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Abstract

A predictive modelling for the simulation of bioreactors must account for both the bi-
ological and hydrodynamics complexities. Population balance models (PBM) are the best
approach to conjointly describe these complexities, by accounting for the adaptation of inner
metabolism for microorganisms that travel in a large-scale heterogeneous bioreactor. While
being accurate for solving the PBM, the Class and Monte-Carlo methods are expensive in
terms of calculation and memory use. Here, we apply Methods of Moments to solve a pop-
ulation balance equation describing the dynamic adaptation of a biological population to
its environment. The use of quadrature methods (Maximum Entropy, QMOM or EQMOM)
is required for a good integration of the metabolic behavior over the population. We then
compare the accuracy provided by these methods against the class method which serves as
a reference. We found that the use of 5 moments to describe a distribution of growth-rate
over the population gives satisfactory accuracy against a simulation with a hundred classes.
Thus, all methods of moments allow a significant decrease of memory usage in simulations.
In terms of stability, QMOM and EQMOM performed far better than the Maximum En-
tropy method. The much lower memory impact of the methods of moments offers promising
perspectives for the coupling of biological models with a fine hydrodynamics depiction.

Keywords: Biological dynamics, Population Balance Model, Method of classes, Method of
moments, (E)QMOM, Maximum entropy

1. Introduction1

The large-scale simulation of bioreactors is currently a challenging issue. Such simulations2

must account for both (i) the (multiphase) hydrodynamics and (ii) the metabolic behaviour3

of the biological population carried by the fluid. The first can be achieved through the4

use of widespread CFD softwares, which themselves already require quite important com-5

putation power. The most advanced cell models, which result from community efforts in6
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integrating genome-scale reconstructions of a strain metabolic network, depict thousands of7

intracellular reactions and metabolite concentrations. Examples are the iJO1366 model for8

Escherichia coli (Orth et al., 2011) and the consensus YEAST model for Saccharomyces9

cerevisiae (Heavner et al., 2012, 2013). These models describe state of the art knowledge10

of a cell functioning, however their implementations require to solve either cumbersome op-11

timization problems to access a steady-state cell-functioning, or to solve dynamically the12

metabolite concentrations in a cell that experiences exogeneous perturbations.13

Even though the computation power increased significantly over the past few decades,14

coupling the CFD approach with a biological modelling that fully embraces the biological15

complexity –by solving the intracellular concentrations for each cell in a bioreactor with an16

Euler-Lagrange framework– is still not possible. Such an approach is numerically untractable.17

Usual solutions are either to neglect the spatial heterogeneity and solve a complex metabolic18

model in homogeneous batch or chemostat cultures (Meadows et al., 2010; Matsuoka and19

Shimizu, 2013) by assuming that all cells are identical; or to describe the hydrodynamic com-20

plexity jointly with a simplified biological approach such as either structured or unstructured21

kinetic models (Bezzo et al., 2003; Elqotbi et al., 2013; Lu et al., 2015).22

As concentration gradients are known to be responsible for metabolic dysfunctions in23

large-scale reactors (Enfors et al., 2001), we should avoid the first approach and describe the24

spatial heterogeneities. However, the use of kinetic models should be discarded too. Indeed,25

from the point of view of a cell travelling in these heterogeneous concentrations fields, the26

concentration signal is fluctuating (Linkès et al., 2014; Haringa et al., 2016) which constitutes27

transient conditions, while kinetic models are often based on the Monod kinetics law which28

reflects a steady-state equilibrium between a population and its environment. By making29

use of a Monod law, the kinetic models have “been over simplified by allowing instantaneous30

adaptation of the cell to the abiotic environment” (Silveston et al., 2008).31

In previous work (Pigou and Morchain, 2015), we stepped back in both the hydrody-32

namic description by using a Compartment Model Approach (Cui et al., 1996; Mayr et al.,33

1993; Vrábel et al., 2000, 2001) and in the metabolic description of E. coli by simplify-34

ing the key reactions of the central carbon metabolism into a 6 reactions model derived35

from the model proposed by Xu et al. (1999). More importantly, we introduced the use36

of a Population Balance Model (PBM) as a key modelling tool that allows describing si-37

multaneously both (i) the concentration gradients, (ii) a dynamic adaptation of cells to the38

fluctuating conditions they experience along their trajectories and (iii) the metabolic impact39

of a disequilibrium between a cell and its local environment. This approach has been suc-40

cessfully challenged against experimental data in lab-scale batch culture and industrial-scale41

heterogeneous fedbatch culture. More recently, we improved the PBM to account for an42

experimentally observed stochastic diversity related to cell-division (Morchain et al., 2016).43

Until now, we solved the PBM using a class method (also known as fixed pivot method,44

Kumar and Ramkrishna (1996a); Mantzaris et al. (2001)) with at least 60 classes to span45

the entire range of possible values for the chosen variable (i.e. the maximum growth-rate46

achievable by a cell provided enough nutrients are available). Each class represents a scalar47

that must be transported by the hydrodynamic framework. While transporting a hundred48

classes within a 70 compartments model (Pigou and Morchain, 2015) was perfectly feasible,49

doing the same in a CFD simulation would be prohibitively expensive.50
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The current paper thus focuses on improving the numerical tractability of the PBM,51

through the use of Methods of Moments (MOM), in order to increase back the allowed level52

of spatial accuracy. Instead of doing a direct resolution of the population balance equation,53

MOM describe the evolution of the first moments of a Number Density Function (NDF).54

However, it will be of interest to perform a reverse operation and to recover an approximation55

of the NDF from a finite set of its moments; this is known as a truncated moment problem56

(Abramov, 2007).57

Many methods are available to tackle this problem. A review of such methods is available58

(John et al., 2007) though new methods or improvements are available since its publication.59

More recently, Lebaz et al. (2016) compared the most common approaches which are Ker-60

nel Density Element Method (KDEM), Spline-based method, and the Maximum Entropy61

method applied to the case of a depolymerization process. The KDEM approximates the62

unknown NDF as the sum of weighted Kernel Density Functions (KDF); the identification63

of the weights is performed through a constrained minimization procedure, which requires64

a high number of moments to prevent an underdetermined problem and the multiplicity of65

solutions. The spline method (John et al., 2007) leads to a piece-wise polynomial reconstruc-66

tion, but the resulting reconstruction is highly dependent on numerical parameters, and can67

lead to negative values of the reconstructed NDF. For these reasons, the KDEM and spline68

methods will be discarded in the current work.69

The Maximum Entropy method (MaxEnt, Mead and Papanicolaou (1984); Tagliani70

(1999)) was point out as efficient and accurate, even with a low number of moments, by71

Lebaz et al. (2016). It is however ill-conditioned at the boundaries of moment space (Massot72

et al., 2010), but this can be handled provided some adjustments of the method (Vié et al.,73

2013). Finally, we consider the recent EQMOM method (Chalons et al., 2010; Yuan et al.,74

2012; Marchisio and Fox, 2013) which constitutes a clever fusion of KDEM with the QMOM75

approach (Marchisio et al., 2003a,b,c). This method has proven to be stable and efficient,76

in particular near the moment-space frontier where MaxEnt is ill-conditioned, but requires77

to make assumptions over the shape of the reconstruction.78

The current work is focused on assessing the methods QMOM, EQMOM and MaxEnt79

against the already used class method, in the perspective of running predictive, and nu-80

merically tractable, bioreactor simulations. All these methods will be implemented for the81

simulation of a homogeneous chemostat culture stressed with a dilution rate shift (Kätterer82

et al., 1986). After a first comparison of their numerical efficiency, their accuracy, and their83

stability when facing such a sudden perturbation, we will reproduce the results from Pigou84

and Morchain (2015) using these Methods of Moments, in a heterogeneous case based on the85

Compartment Model from Vrábel et al. (1999, 2000), and compare once again their results86

against the class method.87

2. Models and Methods88

2.1. Local mass balance89

The basis in the modelling of bioreactors is the formulation of local mass balances. They90

describe the evolution of local concentrations as a consequence of (i) transport by the carrying91

fluid and (ii) consumption or production by the biological phase. As in previous work (Pigou92
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and Morchain, 2015), we will hereafter describe the hydrodynamics using Compartment93

Model Approach (CMA). Let Cn (kg.m−3) be the vector of mass concentrations within the94

n-th compartment, Vn the volume (m3) of that compartment, and Qn,m (m3.h−1) the volume95

flow rate going from the n-th to the m-th compartment. The total number of compartments96

is Nc. Then, the mass balance equation in compartment n is given as:97

∂VnCn

∂t
+ Cn

Nc∑
m=1

(Qn,m)−
Nc∑
m=1

(Qm,nCm) = Vn R(Cn) (1)

Our contribution is to express the vector of biological reaction rates R(C) (kg.m−3.h−1) as98

the sum of the substrate uptake rates, or product production rates, due to all cells considering99

their individual physiological states. Let µ (h−1) be the biological growth capability of a100

cell (i.e. the growth rate they can achieve if permitted by the nutrient availability), we will101

distinguish each individual upon this value. Different cells, having different values of µ in a102

similar environment, will exhibit different metabolic behaviours. Then, in order to express103

the bioreaction rates at the scale of the biological population, one must know the statistical104

distribution of the property µ over that population, and integrate the uptake or production105

rates over that distribution:106

Ri(Cn) =

∫ +∞

0

n(µ)Φi(µ,Cn)dµ (2)

where n(µ) is the NDF defining the fraction of the biological phase whose specific growth107

rate is µ. The first two moments of this NDF are defined as following:108

∫ +∞

0

n(µ)dµ = X (3)∫ +∞

0

µn(µ)dµ = µ̃X (4)

with X the total biomass concentration (kg.m−3) and µ̃ the population mean growth rate109

(h−1). In the current work, we consider the metabolic behaviour of Escherichia coli and110

the vector C actually consists in a vector of Glucose (G), Acetate (A) and Oxygen (O)111

concentrations.112

C =

CGCA
CO

 (5)

We will also consider scalar variables to transport information about the distribution113

n(µ) as explained afterwards.114

Therefore, the glucose uptake rate ΦG(µ,C), the oxygen uptake rate ΦO(µ,C) and the115

acetate uptake/production rate ΦA(µ,C) will be outcomes of the metabolic model calculation116

procedure. The later uses as inputs (i) the specific potential growth rate of individual, µ; (ii)117

the vector of concentrations in the liquid phase C, and (iii) the equilibrium law µ∗ = f(C).118

The growth rate at equilibrium µ∗ is the growth rate that cells would exhibit at steady state119
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in an environment defined by the vector of concentrations C. Such expressions are known120

from chemostat experiments and typically take the form of a multi-component Monod-Law,121

taking here into account the inhibitory effect of acetate:122

µ∗ = µmax
CG

CG +KG

CO
CO +KO

Ki,A

CA +Ki,A

(6)

with KG and KO the affinity constants (kg.m−3) of the biomass toward glucose and oxygen,123

and Ki,A the inhibitory constant of growth by acetate.124

A noticeable point is that the substrate uptake rate is not algebraically related to the125

specific growth rate as it cannot be assumed in general that cells are at equilibrium with126

their environment (Ferenci, 1996). Therefore, our approach is consistent with theoretical127

considerations (Perret, 1960) and experimental observations (Abulesz and Lyberatos, 1989;128

Li, 1982; Silveston et al., 2008) indicating that the growth and uptake rates are decoupled129

in the dynamic regime whilst an algebraic relation exists between them at steady state.130

The second point in terms of modelling resides in the calculation of the NDF n(µ) that131

defines the concentration of biomass whose potential growth rate is µ. This calculation will132

be addressed in a dedicated paragraph.133

2.2. Calculation procedure for the metabolic reaction rates134

The procedure is almost identical to that presented in a previous paper (Pigou and Mor-135

chain, 2015), therefore, only the key features of the metabolic model, and the few differences136

of the calculation procedure are detailed here.137

The first step of that procedure is to compute the actual growth rate of each cell, by138

taking into account its growth capabilities (see section 2.3), and a potential limitation re-139

lated to nutrient availability. In the previous work, we defined this actual growth rate of a140

cell, µa, as the minimum between its biological growth capability, µ, and the environment141

equilibrium growth rate µ∗ (given by the Monod law, Eq. 6): µa = min(µ∗, µ). However,142

we recently shifted this formulation toward a more meaningful and physical one, based on143

a limitation by the micromixing, which proved to be consistent with experimental studies144

of membrane transporters at limiting nutrient concentrations (Ferenci, 1996, 1999). The145

detailed explanation for this change is given in Morchain et al. (2016).146

We then defined a threshold glucose concentration, CGT , around which micromixing will147

start to be a limiting factor. As long as the bulk substrate concentration is significantly148

higher than this threshold concentration, cells will be fed enough by micromixing to be able149

to achieve their potential growth rate.150

CGT = RG × 17
(ν
ε

)0.5

(7)

The term 17
√
ν/ε is proposed by Baldyga and Bourne (1999) to evaluate the micro-151

mixing time-scale, and depends on the fluid viscosity, ν (m2/s), and the turbulent energy152

dissipation rate, ε (, whose value usually ranges from 0.5 to 10W/kg depending on the153

bioreactor stirring.154

As RG is an output of the metabolic calculation procedure (Eq. 2), which itself depends155

on µa, and considering that we only need the order of magnitude of the limiting concentration,156

we provide the following rough approximation of RG for the estimation of CGT :157
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RG ≈
MG

YXGMX

∫ +∞

0

µn(µ)dµ (8)

With YXG the molar yield of glucose to cell conversion (molX .mol
−1
G ), MX the molar158

mass of biomass (MX = 113.1gX .mol
−1
X considering the typical chemical formula C5H7NO2)159

and MG the molar mass of glucose (MG = 180.2gG.mol
−1
G ).160

Now, following Morchain et al. (2016), the actual growth rate is given by:

µa = Ψ µ (9)

where the coefficient Ψ reads:

Ψ = 1− e−CG/CGT (10)

As a recall, the estimation of µa along with the calculation of µ∗ is the very first step of161

the calculation procedure of the metabolic model, as detailed in Pigou and Morchain (2015)162

which explains why the choice of µa formulation is of importance. After estimating the163

actual -effectively achieved- growth rate of a cell, the calculation procedure of the metabolic164

model is exactly the one described in the previous work.165

This metabolic model roughly describes the central metabolism of Escherichia coli, it166

accounts for:167

• Anabolism based on either glucose or acetate as a carbon source, leading to the for-168

mation of new cells,169

• Oxidative catabolism on both substrates for energy production,170

• Fermentative catabolism of glucose, leading to the production of energy, and acetate171

as a by-product,172

• Overflow metabolism, leading to production of acetate when glucose is over-consumed.173

Each pathway is simplified into the following set of reactions:174

G+ YEG E
qGana−−−→YXG X (R1)

A+ YEA E
qAana−−−→YXA X (R′1)

G+ YOG O
qGoxy−−−→Y o

EG E (R2)

A+ YOA O
qAoxy−−−→Y o

EA E (R′2)

G
qGferm−−−→Y f

EG E + YAG A (R3)

G
qGover−−−→YAG A (R4)
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G: Glucose, E: Energy, A: Acetate, O: Oxygen, X: Biomass. YBA is the stoichiometric175

molar coefficient in molB/molA. qGα and qAα are the specific reaction rates for reactions176

respectively based on glucose (molG.g
−1
X .h−1) and on acetate (molA.g

−1
X .h−1).177

The calculation procedure gives access to the specific reaction rates, and is based on:178

• The growth capability of a cell (µ), whose evolution is described by the Population179

Balance Model (see section 2.3),180

• The environmental conditions (G, A and O concentrations) and the Ψ coefficient,181

• An assumption of non-accumulation within the cytoplasm. In particular, the rate of182

energy production is balanced by the rate of energy consumption.183

2.3. Population Balance Model184

External and intrinsic perturbations are known to produce heterogeneity among the cell185

population. In order to track this diversity, the usual mathematical approach is to refer to a186

population balance model. The originality of our approach resides in that the discriminating187

factor is the specific growth rate of individuals. Recent observations have proved that this188

variable is actually distributed in a cell population (Yasuda, 2011). This formulation is189

advantageous since the relationship between the growth rate and the metabolic reaction rates190

is much more natural than when the size or mass of the cell is chosen as the discriminating191

parameter (Pigou and Morchain, 2015; Morchain et al., 2016). The Population Balance192

Equation (PBE) for the specific growth rate distribution n(µ) is here given for a homogeneous193

case; terms accounting for the transport might be added on the left hand side depending on194

the hydrodynamic framework:195

∂n(µ)

∂t
= − ∂

∂µ
[n(µ)ζ(µ)] +

∫ +∞

0

β(µ, µ′)n(µ′)Ψµ′dµ′ (11)

The first term in the right-hand side of equation 11 is a convection term in the µ-space196

instead of the physical space. It describes the fact that individuals are able to adapt their197

specific growth rate in response to insufficient or excessive substrate concentrations. We198

refer to this term as the adaptation term. In the adaptation term, ζ(µ) refers to a velocity in199

the µ-space or equivalently to the rate of change of µ over time. This velocity can be either200

positive or negative depending on whether the environment is respectively rich or poor in201

nutrients, compared to what a cell is used to. In previous work, a general form for ζ(µ) was202

proposed and validated against experimental data sets:203

ζ(µ) =

(
1

T
+ µ

)
(µ∗ − µ) (12)

The second term of equation 11 is often referred to as the birth and death term in PBM.204

β(µ, µ′) is a Probability Density function (PDF) which defines the probability that a mother205

cell having a specific growth rate µ′ produces a daughter cell whose specific growth rate is206

µ. The analysis of recent experimental data revealed that β can be modeled using a skew-207

normal distribution (Yasuda, 2011; Morchain et al., 2016) whose parameters are given in208

Appendix A.209
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Instead of looking for an analytic solution for the PBE (Eq. 11), we will try to solve that210

equation numerically. The most straightforward method simply consists in a discretization211

of the µ-space using either fixed (Kumar and Ramkrishna, 1996a) or moving (Kumar and212

Ramkrishna, 1996b) meshes. These methods tend to be expensive as soon as heterogeneous213

systems are considered. However, they accurately describe the solution distribution of the214

PBE and allow an easy coupling with the transport and reaction parts of the modelling215

(Eq. 1). We used to apply these fixed mesh (also known as Methods of Classes, MOC),216

as detailed in previous papers (Morchain et al., 2013; Pigou and Morchain, 2015). We will217

here focus on applying methods of moments and challenging their results against the already218

validated MOC. Knowing the law for the evolution of the distribution (Eq. 11), the first219

step to apply moment methods is to transform the PBE so that it expresses the evolution of220

the distribution’s moments. The k-th order moment of the distribution n(µ) is defined as:221

mk =

∫ +∞

0

µkn(µ)dµ (13)

The Appendix A details how this definition and the PBE lead to the following law of222

moments evolution:223

∂mk

∂t
= k

(
µ∗

T
mk−1 +

(
µ∗ − 1

T

)
mk −mk+1

)
+ Ψm1Bk(µ̃) (14)

• Bk is the k-th order moment of the PDF β(µ, µ′) whose formulation is also given in224

Appendix A.225

• µ̃ is the population mean growth rate, defined in terms of moments by:226

µ̃ =

∫ +∞
0

µn(µ)dµ∫ +∞
0

n(µ)dµ
=
m1

m0

(15)

∂mk
∂t

depends on mk+1 which leads to an unclosed formulation. To tackle this issue,227

McGraw (1997) introduced the Quadrature Method of Moments (QMOM) which is based228

on a Gaussian quadrature whose nodes and weights are chosen so that the N first moments229

of the PDF are well computed by the quadrature:230

mk =
O∑
i=1

wiL
k
i ∀k ∈ {0, . . . , N − 1} (16)

O is here the order of the method, which deals with N = 2 ∗O number of moments. The231

core of the method lies in the identification of weights wi and abscissas Li of the Gaussian232

quadrature. These parameters allow an exact computation of moments of order ranging233

from 0 to N − 1 and usually give satisfactory approximation of higher order moments. This234

method then allows closing the formulation given by Eq. 14.235

We introduce here one refinement of the PBE compared to the one described in Pigou236

and Morchain (2015). The moment formulation of the PBE (eq. 14) is correct only if the237

time constant T is not dependent on µ. However, we used in Pigou and Morchain (2015)238
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one time constant Tu = 1.9h for individuals that are moving upward in the µ-space, and a239

different time constant Td = 6.7h for individuals moving downward. This formulation implies240

that the decrease of growth capabilities in poor environments is slower than the increase of241

these capabilities in rich environments, and this fact is required to allow a good fitting of242

experimental data. In the current work, and in order to make use the moment formulation of243

the PBE given in eq. 14, we define the time constant Tm as the mean value of the functional244

T (µ) that we used previously:245

T (µ) =

{
Tu if µ < µ∗

Td otherwise
(17)

Tm = m−1
0

∫
Ωµ

T (µ)n(µ)dµ (18)

= αTu + (1− α)Td with α = m−1
0

∫ µ∗

0

n(µ)dµ (19)

We then actually make use of the PBE given in eq. 20 to describe the evolution of246

moments. Similarly, we use the time constant Tm to describe the evolution of the distribution247

in the class method in order to have consistent formulations between methods.248

∂mk

∂t
= k

(
µ∗

Tm
mk−1 +

(
µ∗ − 1

Tm

)
mk −mk+1

)
+ Ψm1Bk(µ̃) (20)

2.4. Reconstruction methods249

Population balance equation: 
☞�✒✁✂
☞✄ ✌ ☎

☞
☞✁ ✞ ✆ ✝ ✆ ✟ ✠☛

✡✍✎ ✆✏ ✆✑ ✞ ✆✑ ✓✆✑✔✆✑

Method of classes

✕✖, ✗ ✘ ✙✚✛✜ ✛ ✢✣✤

Source term

(eq. 2)

Method of Moments

✥✦ , ✧ ★ ✩✪✏✫ ✏✬ ☎ ✭✮

NDF approximation 

✯✰ ✱

QMOM MaxEnt*EQMOM*

✥✲✡✳
formulation

✠ ✴✞ ✆ ✆✲✡✳✔✆✵
✶✷✸

✹✺✻
✼✶✽✶✹✾✸

✵
✶✷✸

✹✺✻
✼✶✿❀✽✶❁❂❃❄❅❆❇✆❅❈ ✠ ✴✞ ✆ ❆❇✆❈✔✆

❉
❊❋✳

✲●
❄❅
❍✆
❍ ✆ ☎ ✆❅

■

Number ODE ✬❏ ✬ ✬ ✬

❉
❊❋✳

❑▲▼
◆❊❍ ✆ ☎ ❖❊ P

❊❋✳

✲◗❘
❙❚❯ ✱✛ ❱❚✛ ❲ ❳❨❩ ❉

❊❋☛

✲❬✳
❭❊✆❊

✠ ✴✞ ✆ ✆✲✡✳✔✆

✠ ✴✞ ✆ ❆❇✆❈✔✆

Figure 1: Summary of applied methods to couple the population balance with transport and reaction.
∗Numerically expensive methods.

In the present case, and it seems very likely that this would extend to many biological250

applications, the calculation of the integral reaction term in equation 2 cannot be expressed251
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in terms of moments of n(µ), at least because the uptake rates Φi(µ,C) are not continuously252

differentiable with respect to µ. To tackle this issue, we must construct a suited quadrature253

rule that will be used to approximate all integrals of the following form:254 ∫
Ωµ

f(µ)n(µ)dµ ≈
∑
i

wif(Li) (21)

where w and L are the weights and abscissas of the quadrature rule.255

Different methods exist to provide a quadrature rule with the constraint that this rule256

does compute accurately the known N moments of the distribution:257 ∫
Ωµ

µkn(µ)dµ =
∑
i

wiL
k
i k ∈ {0, . . . , N − 1} (22)

Each method formulates some assumptions about the properties of the NDF n(µ), and258

identify a unique NDF n̂(µ) that matches the set of known moments and the formulated259

assumptions. We will refer to n̂(µ) as a reconstruction –or approximation– of n(µ). Knowing260

the properties of n̂(µ), obtaining the quadrature rule w and L will be quite straightforward.261

We will then use this rule to perform the estimation of higher order unknown moments262

(Eq. 14) as well as the numerical computation of unclosed integral terms (Eq. 2 and 19).263

2.4.1. The QMOM method264

The QMOM method is the easiest method to implement. It makes the assumption that265

the moment set is at the frontier of the moment space, which implies that the distribution266

n̂(µ) is a sum of O = N/2 weighted Dirac distributions. The reconstructed NDF is then267

given by:268

n̂(µ) =
O∑
i=1

wiδ(µ− Li) (23)

Thus the reaction term (Eq. 2) can be approximated by:269

R(C) ≈
O∑
i=1

wiΦ(Li,C) (24)

Due to the complexity of the function Φ(µ,C), a high order quadrature will be required,270

which implies the need of a high number of resolved moments to correctly approximate the271

integral term in Eq. 2.272

The computation of the weights wi and abscissas Li of the quadrature nodes is performed273

using either the Product-Difference Algorithm (PDA) or the Wheeler Algorithm (WA) as274

implemented by Marchisio and Fox (2013), with some code tuning to improve efficiency.275

2.4.2. The EQMOM method276

Yuan et al. (2012) introduced the Extended Quadrature Method of Moments (EQMOM)277

which consists in coupling QMOM with the Kernel Density Element Method (KDEM) in278

which the NDF is reconstructed as the weighted sum of Kernel Density Functions.279
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The reconstructed NDF, using a O-nodes EQMOM reconstruction, has the following280

expression:281

n̂(µ) =
O∑
i=1

wiκ(µ, Li, σ) (25)

This method then requires the first N = 2O+1 moments of the NDF, in order to identify282

uniquely the value of wi, Li and σ. The following kernels are known to be compatible with the283

EQMOM procedure: Gaussian κG (Chalons et al., 2010), Log-Normal κL (Madadi-Kandjani284

and Passalacqua, 2015), Beta κβ of Gamma κΓ (Athanassoulis and Gavriliadis, 2002; Yuan285

et al., 2012) kernels. We tested each of these kernels but we will only focus on the Gaussian286

kernel in this paper. Its expression is given hereafter:287

κG(µ, L, σ) =
1

σ
√

2π
e−

(µ−L)2

2σ2 (26)

This method relies on the Wheeler algorithm (Marchisio and Fox, 2013), in order to288

identify the values of w and L. On top of that, a non-linear solver must identify the unique289

value of σ which leads to a reconstructed distribution whose moments match the expected290

values. We implemented a bisection method to find numerically the root of the objective291

function that quantify the good agreement of the reconstruction with the set of known292

moments. We also implemented analytical solutions for O = 1 and O = 2 as described by293

Marchisio and Fox (2013).294

The integration of the metabolic behaviour over the population (Eq. 2) is performed295

by using a 10-nodes Gauss-Hermite quadrature for each node of the Gaussian EQMOM296

reconstruction as suggested by Yuan et al. (2012).297

2.4.3. The Maximum Entropy method298

Given a finite realizable set of N moments, there exists an infinite set of NDF with the299

same set of first N moments (Mead and Papanicolaou, 1984). Therefore, the goal of any300

reconstruction method is to choose one plausible NDF out of this infinite set of possibilities.301

While the EQMOM method enforces the expected shape of the reconstruction by choosing302

arbitrarily a specific kernel, the Maximum Entropy method aims to find, out of all possible303

reconstructions, the one that maximizes the Shannon Entropy defined for any PDF f as:304

H[f ] = −
∫ +∞

−∞
f(x) ln(f(x))dx (27)

Tagliani (1999) describes the application of this method for the specific case of a positive305

PDF defined on the closed support x ∈ [0, 1]. This method can be extended to any finite306

support [a, b] without loss of generality by a mere linear change of variable.307

The reconstructed distribution whose Shannon entropy is the highest takes the following
form (Mead and Papanicolaou, 1984; Tagliani, 1999):

n̂(µ) = exp

(
−

M∑
i=0

ϕiµ
i

)
(28)
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With M = N − 1 the highest order of known moments.308

The key issue is to identify the values of the polynomial coefficients ϕi, which is achieved309

through the minimization of the following function (Kapur, 1989; Mead and Papanicolaou,310

1984):311

Γ(ϕ1, . . . ϕM) =
M∑
k=1

ϕk
mk

m0

+ ln

(∫ 1

0

exp

(
−

M∑
k=1

ϕkµ
k

)
dµ

)
(29)

The Γ function is both convex and smooth which makes its minimization possible through312

an iterative Newton-Raphson procedure, with the necessary and sufficient condition that the313

moment sequence is realizable and not too close of the frontier of the moment space, otherwise314

the Hessian matrix will be ill-conditioned.315

The Jacobian and Hessian matrices of this function are easily expressed, but they require316

the numerical computation of the following integrals:317

m̂k =

∫ 1

0

µk exp

(
−

M∑
i=0

ϕiµ
i

)
dµ k ∈ {0, . . . , 2M} (30)

These integrals must be evaluated numerically as no analytic form exists as soon as318

M > 2, which is done using the adaptative support quadrature proposed by Vié et al.319

(2013). The fact that such integrals must be numerically computed, at each step of the320

Newton-Raphson procedure, which itself is called at each time-step, explains why we marked321

that method as computationally intensive on Figure 1. However as moments evolve in a322

continuous way over time, the ϕi will also evolve continuously, and the initial guess of the323

Newton-Raphson procedure is set as the solution of the previous time-step, leading to a fast324

convergence.325

The number of nodes for the resulting quadrature rule actually depends on the results of326

the procedure described by Vié et al. (2013). We used a 15 nodes Gauss-Legendre quadrature327

for each sub-intervals identified by their procedure.328

Finally, in our following simulations, we did encounter cases where the moment set was329

too close from the frontier of the moment space which led to ill-conditioned Hessian matrices.330

We first performed the reconstruction on the support [0; K ∗ µmax] with K = 1.5, however331

we observed that our distributions only span a tiny fraction of this interval at each time.332

This often led to moment sets whose last moment were close to their upper or lower bounds333

in the moment space (we underlined this by calculating the canonical moments using the334

QD algorithm from Dette and Studden (1997)). We then decided to adapt dynamically the335

value of K between 0 and 2 in order to stretch the support of the reconstruction so that the336

moments of the distribution are always far enough from the frontier of the moment space,337

which then allows a fast and accurate convergence of the MaxEnt method.338

The rules for the evolution of K, from time step (n) to timestep (n + 1) are based339

on the value of the last canonical moments pM computed from the set of known moments340

m0, . . . ,mM :341

• If p
(n)
M < 0.4 : K(n+1) = 0.96 ∗K(n)

342

• If p
(n)
M > 0.6 : K(n+1) = 1.04 ∗K(n)

343
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This proposition is most probably not universal and might only work in our specific344

application cases.345

2.5. Simulation software346

All following simulations are performed using ADENON, a user-friendly simulation soft-347

ware we developed using the environment provided by MATLAB R2016a. This software is348

mainly focused on the simulation of bioreactors, by applying our PBM/Metabolic biological349

models within a hydrodynamic framework (compartment models, plug-flow reactors, batch350

or fedbatch cultures as well as accelerostat cultures). Population balances can be solved351

using either class or moment methods, with all core routines –for moment quadrature or352

distribution reconstruction– built into this software.353

Following the case configuration provided by the user, this tool formulates the corre-354

sponding ODE in terms of mass and volume balances. This set of ODE is then solved using355

an explicit scheme for time integration, either the Runge-Kutta 2,3 pair of Bogacki and356

Shampine (1989) or a simple first-order Euler scheme. The specificities of our solver com-357

pared to the built-in “ode23” function are (i) its capability of running in parallel (multi-core)358

mode by distributing the resolved variables and the reconstruction computing across CPU359

cores, and (ii) the fact that it enforces the consistency of resolved variables (mainly their360

non-negativity) in a more stringent way.361

We used the simple explicit Euler scheme for all simulations, and choose a timestep δt362

tiny enough to make the solution independent from this timestep.363

3. Results364

3.1. Stressed chemostat culture365

In a first attempt of applying the method of moments with reconstruction of the NDF,366

we chose to reproduce numerically the experimental results from Kätterer et al. (1986). We367

simulate a homogeneous chemostat culture with a constant initial dilution rate D = 0.1h−1
368

for 30h in order to reach a steady-state, we then apply a sudden shift in dilution rate toward369

D′ = 0.42h−1 in order to analyse 15 hours of the transient-state.370

As the original experiments were conducted using Candida tropicalis instead of E. coli,371

we adjusted the parameters of our metabolic model to fit quantitatively the biomass and372

substrate curves provided by Kätterer et al. (1986). It is however obvious that the metabolic373

behaviours of the yeast C. tropicalis and the bacteria E. coli are quite different and a mere374

parameter adjustment of a E. coli metabolic model will not produce a model exhibiting the375

metabolic behaviour of C. tropicalis. Here, we are only interested in the analysis of the376

population balance part of the model. We shall investigate each reconstruction method in377

terms of stability, computation time, and accuracy of the reconstruction. The shape of the378

reconstruction will have a metabolic impact in terms of acetate production, and we will only379

compare these productions between class and moment methods, not against experimental380

results.381

The Figure 2 shows simulation results for each method, with different orders or resolution.382

We applied QMOM with order ranging from O = 2 to O = 5 (N = 2O), EQMOM with383

order ranging from O = 1 to O = 3 (N = 2O+ 1) and MaxEnt with N ranging from 3 to 7.384
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(c) Gaussian EQMOM method
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Figure 2: Simulation results for each method, compared with experimental data from Kätterer et al. (1986).

The overall dynamics are well reproduced by each method, even with as few as two nodes385

with QMOM, even though that last method gives noticeably different results depending386

on its order. As explained before, the overall dynamics does not depend directly on the387

redistribution term of the PBE (Eq. 11) but mainly on the adaptation term. The moment388

formulation of this term needs a closure method to estimate the next unsolved moment, so389

as long as this estimation is reasonably accurate, the dynamics should be well reproduced.390

We then assessed the error on the estimation of the next unknown moment for each391

method and order by comparing them to the moments calculated with 400 classes. Full data392

set is provided as supplementary data. It is shown that the error is mainly kept under 0.2%.393

In terms of shape of the reconstruction, we can use the same data set to compare the394

original distribution solved with the class method to the reconstructions as illustrated on395

Figure 3.396

The shape of the reconstruction has two main effects. It affects the biomass concentration397

at steady-state due to the Pirt law which changes the yield of substrate conversion to biomass398

depending on the property µ of each individual. The population mean conversion yield will399

then depend on that shape, which explains why steady-state biomass concentrations are400

order-dependent for QMOM (Figure 2b). However, as the resulting reconstructions are401

quite similar with EQMOM and MaxEnt (Figure 3), no matter the order of the method,402

they always predict similar steady-state biomass concentrations.403

The second effect is the metabolic behaviour. As stated before, our metabolic model404

does not represent the actual metabolic behaviour of Candida tropicalis, however, it describe405

the overflow metabolism existing in E. coli which leads to acetate production in a way that406

depends on the shape of the distribution. Figure 4 illustrates these different acetate produc-407
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tions depending on the chosen method. Once again, QMOM exhibits different behaviours408

depending on the order of the method, while EQMOM and MaxEnt lead to predictions close409

to the class method.410

Acetate production is slightly overestimated by all moment methods, due to the fact that411

they do not account for the narrow peak of the distribution (see Figure 3b,c,d). This slightly412

overestimates the disequilibrium between the individuals and their environment, which is413

a key point in our modelling: the disequilibrium between the cell uptake of substrate and414

its requirements for growth determines the intensity of the overflow metabolism (i.e the415

production of by-products, here the acetate).416

In terms of simulation performances, the Figure 5 details the mean computation time417

spent on each time-step of the simulation. A blank simulation –ran without computing418

the terms related to bioreaction or population balance– is shown in order to estimate and419

distinguish the actual models computation time from the time spent on other tasks in the420

software.421

The class method is a direct one, the computation time is mainly spent on (i) computing422

the metabolic model from Pigou and Morchain (2015) for each class and (ii) computing the423

redistribution term of the PBE as detailed in Morchain et al. (2016) for each class, which424

implies computing NC + 1 values of the Owen’s T function using 10-nodes Gauss-Legendre425

quadratures (with NC the number of classes).426

All method of moments must compute the first N moments of the skewnormal distri-427

bution which is not expensive considering that their expressions are available. The major428

computational cost then comes from (i) establishing the quadrature rule and (ii) computing429

the metabolic model for each node of the quadrature.430
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Figure 3: Comparison of reconstructed distributions against distribution resolved by class. An arbitrary
scale is used for the Dirac distribution (QMOM).
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In this regard, QMOM is the least expensive method: the quadrature rule is computed431

using directly either the Product-Difference Algorithm (PDA) or the Wheeler Algorithm432

(WA), both consisting in computing the eigenvalues and eigenvectors of a particular N/2×433

N/2 matrix, and computing the metabolic model for N/2 nodes. The WA seems to be434

slightly faster than the PDA.435

In order to establish a quadrature rule with the EQMOM method, Marchisio and Fox436

(2013) detail the analytical solution for N = 3 and a solution whose cost is hardly higher437

than a 2 nodes QMOM for N = 5, which explains the low computation times for these438

two orders of resolution. The case N = 7 needs an iterative algorithm to find the suited439

quadrature rule, based on a dichotomic method. We speed-up that method by making use440
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Figure 4: Evolution of acetate concentrations as predicted by the E. coli metabolic model. Black dash-dotted
line: results from class method.

16



of the result from the previous timestep, the dichotomic algorithm then converges most of441

the time in 3 to 6 evaluation of the objective function, each of which requiring a single call442

to the WA.443

Finally, MaxEnt is the most expensive method. It is actually as fast as QMOM and444

EQMOM when the moment set is far from the frontier of the moment space, but our model445

often produces moment sets near the frontier. Then, we slow down the method by using446

different tweaks in order to stabilise it: (i) the adaptive quadrature proposed by (Vié et al.,447

2013), (ii) the dynamic adaptation of the distribution’s support and (iii) the computation448

of canonical moments to check realizability of the moment set. The underlying Newton-449

Raphson procedure often converges in 0 to 1 iterations, but this number increases up to 10450

for many time-steps after the dilution rate shift, so simulating the next few hours following451

this shift is actually as long as computing the rest of the time range.452

3.2. Fedbatch culture - Vrabel et al.453

We simulated the very same fedbatch culture described with a 70 compartments hydro-454

dynamic model by Vrábel et al. (2001) but using our own biological modelling as detailed455

in Pigou and Morchain (2015). Here, we reproduce these simulations, by using the methods456

of moments to solve the population balance model. The QMOM method is applied with 5457

nodes (N=10) as this seemed to be required to produce the same results than the EQMOM458

and MaxEnt methods (Figures 2 and 4). The MaxEnt method is used with N=5 moments as459

we did not manage to increase the number of moments up to 7 is this setup due to stability460

issues and also because, surprisingly, the prediction of acetate production was actually better461

with 5 moments than with 7 moments (see Figure 4c). Finally, EQMOM was also applied462

with N=5 moments as going up to 7 moments did not increase the precision drastically463

(Figure 4b) but did increase significantly the computation time (Figure 5). This will also464

make the comparison between MaxEnt and EQMOM more relevant.465
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Figure 5: Mean run-time per timestep for each method and different orders (ms/ts) (± standard deviation
measured on 20 simulations per method and order)
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In order to enforce the consistency of numerical results, we limit the maximum value of466

the time-step to the minimum compartment mean-residence-time:467

δtmax =
Nc

min
n=1

(
Vn∑Nc

m=1Qn,m

)
(31)

The value of the maximum time-step for the compartment model shown in Figure 6 is468

δtmax = 1.47 10−5 h.469

Figure 6: Representation of the macroscopic flow patterns in the fedbatch reactor (left) and details of its
compartmentalization and specific flows for the top of the reactor (right). Values for the flow rates CF, IF
and EF are given in Pigou and Morchain (2015), appendix B.

The Figure 7 gathers the results in term of glucose, total biomass and acetate concen-470

trations as well as mean population reaction rates. The plotted values are mean values at471

different heights (volumetric mean value over compartments of the same row). The three472

heights (top, middle and bottom) correspond to the following compartments (see Figure 6473

for numbering):474

• top: compartments 11 to 15475

• middle: compartments 36 to 40476

• bottom: compartments 61 to 65477

The good agreements between the methods is related to the fact that, in the heteroge-478

neous large-scale reactor, the distribution is continuously perturbed by external fluctuations479

which prevent the apparition of the narrow distribution seen previously (Figure 3). The480

expected distribution has a smoother shape which is well reconstructed by MaxEnt and481

EQMOM as shown in Figure 8.482

Finally, we ran 5 times the first hour of simulation in order to gather statistics about483

simulation runtimes in the heterogeneous case with different orders of resolution. The results484

are shown in Figure 9.485
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Figure 7: Simulation results for the different population balance methods in the heterogeneous fedbatch
culture. (a) Glucose concentration, (b) Total biomass concentration, (c) Acetate concentration and (d)
Acetate specific production rate.

Each CPU core had to perform calculations for 14 compartments in figure 9 while a single486

compartment was considered in figure 5 which explains the overall higher computation times.487

However, the previous analysis about the comparison of the complexity of each method488

remains the same, and the observations on the heterogeneous case are the same than in the489

homogeneous case : QMOM maintains a constant computation time, EQMOM is as fast as490

QMOM as long as N ≤ 5 and MaxEnt is slower than other methods due to the stabilisation491

of the method.492

4. Discussion493

Dealing with a biological phase naturally leads to the use of the “population” semantic494

field due to the individual nature of cells, each of which having its own set of properties and495
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Figure 8: Comparison of distribution shapes as resolved by the class method and reconstructed by the
EQMOM and MaxEnt methods both with N = 5 moments.
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Figure 9: Comparison of simulation runtimes for each method (ms/ts) (± standard deviation measured on
5 simulations per method and order). Simulations performed using 5 CPU cores.

its own “memory”. Hence, the use of a Population Balance Model to describe a biological496

population seems to be obvious, almost axiomatic.497

The most natural way to solve a PBM is the class method, which constitutes a direct498

resolution of the equations. However, its accuracy comes with the price of a high memory499

cost. Unpublished data show that for simple batch and chemostat simulations, the results500

are dependent on the number of classes up to 60 classes, and we can even notice differences501

between 100 and 400 classes in figure 2a. This number of classes is needed to span the entire502

property space with sufficient accuracy, however simulations clearly show that most of the503

time a large fraction of classes are nearly empty. This means that we allocate memory for504

variables that most of the time carry almost no information, but still happen sometime to505

be used, depending on the state of the population.506

This explains why we are shifting toward methods of moments. They resolve basic prop-507

erties of the distribution (total number, mean, variance, skewness, flatness, ...) which all508

contain useful information no matter the state of the population. Moments gather higher509
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entropy about the distribution than classes, in the sense of information theory. This sig-510

nificantly reduces the required number of resolved variables, from more than 60, to half a511

dozen.512

For some applications, each equation of the model can be formulated in terms of moments513

(Hulburt and Katz, 1964; McGraw, 1997) leading to closed formulations or easy closure514

through the used of quadrature based methods. In these cases, the accuracy of the methods515

of moments poses no question –and is even better than a class method considering that516

the latter induces numerical diffusion in the parameter space– for a smaller memory and517

computational cost.518

Unfortunately, we deal here with a metabolic complexity that offers no model formulation519

in terms of moments. We tackle this issue by using reconstruction methods, namely QMOM,520

EQMOM and MaxEnt methods; but these methods introduce quadrature inaccuracy as well521

as extra computational cost, which we tried to quantify in our simulations.522

The results in terms of concentration fields are really promising, as the biomass, glucose523

and acetate concentrations were well reproduced both in the homogeneous and the heteroge-524

neous cases. We mainly noticed slight errors consisting in an over-production of acetate with525

moment methods in the Katterer case (see Figure 4) due to difficulties in reconstructing a526

narrow distribution with a wide base (similar to a Laplace distribution). However, we are527

shifting toward moment methods only to perform large-scale simulations at low memory cost:528

the class method performs just fine enough for homogeneous cases. The crucial comparison529

must then be made on the large-scale simulation.530

In Figure 7, we observe a surprisingly good agreement between the class method and the531

moment methods. The only noticeable difference is seen on acetate curves for the moment532

methods which slightly underestimate the acetate production for t ≈ 10h which induces533

a persistent shift along time when compared to the class method. On this regard, the534

accuracy for variables whose value is of importance (substrate and product concentrations)535

is satisfactory for all methods.536

In terms of computational cost, which we evaluate through the simulation time, Yuan537

et al. (2012) already performed a comparison of EQMOM and the MaxEnt methods. They538

observed that EQMOM was a hundred times faster than MaxEnt for the reconstruction539

of two NDF. However, we do not feel that their comparison is fair: the slow convergence540

of MaxEnt is only due to a bad initialization of the Newton-Raphson procedure, similar to541

what we observe in our simulations for the very first time-step. We want to supplement their542

observations by pointing out that when used in time resolved simulations, which happens543

to be our specific application for these methods, the MaxEnt method performs only slightly544

slower than EQMOM (see Figures 5 and 9) due to different adjustments made in order to545

improve stability.546

We do not develop nor try to promote a specific reconstruction method, but only want547

to draw general guidelines about which method should be used for the simulation of large-548

scale bioreactors. We then did our best to keep the comparison of the methods as fair as549

possible. On the basis of our results, here are the key observations we made about the550

different methods.551

EQMOM is a stable method: it behaves well near the moment space frontier and we552

did not notice any particular difficulty when increasing the number of resolved moments.553
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When used on monomodal distribution, it can be applied at a low computational cost with554

3 or 5 moments, thanks to analytical solutions (Marchisio and Fox, 2013). The possibility555

of increasing the number of resolved moments means that this method is also well suited556

to reconstruct multi-modal distributions, this will be useful when tracking fast population557

dynamics in heterogeneous systems. Moreover, the method embeds the principle of nested558

quadratures: a relevant Gauss-Hermite quadrature can be constructed on each Gaussian node559

of the EQMOM reconstruction, which helps performing efficiently the integration of Eq. 2.560

This can be an important advantage of this method if the metabolic model (computation of561

Φ) is computationally expensive. Here, the metabolic model was easy enough to compute,562

which hide this salient feature of EQMOM reconstructions.563

The same level of accuracy than EQMOM with 5 moments could be reached with QMOM564

using 10 moments with a similar computation time, but with less calls to the metabolic model.565

Both methods can then be used similarly, based on whether we try to reduce the memory566

usage or the number of calls to a potentially complex metabolic model.567

MaxEnt is known to be ill-conditioned near the boundaries of the moment space (Massot568

et al., 2010) or when the number of resolved moments increases (Gzyl and Tagliani, 2010),569

in particular we did not manage to perform simulations using this method and more than 7570

resolved moments, or even 5 moments in the heterogeneous case. This comes from the fact571

that we describe quite narrow distributions on a large support, which naturally correspond to572

moments near the frontier of the moment space. When the method is working, it might give a573

better reconstruction with 5 moments than EQMOM with 7 moments (Figure 3a), however,574

using this reconstruction to construct a relevant quadrature rule is more difficult than for575

EQMOM. We then recommend its use when assessing slow dynamics (preserving mono-576

modal distribution in heterogeneous systems) for simulations where the time-step is negligible577

compared to the characteristic time of moment evolution (to ensure a good initialization),578

and only if a method can be designed to form a set of moment far enough from the frontier579

of the moment space. These are quite restrictive conditions which do not make this method580

the more advisable.581

Finally, in terms of memory footprint, we managed to reduce the number of resolved582

variables to describe the population from about a hundred (class method) to about only583

5 variables which will be significant when moving toward CFD simulations of bioreactors.584

However, it should be noted that for MaxEnt, memory registers must be allocated both for585

the transported moments and for the vector of polynomial coefficients ϕ which serves as ini-586

tial value for the Newton-Raphson procedure. MaxEnt then requires twice as much memory587

space than QMOM and EQMOM methods for equivalent number of resolved moments.588

The significant improvements in terms of memory usage will be even more significant589

when we will shift toward multivariate population balance models. For a bivariate distribu-590

tion, the number of classes or moments will roughly be squared leading to about 104 classes591

opposed to 25 moments in each geometrical mesh.592

5. Conclusions593

The point of applying population balance based modelling for the predictive simulation594

of heterogeneous bioreactors is now well established (Morchain et al., 2014, 2016; Pigou and595
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Morchain, 2015; Heins et al., 2015; Bertucco et al., 2015; Fredrickson and Mantzaris, 2002).596

This paper is more focused on numerical methods to solve the population balance model,597

in order to shift from a class method to moment based methods. In our modelling, the598

reconstruction methods of a NDF from a finite set of moments is required for the computa-599

tion of the population metabolic behaviour. We then implemented QMOM, EQMOM and600

Maximum Entropy methods, and challenged them in terms of stability, memory footprint,601

computational cost and accuracy against class method results.602

At equivalent number of resolved moments, QMOM is noticeably less accurate than603

EQMOM and MaxEnt. However, increasing the number of moments for QMOM does not604

increase significantly the computation time, which make this method competitive with the605

others when looking only at accuracy and simulation runtime.606

If reducing the memory footprint is the main concern, EQMOM actually reaches the607

same accuracy than QMOM with half the number of resolved moments. However, its com-608

putational cost increases significantly between 5 and 7 resolved moments, due to the need of609

an iterative procedure rather than an analytical or direct solution.610

Depending on the use case, MaxEnt has often been reported as an interesting method611

(Massot et al., 2010; Vié et al., 2013; Lebaz et al., 2016), however, we will tend to discard it for612

our future works. Indeed, even when the method is well-conditioned, it is not particularly613

competitive with EQMOM in terms of computation time and accuracy, but comes with614

twice the memory usage of EQMOM. Moreover, the method tends to be quickly unstable if615

moments are near the limit of realizability. This poses problem for our modelling as the lack of616

experimental data about the dynamics of internal biological properties will make us formulate617

models which tend toward narrow distributions until data are available. An example of that618

is the PBM from Pigou and Morchain (2015) which led to a Dirac distribution in steady-state619

homogeneous systems until experimental data from Nobs and Maerkl (2014); Yasuda (2011)620

allowed us to improve the PBM and add an experimentally justified redistribution term as621

explained in Morchain et al. (2016).622

Overall, the QMOM and EQMOM methods have shown to be accurate and stable enough623

for the simulation of a large scale bioreactor with a significantly reduced memory impact624

and a simulation time of the same order of magnitude than the class method.625

Acknowledgments626

The authors thank Sanofi Chimie - C&BD Biochemistry Vitry for its financial support.627

The authors declare no conflict of interest.628

23



Notation629

Roman630

C : Concentration (kg.m−3)

H : Shannon entropy

K : Biological affinity constant (kg.m−3)

L : Quadrature node abscissae (h−1)

m : Moment of distribution n (kg.m−3.h−k)

n : Number density function (h.kgX .m
−3)

N : Number of resolved moments

NC : Number of classes

Nc : Number of compartments

O : Order of (E)QMOM method

q : Specific reaction rate (mol.kg−1
X .h−1)

Q : Flow rate (m3.h−1)

R : Reaction rate (kg.m−3.h−1)

T : Time constant of adaptation (h)

V : Compartment volume (m3)

w : Quadrature node weight (kgX .m
−3)

Y : Stoichiometric molar coefficient (mol.mol−1)

Subscript and Superscript631

x̃ : Population mean value

x∗ : Equilibrium value

xa : Achieved value

xA : Acetate

xG : Glucose

xi : Inhibition

xk : Moment order

xm : Compartment index

xn : Compartment index

xO : Oxygen

xT : Threshold value
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Greek632

ε : Turbulent energy dissipation rate (W.kg−1)

κ : PDF Kernel

µ : Growth rate (gX .g
−1
X .h−1)

ν : Kinematic viscosity (m2.s−1)

ϕ : Polynomial coefficient

Φ : Specific uptake rate (g.g−1
X .h−1)

Ψ : Environmental limitation coefficient

σ : Standard deviation (h−1)

ζ : rate of change of specific growth rate (h−2)
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Vrábel, P., der Lans, R.V., Cui, Y., Luyben, K., 1999. Compartment model approach:796

Mixing in large scale aerated reactors with multiple impellers. Chemical Engineering797

Research and Design 77, 291–302. doi:10.1205/026387699526223.798

Xu, B., Jahic, M., Enfors, S.O., 1999. Modeling of overflow metabolism in batch and799

fed-batch cultures of Escherichia coli. Biotechnology Progress 15, 81–90. doi:10.1021/800

bp9801087.801

29

http://dx.doi.org/10.1016/j.bej.2016.09.005
http://dx.doi.org/10.1371/journal.pone.0093466
http://dx.doi.org/10.1186/1752-0509-6-55
http://dx.doi.org/10.1099/00221287-22-3-589
http://dx.doi.org/10.1016/j.ces.2014.11.035
http://dx.doi.org/10.1016/j.ces.2008.06.017
http://dx.doi.org/10.1016/j.ces.2008.06.017
http://dx.doi.org/10.1016/j.ces.2008.06.017
http://dx.doi.org/10.1016/S0096-3003(98)10084-X
http://dx.doi.org/10.1016/S0096-3003(98)10084-X
http://dx.doi.org/10.1016/S0096-3003(98)10084-X
http://dx.doi.org/10.1016/j.jcp.2012.11.043
http://dx.doi.org/10.1016/S0009-2509(00)00175-5
http://dx.doi.org/10.1016/S0009-2509(00)00175-5
http://dx.doi.org/10.1016/S0009-2509(00)00175-5
http://dx.doi.org/10.1016/S1385-8947(00)00271-0
http://dx.doi.org/10.1016/S1385-8947(00)00271-0
http://dx.doi.org/10.1016/S1385-8947(00)00271-0
http://dx.doi.org/10.1205/026387699526223
http://dx.doi.org/10.1021/bp9801087
http://dx.doi.org/10.1021/bp9801087
http://dx.doi.org/10.1021/bp9801087


Yasuda, K., 2011. Algebraic and geometric understanding of cells: Epigenetic inheritance of802

phenotypes between generations, in: Müller, S., Bley, T. (Eds.), High Resolution Microbial803

Single Cell Analytics. Springer Berlin Heidelberg. volume 124 of Advances in Biochemical804

Engineering / Biotechnology, pp. 55–81. doi:10.1007/10_2010_97.805

Yuan, C., Laurent, F., Fox, R., 2012. An extended quadrature method of moments for popu-806

lation balance equations. Journal of Aerosol Science 51, 1–23. doi:10.1016/j.jaerosci.807

2012.04.003.808

30

http://dx.doi.org/10.1007/10_2010_97
http://dx.doi.org/10.1016/j.jaerosci.2012.04.003
http://dx.doi.org/10.1016/j.jaerosci.2012.04.003
http://dx.doi.org/10.1016/j.jaerosci.2012.04.003


Appendix A. Moment formulation of the PBE809

As a recall, the population balance equation is defined as810

∂n(µ)

∂t
= − ∂

∂µ
[n(µ)ζ(µ)] +

∫ +∞

0

β(µ, µ′)n(µ′)Ψµ′dµ′ (A.1)

and the k-th order moment of the distribution n(µ) is defined by811

mk =

∫ +∞

0

µkn(µ)dµ (A.2)

We want to formulate the law of moments evolution, as the sum of contributions from812

an adaptation term
(
∂ma,k(t)

∂t

)
, and a growth term

(
∂mg,k(t)

∂t

)
:813

∂mk(t)

∂t
=
∂ma,k(t)

∂t
+
∂mg,k(t)

∂t
(A.3)

The formulation of
∂ma,k(t)

∂t
comes by multiplying the first RHS term of Eq. A.1 by µk814

and integrating by part with respect to µ:815

∂ma,k(t)

∂t
= −

∫
Ωµ

µk
∂

∂µ
(n(µ, t) · ζ(µ)) dµ (A.4)

=

∫
Ωµ

kµk−1n(µ, t)ζ(µ)dµ−
[
µkn(µ, t)ζ(µ)

]
∂Ωµ

(A.5)

Considering that the adaptation will not allow individuals to cross the frontier of the µ-816

space (∂Ωµ), the second term of Eq. A.5 is necessarily null. By expanding the formulation of817

ζ(µ) = (T−1 + µ) (µ∗−µ), the formulation of
∂ma,k(t)

∂t
in terms of moments of the distribution818

is trivial:819

∂ma,k(t)

∂t
= k

(
µ∗

T
mk−1(t) +

(
µ∗ − 1

T

)
mk(t)−mk+1(t)

)
(A.6)

The contribution of the growth term to the moment evolution strongly depends on the820

choice of a closure for the redistribution model. In Morchain et al. (2016), we identified821

the following probability density function as a good model for experimental data from the822

literature (Nobs and Maerkl, 2014; Yasuda, 2011):823

β(µ, µ′) = β(µ, µ̃) =
2

σ
φ

(
µ− l
σ

)
Φ

(
α× µ− l

σ

)
(A.7)

with:824

• φ(x) = 1√
2π
e−

x2

2825

• Φ(x) = 1
2

(
1 + erf

(
x√
2

)
)
)

826
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The redistribution law is a skew-normal distribution whose parameters depend on the827

population mean growth rate µ̃ but not on the growth rate of the mother cell:828

µ̃ =
m1(t)

m0(t)
(A.8)

l = kl µ̃ (A.9)

σ = kσ µ̃ (A.10)

α = 3.65 (A.11)

The constants kl and kσ were chosen so that the PDF β(µ, µ′) fits experimental data,829

but also with the constraint that the first moment of this PDF is equal to µ̃ so that the830

redistribution term will have no impact on the population mean growth rate. The used831

values are:832

kl = 0.651836690282903 (A.12)

kσ = 0.452438435252710 (A.13)

Then, the growth related evolution of the distribution moments is easily expressed in833

terms of moments of β(µ):834

∂mg,k(t)

∂t
=

∫
Ωµ

[
µk
∫

Ωµ

β(µ, µ̃)Ψµ′n(µ′)dµ′
]

dµ (A.14)

= Ψ

∫
Ωµ

µkβ(µ, µ̃)

[∫
Ωµ

µ′n(µ′)dµ′
]

dµ (A.15)

= Ψ

∫
Ωµ

µkβ(µ, µ̃)m1(t)dµ (A.16)

= Ψm1(t)Bk (A.17)

(A.18)

Bk is the k-th order moment of the PDF β(µ, µ̃) which happens to only depend on µ̃835

whose value is accessible using the first two moments of the distribution (Eq. A.8). The836

moments Bk can be determined analytically using the Moment Generating Function of the837

skew-normal distribution:838

Bk =
∂kM

∂tk
(0) (A.19)

M(t) = exp

(
lt+

σ2t2

2

)(
1 + erf

(
σαt√
1 + α2

))
(A.20)

We used the MATLAB Symbolic Toolbox to pre-compute the expressions of Bk,∀k ∈839

{0, . . . , 9}.840
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