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Abstract. Building complex models from available data is a challenge
in many domains, and in particular in food science. Numerical data are
often not enough structured, or simply not enough to elucidate com-
plex structures : human choices have thus a major impact at various
levels (data and model structuration, choice of representative scales, pa-
rameter ranges, uncertainty assessment and management, expert knowl-
edge). LIDeOGraM is an interactive modelling framework adapted to
cases where numerical data and expert knowledge have to be combined
for building an efficient model. Exploiting both stand-alone evolutionary
search and visual interaction with the user, the proposed methodology
aims at obtaining an accurate global model for the system, balancing
expert knowledge with information automatically extracted from avail-
able data. The presented framework is tested on a real-world case study
from food science : the production and stabilisation of lactic acid bac-
teria, which has several important practical applications, ranging from
assessing the efficacy of new industrial methods, to proposing alternative
sustainable systems of food production.

Keywords: Complex systems, Lactic acid bacteria, Interactive modelling, Sym-
bolic regression, Living food system

1 Introduction

Agri-food processes can be regarded as complex systems, as they are charac-
terised by uncertain and intricate interaction effects between physical, chemical,
and biological components [10] [11].

In this context, modelling techniques drawn from complexity science prove
especially advantageous for dealing with the co-existhing multiscale inter-depen-
dencies, uncertainty, partial knowledge and sparse experimental data.

Expert knowledge yield additional, precious information. [14] [1] Indeed,
building a model in these conditions is a complex optimisation: learning from
data sets, dealing with sparsity of data, possible overfitting issues, and complex-
ity of the models. In the same time experts knowledge can drastically modify
the shape of the search space, the relative impact of some data, or even the
optimisation aims.



In this paper, we propose an interactive modelling approach based on a two-
level evolutionary optimisation scheme, local and global. Local corresponds to lo-
cal possible dependencies between variables, while global corresponds to a model
that represents the system as a whole. Users can interact with the constructed
models via a graphical user interface, run various optimisation steps, revisit op-
timisation results, restart the process, add constraints, and take decisions.

The system and dataset considered in this study concerns the full process
of bacteria production and stabilisation, with 49 variables measured at 4 differ-
ent steps (fermentation, concentration, freeze-drying and storage), at 4 different
fermentation conditions (22°C and 30°C, evaluated at the beginning of the sta-
tionary growth phase and 6 hours later). The considered variables range from
transcriptomic data to fatty acid membrane composition, from acidification ac-
tivity to viability [15].

The paper is organised as follows: Section 2 provides background on complex
systems approaches in food science, on symbolic regression and on the modelled
process. LIDeoGraM is detailled in section 3. Section 4 describes experimental
results from a preliminary user evaluation, comments, conclusions and future
developments are given in sections 5 and 6.

2 Background

2.1 Food complex systems

A complex system! is a collection of multiple processes, entities, or nested subsys-
tems, where global properties emerge as the result of an imbrication of phenom-
ena occurring at different scales. For these systems, there is a need to appropriate
descriptions for the underlying mechanisms with high expressiveness and little
uncertainty. Building complex system models is essential, but highly difficult; it
is usually necessary to have a robust framework, with strong iterative interac-
tion combining computational intensive methods, formal reasoning and experts
from different fields. As shown in the rest of the paper, optimisation plays an
important part in this context[8].

The specifics of the food domain (uncertainty and variability, heterogeneity
of data, coexistence of qualitative and quantitative information, conjunction of
different perspectives) raise the focus on another crucial issue, that can be called
the human factor. Human expertise and decision making are of major importance
for a better understanding of food systems, and should thus be integrated in
computing approaches[7].

2.2 Symbolic regression

Symbolic regression, hereafter based on a genetic programming approach, is a
technique able to extract free-form equations that expose correlations in a given

! Complex Systems Society, see http://cssociety.org or http://www.mathinfo.
inra.fr/en/community/complexsystems/presentation for an introduction to the
topic.



experimental dataset. The original idea is presented in [6], and the technique
has been applied to a vast array of real-world problems [2,12,5]. Candidate solu-
tions are encoded as trees, with terminal nodes encoding constants and variables
of the problem, while intermediate nodes corresponding to mathematical func-
tions such as {4+, —,*,/,...}. In most implementations, the fitness function is
proportional to the absolute or squared error between experimental data, with
parsimony corrections to reward simpler solutions. Eurega Formulize? is one of
the most notable symbolic regression tools. Eureqa deals with the issue of over-
fitting by returning a Pareto front of candidate solutions, each one presenting a
compromise between fitting and complexity [13], leaving the final choice to the
user.

2.3 Production and stabilisation process of lactic acid bacteria

Concentrates of Lactic Acid Bacteria (LAB) are widely used in food applica-
tions, ranging from yoghurt and cheese to fermented meat, from vegetables to
fruit beverages. In industry, these bacterial starters are produced in large quanti-
ties by fermentation and must therefore undergo a preservation procedure, called
stabilisation. Both production and stabilisation processes aim at protecting the
quality of bacterial starters, characterised by their cell viability and their acid-
ification activity. The full process involves numerous control parameters across
its different steps (Fermentation, Concentration, Freeze-Drying and Storage). [3]
Moreover, the process is a multi-scale system. Indeed, the quality of the starters
can be explained by the cellular composition in fatty acid which is in turn ex-
plained by the genomic expression in each cell. This latter only depends on the
parameters of fermentation and concentration.

3 Proposed approach

Experts in the process of production and stabilisation of lactic acid bacteria
have numerous questions about how a given bacteria strain draws its resistance
to the process. Different mathematical tools, including mathematical formulas
are generally used to help them to answer these questions with more or less
success. Finding reliable formulas linking the different variables of such a system
is indeed challenging[9]: In biological data, a high level of variability is often
encountered for repetitions of a given experimental condition. Moreover, exper-
iments are usually time-consuming and expensive — only a few experiments are
thus performed — which makes the task of characterising the existing variability
difficult.

LIDeOGraM (Life-based Interactive Development Of Graphical Models)
tries answering these challenges with an original approach of semi-automatic
modelling.

The goal of LIDeOGraM is to help experts build a global model of their
complex process by characterising each non-input variable by a mathematical

2 http://www.nutonian.com/



formula that depends on the other variables in the system. Finding the right
equation in a context with high variability in the dataset is an ambitious task.
Indeed, it is easy to come up with over-fitted equations that perfectly model a
dataset including its noise. However over-fitted equations do not generalise well.

In order to rule out over-fitted equations, a solution is to involve experts in
the course of the modelling process. The expectation is that they will be able,
thanks to their knowledge of the process, to identify over-fitted or under-fitted
equations.

Symbolic regression using a Pareto-like approach such as the one imple-
mented in Eureqa, constitues a compelling approach to take advantage of the
expert’s insight. Indeed, by providing a set of formulas according to different
compromises between fitness and complexity, the approach allows the experts to
filter out incoherent equations or even designate the most suitable one.

Therefore, as a first optimisation step, LIDeOGraM uses Eureqa runs on each
variable, in order to get a set of candidate equations. For automatic learning
purposes, the dataset is separated into training and test sets. Moreover, some
constraints in the search are defined beforehand by the user, using the interface
presented in Figure 2. This tool allows attributing each variable to a given class,
and defining authorized links between them. This means that only the variables
from a parent class can be used in the equations for determining the variables
of the child class. This also means that dependencies will be searched only with
variables of other classes and that no intra-class dependencies will be considered.
This structure of classes can be used to distinguish between scales and steps in
the studied process. Variables measured at a macro-scale, like the viability of
the population of bacteria could, for example, be only explained with variables
from a micro-scale, such as the composition in fatty acids. Similarly variables
measured in a given step could only be explained by variables from previous
steps.

A qualitative view of these results is presented to the user in the form of a
graphical network (See Figure 1). The goal of this display is to help the user
focus on the critical variables, i.e. where expert feedback is most needed. In
this prospect, variables are represented as nodes in the graph. The colour of the
nodes depends on its attributed class. A link between two variables shows that
the parent node is used at least once in the set of equations attributed to the
child node. The colour of a link represents the mean value of a given criteria on
the equations involving the parent node in the child node. The criteria can be
chosen by the user as the fitness of the equation or its complexity.

Additionally, since the displayed graphical network can have a lot of links,
making the network hard to read, a slider allows the filtering of links based on
their level of importance. The importance of a link is defined by the number
of equations in the child node that uses the parent node, divided by the total
number of equations in the child node.

By clicking on a node, the equations found by Eureqa are displayed to the user
on the top-right side (See Figure 1). Similarly, a click on an equation provides a
plot of the experimental measures versus what is predicted by the corresponding
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Fig. 1. Screenshot of LIDeOGraM. The left side shows a graphical model representing
the mean fitness of the local models obtained by symbolic regression. The top-right
part is the list of equations proposed by Eureqa for the selected node, and the bottom-
right part shows a plot of the measured versus predicted data associated to the selected
equation.

equation. The user can then interact with the system by deleting an equation,
deleting a link between a parent node and a child node (i.e. all equations using
the parent node in the child node are deleted), or deleting a variable (i.e. all
equations using the deleted variable are deleted). After this, few or no equations
may remain for some nodes, the user can choose to restart a symbolic regression
on any node.

The user can iterate the process for as long as desired: add or suppress
constraints, restart symbolic regression on any node. Once the user is satisfied
with local models, a global model can be built.

For the global model, one equation only is kept for each node. However,
choosing the most reliable ones is a challenging task. Contrarily to the local
models, where the experimental measures are used to predict a variable, in a
global model the value predicted by an equation depends on the value predicted
for the variables used in that equation. For this reason, each choice of equation
for a given variable will influence the quality of the prediction of other equations
that uses the variable. To tackle this challenge, evolutionary optimisation is used
to build a global model.

The evolutionary algorithm has the following features. Its fitness function,
to be minimised for the global model, is the mean of the fitness calculated on
each non-input nodes. The fitness function of a single node computes a value
based on the Pearson correlation coefficient of the measured versus predicted
data. Such a fitness function does not take into account the complexity of the
equations. The reason behind this choice is that over-fitted equations will be



naturally discarded during the learning of the global model, as they will likely
create noise for their child variables.

After the evolutionary optimisation process, remaining incoherence in the
choice of equations for the global model can still be edited by the user. For this
purpose, a qualitative view of the global model is displayed as a new visualisation
(See Figure 4). Contrarily to the graphical network displayed for the local models,
here only the variables used in the chosen equation of a child node are considered
as parents of the node. A link from a parent node to a child node in this graph
represents the fact that the chosen equation for the child node contain the parent
variable, its colour depends on the fitness of the child node in the global model.
Green represents a good fitting, and red a bad one. The goal of this view is to
help the user focus on the nodes with bad predictions. A user change on the
selected equation of a node impacts the predicted value of its children nodes.
The graphical model is therefore automatically updated, and the update shows
the consequence of the change in term of fitness on the other nodes of the graph.

After this step, the user has the possibility to go back to local view and
make changes before restarting a new global optimisation. A global model is
thus iteratively built via user interaction, local and global optimisation.

4 Experimental results

4.1 The dataset

The case study is based on the work of H. Velly et al. [15][16] about the re-
sistance of Lactococcus lactis subsp. lactis TOMSC161 to freeze-drying. This
bacteria is used in the production of Tomme de Savoie, a french cheese, for
its interesting texturing and acidification properties, but exhibits a high sensi-
tivity to freeze-drying. The resistance of the bacteria is studied for 4 different
conditions of fermentation: 22°C and 30°C, evaluated at the beginning of the
stationary growth phase and 6 hours later.

The dataset featured 12 data points, with 3 biological repetitions of each ex-
perimental condition. The dataset is made of 2 input variables, the temperature
of fermentation and the time at which the fermentation is stopped and 49 vari-
ables measured at 4 different steps (fermentation, concentration, freeze-drying
and storage) for 3 biological scales (Genomic, Cellular and Population).

4.2 Search with Eureqa

The 51 variables described above are first separated into 9 classes of variables:
Inputs, Genomic for overexpressed and underexpressed genes, Cellular,
Anisotropy, Population at the end of the Concentration step, Population
at the end of the Congelation, Population at the end of the Drying step and
the Population after 3 months of Storage. Each class of variables can only be
explained by user specified classes. The possible links between classes are shown
in Figure 2.
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Fig. 2. Screenshot of the interface allowing to choose the authorised links between the
defined classes. A link between two classes means that all variables associated to the
parent class can be used in the equations for all variables associated to the child class.
The displayed graph represents the selected contraints chosed for this experiment.

The dataset is also separated into a training dataset(66%) made of two
out of the three repetitions for each experimental condition, and into a test
dataset(33%) with the remaining repetition.

The authorised mathematical operators for the Symbolic regression using
Eureqa are: Constants, Input variables, Addition, Subtraction, Multiplication,
Division, Exponential, and the Natural logarithm. For each non-input variables,
3 minutes of computation were allowed on an Intel(R) Core(TM) i7-4790 CPU.
A total of 232 equations were obtained for the variables.

4.3 Optimisation of the Global Model

A (p +A)-evolutionary algorithm was taken from the Python DEAP package[4]
to optimise the global model. The genome of a candidate global model is string
of integers, of size equal to the number of variables in the process. Each gene
is associated to a variable, and can assume a value between 1 and the number
of equations available to describe that variable, thus representing an index for a
candidate equation in that node.

The parameters of the evolutionary optimization algorithm used for the
global model are reported in Table 1.

The mutation function takes complexity information into account. It has been
experimentally proven to be more efficient than a mutation which randomply
picks an equation in the list of candidate equations.

The graphical model associated to one of the optimisation runs is shown in
Figure 4.



Table 1. Parameters of the evolutionary algorithm used during the optimization pro-
cess for the global model.

N 100
A 80

Number of generations {100
Probability of crossover|0.8
Probability of mutation|0.2

Selection Tournament of size 2
Crossover function Uniform
Mutation function With a probability 0.05 for each gene, change the se-

lected equation to the previous or the next one by order
of complexity.

The creation of a global model does not involve only an automatic optimi-
sation, but also requires experts knowledge, obtained via interaction with the
software. Feedback on the proposed local models was given by a researcher with
20-years of expertise in the bacteria freeze-drying process. The local models,
presented in Figure 1, were explored by the expert during 20 minutes. The ex-
pert chose to remove 5 equations. Some equations were removed for using both
variables from the Cellular scale with the Anisotropy variable. The reason is
that the Anisotropy is an emergent property of the fatty acid composition at the
Cellular scale and it is not straightforward to make sense of such an equation.
Similarly, an equation using the viability at both the centrifugation step and the
drying step was removed. The reason is that the viability at the centrifugation
step is used to predict the viability at the drying step, therefore, it is hard to
understand the necessity of using both steps since obtained the data values are
dependent. The expert also chose to remove 2 nodes, after observing that those
nodes were strongly involved in many nodes. Indeed, due to their insignificant
measured quantities, they were not expected to be important variables, rather,
they were deemed useful for refining some models. Therefore, they were con-
sidered as creators of overfitted equations. The deletion of those two variables
removed 14 more equations. With such major deletions, some variables were
left with only a few equations, therefore, the expert chose to restart a symbolic
regression on 3 nodes, obtaining 12 new equations in total. To reveal the con-
tribution of the expert, the global model optimisation was performed 10 times
using expertise, and 10 times without. The fitness evolution of these runs are
shown in Figure 3. To obtain an accurate comparison of the models, the fitness
computed for optimisation without the expertise did not take into account the
two removed nodes. The global models obtained using expertise have a median
fitness of 0.787 with a standard deviation of 0.010 whereas the global models
obtained without expertise have a median fitness of 0.801 with a standard de-
viation of 0.013. The expert was asked to provide feedback for the last step of
the modelling process in which one of the global model obtained was submitted
to his expertise. The results were explored during 10 minutes, and the equations
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Fig. 3. Comparison of the evolution of the minimum fitness across generations for 10
runs, with and without the expert’s contribution.

for three node were changed. Two of the modified equations were indeed over-
fitted, and the last one was an underfitted. For example, one of the equations
selected by LIDeOGraM, at the cellular scale, the variable C18:0 was defined
as being equal to the duration of fermentation, which seemed a rather drastic
choice. The expert chose to select a more reasonable equation presenting a lin-
ear dependency involving the duration of fermentation. The obtained graphical
model is presented in Figure 4. The fitness of the final global model was slightly
degraded, changing from a fitness of 0.789 to a fitness of 0.801, but the produced
model is able to better reflect the underlying reality of the process.

5 Discussion

We proposed a time-saving tool of modelling for the experts, allowing them to
design a better global model of their process by a semi-interactive approach.
Figure 3 shows that the resulting models are ”better”, not only according to
the expert requirements, but also with respect to the numerical data (faster
and better convergence). Above all, this method offers tools for domain experts
to design and test different hypothesis, using different datasets and class con-
straints. The complexity of the modelled process and the scarcity of the dataset
is taken into account by allowing the expert to interact with the results all along
the optimisation process. The expert who tested the software mentioned it is
easy to question her hypothesis, to keep an open-mind posture and to find new
mechanisms.

Nevertheless, the approach has some drawbacks. Since the predictions of
each node are propagated, only the inputs are indeed used in a global model to
determine every other variables. Knowing this, a natural question should be why
all variables are not directly linked to the inputs, and why intermediary variables
exist. A reason behind this is that the goal is not only to get the best prediction
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Fig. 4. Graphical model representing a global model. The Global fitness of the model
is indicated at the bottom-left. The fitness value of each node is indicated under them.

out of every variable, but also to help the expert understand mathematically
the existing dependencies between variables and the multi-scale / multi-step
organisation of the process.

Besides this, we should mention that the current results remain not fully
satisfying for the genomic scale. The hypothesis made by the expert was that the
genomic scale is only explained by the conditions of fermentation (temperature
and time at which the fermentation is stopped). This hypothesis needs additional
verifications, as the relation with genomic scale might not be so straightforward.
Other variables, not measured during the experiments, may be involved. A more
refined work on the expressed genes and their classification is necessary. A future
study will explore in more details different hypothesis about the possible links
between classes of variables.

Finally, some expert-defined variables used in the literature are the sum of
some measured variables. For example, the Saturated Fatty Acids variable, is
defined as the sum of 6 variables at the cellular scale. New tools could be designed
to incorporate this kind of knowledge and allow the user to create ”hierarchic”
variables. Such variable would allow taking into account different levels of details
in the modeling process and would allow to easily test various hypotheses for
the computation of variables at the genomic scale.

Finally, creating a global model from local hypothesis means the creation
of a global hypothesis. With some local hypothesis being thought of as equally



plausible for a node, a lot of equally plausible global hypotheses could be con-
structed. Moreover, since the proposed local models of different nodes are not
equivalent, a notion of confidence could be associated to each node of a global
hypothesis, and each node would be associated with a set of equally probable
local models.

6 Conclusions

In this paper, we proposed a new approach to semi-automatic modelling allow-
ing to design complex models for multi-scales and multi-steps processes. Using
expert’s knowledge integrated during the optimisation process, the proposed ap-
proach is able to tackle challenges such as scarcity in a dataset, high dimension-
ality and high variability. According to experts guidelines, a set of local models
are proposed for each variable, using symbolic regression. The local models form
a Pareto front of candidate solutions to compromise between model fitness and
complexity. These local models are then used to automatically construct a global
model where each variable is defined by a given equation from the local models.
In a global model, the multi-scales multi-steps process is taken into account by
classifying the variables into different classes and by forwarding the predicted
value of a variable to equations that use this variable to predict other ones. An
expert is able to contribute to the automatic design of a global model in many
ways, by acting on the proposed local models and by correcting the global model.
The approach was applied to the production and stabilisation process of lactic
acid bacteria. The contribution of the expert was shown to be useful to provide a
more accurate global model. Future improvements will involve new tools to cre-
ate and manage hierarchic variables and associate a level of confidence for each
variable. These improvements will allow producing a full and efficient study of
the production and stabilisation process of lactic acid bacteria.
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