
The objective definition process will need first to
assess the potential sustainability of the existing
genotypes under the future climatic conditions. The
next step will be to search by simulation how to
combine genetic information to obtain virtual
genotypes best adapted to various climatic scenarios
(i. e. nearest to ideotypes). This process is usually
narrowed into mathematical optimization problems
to identify the best combinations of genetic
parameters values (Quilot-Turion ef al., 2012). The
feasibility to create the designed cultivar has to be
tested by combining PBMs with genetic controls.
This is because a virtual cultivar designed without
considering the naturally existing genetic variability
may not be created in real breeding procedure. In
fact, modelers can screen the best allelic combination

OENO One - Climwine, 2016, 50, 3,
©Université de Bordeaux (Bordeaux, France)

- 186 -

of genes controlling a given trait through model
simulation under a specific environment. However,
producing the identified genotype can be easy or
difficult depending on the positions of the considered
genes and the distance between them, although
breeders have developed strategies to separate
closely linked genes (Letort ez al., 2008). In addition,
it is extremely useful to have an idea of the value of a
virtual genotype without having really to build it,
especially in the case of pleiotropy when
compromises have to be made. Using model
parameters to build such genotypes should help to
overcome the limitations due to environmental
pressure on QTL detection. The exploitation of QTLs
in breeding programs is, however, conditioned by
their heritability, the level of genetic variations in the
populations, the genetic correlations among them,
and the number of loci related to the trait.

Many PBMs have been used in various crops to
conduct in silico simulation by integrating the
existing genotypes with projected future
environments, yet very few studies concerned grapes
(Bindi et al., 1996; Garcia de Cortazar-Atauri, 2006,
Fraga et al., 2016). For example, phenology models
have been successfully used to test the budbreak,
flowering and veraison dates of grapevine cvs.
Riesling and Gewurztraminer in the future
environment (Duchéne et al., 2010). In this work, the
authors also analyzed the genetic variations for the
parameters of a temperature-based phenology model
among genotypes from the progeny of these two
varieties. This allowed the design of virtual
genotypes and the testing of their behavior (i. e. the
calculation of the expected budbreak, flowering and
veraison dates), under an IPCC (Intergovernmental
panel on climate change) scenario. Doing so can
provided clues as to whether existing and virtual
genetic variability will be reached to face the extent
of predicted climate changes. Similar studies should
be developed on more complex adaptive traits in the
future.

Conclusions

An approach combining ecophysiological modeling
and genetic analyses is original and challenging in
grapes in terms of objectives and outcomes. It should
provide a promising way of overcoming the
uncertainties associated with gene and environment
context dependencies that currently impede progress
in molecular breeding. Furthermore, it is a first step
towards ideotypes for new grapevine cultivars better
adapted to future issues of viticulture. A prerequisite
is the development of robust PBMs able to describe
physiological processes and their responses to



variations in environmental conditions and to allow
physiological feedback features and the integration of
information from different organizational levels. In
addition, PBMs will have to be tested for a large set
of genotypes in order to extend their ability to
simulate genetic variations and identify strong
genotypic parameters.
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