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Xavier Nesme3, Marc Bardin4 and Eric Galiana1*

Abstract

Background: Interactions between pathogenic oomycetes and microbiota residing on the surface of the host plant
root are unknown, despite being critical to inoculum constitution. The nature of these interactions was explored for
the polyphagous and telluric species Phytophthora parasitica.

Results: Composition of the rhizospheric microbiota of Solanum lycopersicum was characterized using deep
re-sequencing of 16S rRNA gene to analyze tomato roots either free of or partly covered with P. parasitica biofilm.
Colonization of the host root surface by the oomycete was associated with a shift in microbial community
involving a Bacteroidetes/Proteobacteria transition and Flavobacteriaceae as the most abundant family. Identification
of members of the P. parasitica-associated microbiota interfering with biology and oomycete infection was carried
out by screening for bacteria able to (i) grow on a P. parasitica extract-based medium (ii), exhibit in vitro probiotic or
antibiotic activity towards the oomycete (iii), have an impact on the oomycete infection cycle in a tripartite interaction
S. lycopersicum-P. parasitica-bacteria. One Pseudomonas phylotype was found to exacerbate disease symptoms in
tomato plants. The lack of significant gene expression response of P. parasitica effectors to Pseudomonas suggested
that the increase in plant susceptibility was not associated with an increase in virulence. Our results reveal that
Pseudomonas spp. establishes commensal interactions with the oomycete. Bacteria preferentially colonize the surface
of the biofilm rather than the roots, so that they can infect plant cells without any apparent infection of P. parasitica.

Conclusions: The presence of the pathogenic oomycete P. parasitica in the tomato rhizosphere leads to a shift in the
rhizospheric microbiota composition. It contributes to the habitat extension of Pseudomonas species mediated through
a physical association between the oomycete and the bacteria.

Keywords: Oomycete, Biofilm, Host plant, Metagenomics 16S, Flavobacteriaceae, Pseudomonadaceae

Background
Microbiota associated either with hosts or/and pathogens
regulate the course of infection. For plants, microbiota en-
compass various functional contexts. This includes stimu-
lation of seed germination and plant growth, promotion of
resistance to abiotic stresses, as well as elicitation of plant
systemic defense, and antibiosis functions against patho-
gens [1–5]. For plant pathogens, the incidence of microbe-
microbe interactions on virulence is investigated. Studies
suggest that fitness results of ability to suppress host de-
fenses and acquire nutrients from host tissues, and also of
features that minimize or maximize events associated with

undesirable or beneficial co-infections [6, 7]. For example,
interactions between microbes may promote pathogenicity
by production of bacterial toxins that are essential for
fungal virulence or by co-infection events that enhance ef-
fector gene expression [6, 8, 9]. Such results contribute to
evaluate the updating of our view of pathogenic processes
taking into account a broader vision of pathogenesis. Then
the question of pathogenicity is not restricted at the single
genotype or species level, but is extended at level of micro-
biota that represent a pathogenic entity [6, 10, 11]. To ad-
dress these issues, mixed-species biofilms formed by
pathogens and resident microbiota in the host vicinity are
good models. They constitute an adaptation both for sur-
vival, by protecting species from fluctuating conditions,
and for molecular dialogs favored by promiscuity between
species [12–14].
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Pathogenic oomycetes are eukaryotic and filamentous
microrganisms infecting various hosts (plants, insects,
vertebrates, and other microorganisms) [15, 16]. Plant
pathogens of the genera Phytophthora and Pythium, to-
gether with some obligate parasites (downy mildews and
white rusts) cause highly destructive diseases on many
dicots, thereby having major ecological and economic
consequences worldwide [16]. They have evolved the
ability to suppress PAMP-triggered immunity (PTI), a
key aspect of plant innate immunity which contributes
to microbial growth inhibition [17, 18]. Pathogen sup-
pression involves secreted effectors which act in the
plant apoplast or are delivered directly into the cytoplasm
of host cells, leading to effector-triggered susceptibility
[19, 20]. Additionally, oomycetes interact with host resi-
dent microbiota before achieving infection. The contribu-
tion to pathogenicity of oomycetes/resident microbiota
interactions is largely unknown. Recent studies suggest
that interactions may act on growth and virulence of
the oomycete either at the host–pathogen contact
interface or inside host tissues [5, 9]. However, different
microorganisms growing in the rhizosphere may exhibit
anti-germinative properties against plant-pathogenic
oomycetes [21–23], while some inter-specific interactions
may promote plant infection [24–26] or may contribute to
oomycete propagule dissemination [27]. Phytophthora
parasitica has been shown to exploit intraspecific zoo-
spore communication to improve adhesion to host cells
and to express a set of effector and mucin-like genes by
means of biofilm formation [28, 29].
A first analysis of the microbiota dynamics in relation to

oomycete infections has been carried out in fish [30, 31]. A
meta-taxonomic analysis of Saprolegnia-associated fish egg
diseases indicated a correlation between a low incidence of
saprolegniasis on salmon eggs having an immature adap-
tive immune system and a high richness and abundance of
specific commensal Actinobacteria, with species from the
Frondihabitans genus inhibiting attachment of Saprolegnia
to eggs [30]. In the case of plant infections, the oomycete-
microbiota interactions interfacing with the disease cycle
are scarcely documented [6]. In this report, we sought to
explore changes in the composition of the rhizosphere
microbiota following infection of tomato roots by P. para-
sitica. This issue was addressed through the analysis of in-
teractions occurring within a biofilm formed by the
oomycete on the root surface [13, 14]. To test whether
there is a subset of the rhizosphere microbiota able to
interact with oomycete and affect plant disease onset, a
first aim was to characterize composition and specificity of
the rhizopheric microbiota having the ability to colonize
biofilms. For this purpose, re-sequencing of 16S rRNA
gene amplicons was performed to characterize, from
phylum to family, content of microbiota resulting from the
colonization by soil microorganisms of roots (i) free or (ii)

partly covered with a P. parasitica biofilm. The second aim
was to proceed to culture-dependent functional analyses of
the incidence on disease cycle of bacterial species able to
colonize the biofilm. Strains were isolated on a P. parasi-
tica extract-based medium. They were screened for pro-
biotic or antibiotic activity towards P. parasitica, as well as
for influence on oomycete pathogenicity in the context of a
tripartite host plant-P. parasitica-bacteria interaction.

Methods
Soil sampling
Sampling was performed on soil supporting tomato
growth (Solanum lycopersicum cv. Marmande). The
experimental site was an E-W-oriented greenhouse lo-
cated at the INRA Pathologie Végétale research unit in
Montfavet (43.9 N, 4.8 E). In this environment, plants
were under natural light. Sampling was performed on the
31 May 2014 (10am–2pm) in the following conditions:
greenhouse temperature (20, 4–24, 2 °C); air relative hu-
midity (56–73%); soil moisture tension (17–45 cbar). Soil
samples were taken from the rhizosphere of 30 plants
6 weeks post-seeding. Plants were randomly selected by
groups of three from ten different areas located on two
rows, the easternmost and the westernmost within
the greenhouse. Samples were then grouped by ten
into three biological replicates (R1, R2, and R3) based
on the distribution of three samples from each area
in distinct replicates. Plants and soil characteristics
are described in Additional file 1: Table S1.

Microbial community constitution
A subsample (10 g) of each biological replicate was mixed
with 50 ml of sterile water, and the resulting microbial sus-
pension was decanted for 5 min before recovering superna-
tants. In order to achieve biofilm formation, microbe-free
roots of tomato seedlings (2 weeks post germination) were
incubated for 3 h at 20 °C with zoospores (106 cells/ml) of
the P. parasitica strain 149, reported as highly aggressive
on tomato [32]. Seedlings were selected under binocular
for a biofilm coverage of root surface estimated at 30–50%.
Supernatants recovered from microbial suspensions were
then placed in a 15-cm plastic Petri dish and were incu-
bated at 20 °C under regular agitation in the presence of
tomato roots with or without P. parasitica biofilms.
Twenty seedlings roots were used to constitute experiment
replicates. After 3 days, roots were washed 3 times with
sterile water. Three replicates of microbial communities
physically structured on roots (M1R1, M1R2, and M1R3) or
on the root-biofilm complex (M2R1, M2R2, and M2R3) were
prepared for metagenomic analysis and screening.

DNA extraction and high-throughput sequencing
Microbial material for each replicate was obtained via
dissociation by mechanical trituration: 20 passes through

Larousse et al. Microbiome  (2017) 5:56 Page 2 of 11



the opening of a standard Pasteur pipette. DNA was ex-
tracted from the homogenate using the FastDNA spin kit
for soil (MP Biomedicals, Solon, USA) according to manu-
facturer’s protocol. Quality of soil DNA was assessed by
electrophoresis on 1% agarose, spectrophotometry at 200–
300 nm using a NanoDrop 2000 Spectrophotometer
(Thermo scientific) and rRNA gene confirmation by PCR
using 27F and 1492R primers (Additional file 2: Figure S1).
PCR amplification of template DNAs was carried out for
the hypervariable V3-V5 region (~570 bp length) using the
357F and 926R primers (Additional file 3: Table S2).
Conditions for PCR amplification were as previously de-
scribed [27]. Gel electrophoresis using a 1.5% agarose gel
was used to verify amplification. PCR products were ex-
cised and purified using the QIAEX II DNA Purification
from Agarose Gel kit (QIAGEN) according to manufac-
turer’s protocol. The quantity of DNA was determined by
spectrophotometry (Nanodrop 2000 spectrophotometer).
Amplicon libraries were constructed for each replicate
using the InViewTM Microbiome Profiling 2.0 service and
paired-end sequenced with Illumina MiSeq sequencing at
GATC Biotech (Konstanz, Germany).

Treatment and phylogenetic classification
Sequence analysis was performed using the Ribosomal
Database Project tools, following RDP Release 11.4 rec-
ommendations [33]. Sequences generated from the 357F
primer were subjected to quality filtering with FastQC
for average percentage of A, G, C, and T across the read
length, average GC content, location and frequency of N
positions, sequence length distribution, duplicate se-
quences, and overrepresented k-mer sequences. Utilizing
quality scores, sequence reads were cleaned by PRINSEQ
and RDP. Initial processing used criteria: removal of 5 and
74 nucleotide residues at the 3′ and 5′ ends, respectively;
deletion of reads with N residues or with an average
quality score ≥32. Chimeric sequences (n = 64108) were
also deleted after identification with UCHIIME [34] via
USEARCH [35] and against the RDP Gold v9 database.
After processing, 644019 sequence reads (including the
V3 region) were selected for further analyses. Alignment
was performed using the HMMER3 model [36]. The
RDP’s mcClust algorithm [37] and the naïve Bayesian
classifier [38] were used to define 38730 operational
taxonomic units (OTUs) at 98% sequence identity. A
multivariate data analysis of OTUs was performed using
Phyloseq. Principal component analysis (PCA) and signifi-
cant features were identified for all treatments using
Phyloseq. The R Vegan package [39] was used for com-
munity dissimilarity calculations (alpha diversity indices
combining species richness and abundance into a single
value) with for each replicate a OTU number normalized
relative to the lowest number of OTUs generated from
M2R1. The Shannon–Weaver index was ranged from 0.74

to 0.88 for M1R1, M1R2, and M1R3 and from 0.77 to 0.87 for
M2R1, M2R2, and M2R3. The Simpson index was ranged
from 0.41 to 0.52 and from 0.51 to 0.52 for M1 and M2
replicates, respectively (Additional file 4: Figure S2).

Root-biofilm complex (M2) screening
Bacterial isolates were generated as described by Galiana
et al. [27]. Mixed-species biofilms were recovered from
M2, were rinsed three times in water, and were gently dis-
sociated by mechanical trituration (as described above).
Cell suspensions obtained were spread on agar plates con-
taining a Phytophthora extract as sole nutrient source
[Phytophthora crude extract 10 g/l; NaCl 10 g/l; agar 1.5%
(P/V)] and were incubated at 25 °C. Phytophthora crude
extract was prepared from a 2-week mycelium of P.
parasitica strain 149 (INRA, Sophia Antipolis, France).
Colonies appeared within 3 days. After subculturing in the
same conditions, bacteria were transferred to LB medium
for mass culture and further analyses.

Characterization of genetic diversity by 16S rRNA gene
sequencing
Bacteria were grown in LB medium over night at 28 °C.
Genomic DNA was extracted from cell cultures using
the UltraClean®Microbial DNA Isolation kit (MO BIO).
Extracted DNA was amplified with 27F and 1492R
primers. Amplification was performed under the follow-
ing conditions: initial denaturation step at 94 °C for
5 min; 40 cycles of denaturation at 94 °C for 40 s, an-
nealing at 55 °C for 40 s, and extension at 72 °C for
1.5 min; and a final extension at 72 °C for 7 min. PCR
products were separated on a 1% agarose gel, were
stained with ethidium bromide, and were visualized on a
transilluminator. Sequencing was performed in both di-
rections with primers 27F and 1492R, and consensus se-
quences were obtained using CAP3 [40]. Identification
was performed at the genus level by blast against the
“procaryota_SSU-rDNA-16S_stringent 277957” leBIBI-
QBPP database (https://umr5558-bibiserv.univ-lyon1.fr/
lebibi/lebibi.cgi). 16S rRNA gene sequences closest to
the isolates (98% sequence homology) were recovered for
phylogenetic analysis. Two groups were formed and ana-
lyzed separately per higher-level taxonomy. Sequence
alignment was performed with MUSCLE [41], and the
phylogenetic tree was constructed using the GTR
model in PhyML [42] as implemented in the software
Seaview4. A bootstrap confidence analysis was per-
formed with 1000 replicates.

Generation of green fluorescent protein-labeled bacterial
strains
Bacteria were grown in LB medium and washed with ice-
cold 10% glycerol. The pFK78 plasmid [43] was trans-
ferred into competent cells using the MicroPulser™
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electroporation apparatus (Bio-Rad) with recom-
mended protocols for bacteria. Transformed bacteria
were selected on LB agar plates supplemented with
gentamycin (10 μg ml−1) and identified using a LEICA
MZFLIII binocular and AxioCamHR camera equipped
with AxioVision 4_7 software (Zeiss, Germany). GFP
was excited at 440–520 nm light and emission was de-
tected through a 520–600 GFP filter.

Biofilm colonization assay
To generate biofilm, roots of tomato seedlings were in-
oculated for 3 h with 10 ml of P. parasitica zoospore
suspension (strain 149, 500 cells μl−1) and were washed
three times with sterile water [28]. The biofilm-root
complex was inoculated with GFP-expressing bacteria
(E. coli and I-1G6) by adding 10 ml of a cell suspension
in water (OD = 0.2) and was incubated for 3 h at 20 °C.
Analysis of biofilm-root colonization was performed at
20 °C and was visualized at different time points (3, 6,
18, 24, 48, 72, and 96 h) by fluorescence microscopy. For
quantitative image acquisition, 8 bit images (512 × 512
pixels) were acquired on a ZEISS LSM 880 laser scan-
ning confocal microscope (λex = 488 nm). In order to
measure root and biofilm colonization, a mean fluores-
cent intensity signal was determined for four 1000 μm2

areas on each sample (2-biofilm and 2-root material),
from 10 serial confocal sections (5 μm) using the ZEN
2012 lite software (Zeiss, Germany).

Tripartite inoculation and protection assay
Roots were inoculated for 3 h with 10 ml of P. parasitica
zoospore suspension (strain 149, 10 cells μl−1), were
washed three times with sterile water, and were inocu-
lated with bacterial isolates suspended in sterile water
(OD = 0.2). Plants were grown at 24 °C under growth
chamber conditions; 16 h photoperiod at a light intensity
of 100 mEm−2 s−1. Disease incidence was measured at
different time points as the percentage of plantlets exhi-
biting symptoms (yellowed leaves, root rot, and plant
stunting). Experiment was performed using two repli-
cates of five plants each.

Real-time qPCR analyses
Gene expression was quantified by real-time RT-qPCR
using the fluorescent intercalating dye SYBR-Green in an
AriaMx Realtime PCR System (Agilent Technologies,
Santa Clara, USA). Total RNA from the bacteria-biofilm-
root complex was isolated with TRIzol reagent (Invitrogen
GmbH, Karlsruhe, Germany). mRNA was treated with
Ambion® rDNase I (Thermo Fisher Scientific, Waltham,
USA), and cDNA was synthesized from 1 μg RNA, by
iScript cDNA Synthesis (Bio-Rad, Hercules, USA). The
cDNA was used as a template in real-time PCR with
gene-specific primers (Additional file 3: Table S2) and

the qPCRTM Mastermix Plus for SybrTM Green I
(Eurogentec, Belgium), following the manufacturer’s
instructions. PCR amplification and statistical analyses
was carried out as previously described [29].

Results
Structure of P. parasitica-associated microbiota
Metagenomic analyses allowed characterization of
rhizosphere-associated microbiota colonizing roots of
tomato seedlings without (M1) or previously coated with
P. parasitica (M2). Rarefaction curves for six replicates
(M1R1–3 and M2R1–3) using a 3% dissimilarity cut-off
were non-asymptotic in spite of a good coverage (Fig. 1a).
Thirty-eight 730 bacterial operational taxonomic units
(OTUs) were detected in the 6 samples. The overall mi-
crobial diversity of all samples was relatively high, but no

Fig. 1 a Rarefaction curves of observed OTUs richness for each of the
three M1 and M2 replicates and using an OTU threshold of ≥97%
identity. b Percentage of high-confidence OTUs grouped by phylum:
Proteobacteria (blue) and Bacteroidetes (red) (left panel); Latescibacteria
(purple), Actinobacteria (orange), Firmicutes (blue), Verrucomicrobia
(dark pink) (right panel). c PCA ordination based on Hellinger distances
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reliable differences were identified between rhizospheric
microbiota of M1 and M2 (Additional file 4: Figure S2).
The most abundant groups were adequately covered in all
samples, with over 97% of sequences assigned to Proteo-
bacteria or Bacteroidetes along with a limited number of
OTUs assigned to additional phyla, including Firmicutes
and Actinobacteria (Fig. 1b). As a matter of fact, all these
phyla are known to characterize a number of rhizosphere
microbiota [2, 44], indicating that the microbiota we stud-
ied have the same overall content as that of other rhizo-
sphere microbiota. The relative contents of all samples
were highly correlated (data not shown); nevertheless,
PCA ordination as well as hierarchical clustering revealed
that M1 and M2 samples separated (Fig. 1c). A total of
322 OTUs exhibited significant differences (p < 0.05) in
relative abundance between M1 and M2 (Additional file 5:
Figure S3), with 49 OTUs defined by an average of at least
10 sequences in M1 or M2 (data not shown).
Our results suggest that the presence of oomycete on

root surfaces led to an enrichment of sequences assigned
belonging to Bacteroidetes (33% ± 10.8, 45% ± 5.2 for M1
and M2, respectively), and a reduction in the proportion
of sequences assigned to the phylum Proteobacteria
(63% ± 10.1, 52% ±3.9 for M1 and M2, respectively). Fur-
thermore, our results indicate an effect of oomycetes on
rhizosphere microbiota capable of colonizing tomato
root. The distribution of sequences assigned to the four
classes of Proteobacteria showed a significant reduction
(p = 0.03) in Alphaproteobacteria abundance (Fig. 2a); a
reduction largely supported by a significant lower
number of sequences assigned to the order Sphingomona-
dales (p = 0.05) (Fig. 2b). A reduction in the relative abun-
dance of Alphaproteobacteria families was also found to
be associated with the presence of oomycete for Sphingo-
monadaceae (p = 0.04) in the order Sphingomonadales,
and for Hyphomicrobiaceae (p = 0.02) and Bradyrhizobia-
ceae (p = 0.03) in the order Rhizobiales (Fig. 3). Within
Bacteroidetes, most OTUs found in both M1 and M2 were
related to Flavobacteriia (Fig. 2c) with Flavobacteriaceae as
the most abundant family (Fig. 3c). Flavobacteriaceae sup-
ports thus the higher relative abundance of Bacteroidetes
found associated with the presence of oomycete (M2 vs.
M1, p = 0.07). The overall taxonomic assignment of anno-
tated rRNA gene sequences at the family level and relative
percentage in M1 and M2 are shown in Additional file 6:
Table S3. Ten families explain 55.3 and 63.5% of the micro-
bial diversity both in M1 and M2, respectively (Fig. 3). The
range of 16S gene copy number in the genome is given for
each of these families in Additional file 7: Table S4 wher-
ever data was available [45].

Partnerships between P. parasitica and bacteria M2
M2 replicates were screened for bacterial species associ-
ated with P. parasitica and regulated plant infection. After

dissection and dilaceration of mixed-biofilms, a collection
of 1200 isolates was recovered from M2 on a P. parasitica
crude extract-based medium. A total of 300 isolates were
tested for activity towards the in vitro and in planta
growth of the oomycete. Eleven percent of the isolates
inhibited (9.8%) or promoted (1.2%) radial growth of three
distinct P. parasitica strains in a confrontation assay on
nutrient agar plates (Fig. 4a). A similar tendency was ob-
served for the growth effect in zoospore germination assay
and in the presence of isolate-conditioned V8 medium for
each of these isolates (data not shown). Our results sug-
gest in vitro isolates that potentially secrete compounds

Fig. 2 Relative abundance histograms (percentage ± SD) of
Proteobacteria (a), Alphaproteobacteria orders (b), and Bacteroidetes
classes (c) present in M1 or M2. Differences between M1 and M2 were
significant for Alphaproteobacteria (p = 0.03) and Sphingomonadales
(p = 0.05) in a Student’s t test (n = 3)
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which interfere either negatively or positively with P.
parasitica growth. Sequencing of 16S rRNA genes
and searches of the procaryota_SSU-rDNA-16S_stringent
277957 database of the leBIBI-QBPP [46] established that
isolates belonged to three phylotypes of Pseudomonas spp.
and one phylotype of Enterobacter spp. (Additional file 8:
Figure S4). In the M2 treatment, the mean proportion of
OTUs affiliated to Pseudomonadaceae or Enterobacteria-
ceae was 3.7 and 0.009%, respectively.
Twenty isolates were tested using a co-inoculation assay

system for detecting their effect on the ability of a virulent
P. parasitica strain to infect tomato roots. Each individual
isolate was applied directly to the roots, none was found
to cause symptoms on leaves or roots of plantlets for pe-
riods of up to 14 days (see Additional file 9: Figure S5 for
Pseudomonas isolates). No correlation with the in vitro
effect of isolates on the oomycete growth were observed.
Indeed, for all isolates similar root application at 2 h post-
zoospore inoculation did not lead to curative protection of

plants (data not shown). For four isolates belonging to the
Pseudomonas phylotype II and III worsening of symptoms
was noted. The rate at which the symptoms appeared and
progressed was faster than the appearance of symptoms in
control plants inoculated with zoospores or co-inoculated
with zoospores and cells of E. coli lab strain. The disease
rate was significantly higher for two isolates at 3 and 5 days
post-inoculation (Fig. 4b).

Pseudomonas spp. preferentially colonizes P. parasitica
biofilm and infects plant cells
In order to further analyze the root-P. parasitica-
Pseudomonas spp. association, a GFP expressing strain I-

Fig. 3 Relative abundance histograms (percentage + SD) of the ten
most abundant families listed for M1 and M2 (threshold >0.5%) in the
presence (light gray) and in the absence (dark gray) of P. parasitica
biofilm. a Alphaproteobacteria. b Gammaproteobacteria. c Bacteroidetes

Fig. 4 Bacterial isolate analyses. a Plate confrontation assay of the E.
coli strain and the M2-isolates (I-1G6, I-3G9, I-1E12, and I-1G3) exhibiting
antimicrobial activity against P. parasitica (P) performed on V8 extract
agar medium. b Histogram of the disease rate measured at different
days post zoospore inoculation (○) or during a tripartite interaction
with E. coli (□),I-3G9 (●), I-1E12 (▲), I-1G6 (♦), or I-1G3 (■). Disease
symptoms of individual plants were monitored at 3, 5, 8, and
13 days (dpi). I-3G9 as well as I-1E12 differed from E.coli and
mock inoculation in disease index measured at 3 and 5 dpi
(n = 5, Student’s t test, 0.004 < p < 0.035). Values are the means ± SD of
two replicates
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1G6-GFP was generated. A kinetic study was then carried
out by immersing tomato roots covered with biofilm in a
bacterial suspension of I-1G6-GFP or an E. coli expressing
GFP. Samples were observed under a confocal microscope
at different times (3, 24, and 48 h post-inoculation or hpi).
Fig. 5a and Additional file 10: Figure S6, show micrographs
with the presence of bacteria at 3 hpi. At this early stage
the I-1G6-GFP bacterial cells were poorly distributed along
root surface and were mainly located on biofilm-forming
hemispherical or sleeve-shaped biofilms. Quantification of
fluorescence intensities showed that the colonization of
biofilms was preferential when compared to root surfaces
for I-1G6-GFP (Fig. 5c). At 24 and 48 hpi, similar observa-
tions were made with an increase of colonization on bio-
film surfaces by I-1G6-GFP, suggesting a phase of cell
division at the surface of the biofilm. For the E. coli-GFP
strain, the colonization of biofilms surface was sparser and
unspecific compared to root surface (Fig. 5b, c). At 2 dpi,
I-1G6-GFP bacteria may have accumulated at the inter-
face between the root surface and the structure of the bio-
film (Fig. 5d), and infection of plant cells adjacent to the
biofilm was also observed (Fig. 5e). At 8 dpi, preferential
colonization of biofilm was well marked (Fig. 5f, g), exten-
sive intercellular growth of I-1G6-GFP was observed in
the root cortex, mainly along the longitudinal axis of the

root (Additional file 11: Figure S7). At different time
points, conversely to plant cell, no intracellular infection
event of P. parasitica could be observed.

Pseudomonas spp. does not induce P. parasitica effector
gene regulation
Previous investigations on the P. parasitica biofilm tran-
scriptome led to the identification of upregulated tran-
scripts encoding (i) mucin-like proteins of the PPMUCL
family [29], (ii) pectate lyases (PPTG03562/02949/4818)
identified as involved in the degradation of pectin, com-
ponents of the plant cell wall [47], and the RxLR effector
PSE1 accumulating in penetrating appressoria [48]. To
characterize the effect of Pseudomonas spp. gene expres-
sion at early stages of infection, a kinetic study was per-
formed by quantitative RT-PCR during colonization of
the biofilm-root complex by I-1G6. Fig. 6 shows the
mRNA changes for the three classes of genes at the dif-
ferent time points. The presence of I-1G6 strain does
not appear to affect the expression levels of the genes
despite a slight reduction in expression levels 2–20 h
after colonization. Our results suggest that, at early
stages of tripartite interaction, the abundance of assessed
transcripts were not upregulated in response to the
colonization of the biofilm by Pseudomonas spp.

Fig. 5 Location of I-1G6-GFP. Micrographs illustrating the preferential location of 1G6-GFP cells on biofilm (b) compared to root (r) at 3 hpi (a),
48 hpi (d, e), and 8 dpi (f). The colonization observed for I-1G6-GFP at 3 hpi (a) 8 dpi (f) can be compared to the lesser one observed for E. coli-GFP (b)
and (g), respectively. c Histogram of the relative fluorescence intensity at 3 and 24 hpi for I-1G6-GFP and E.coli-GFP, measured as the ratio of the mean
values at the surface of the biofilms and of roots. Bars: 200 μm in a, b, f, and g; 50 μm in d and e. The dotted lines delineate the interface between
biofilm and root. In (e) dotted lines delineate an epidermal cell infected by I-1G6-GFP-and located beneath a biofilm
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Discussion
The Bacteroidetes/Proteobacteria shift
Here, we report the change in the composition of the
rhizosphere microbiota of Solanum lycopersicum at root
surface in association with P. parasitica biofilm formation,
at phylum (Fig. 1b), class, order (Fig. 2), and family (Fig. 3)
level assignments. Among ten families characterized as
the most abundant in M1 and M2 (Fig. 3), Rhodospirilla-
ceae, Pseudomonadaceae, and Flavobacteriaceae exhibit a
high range of 16S gene copy number in their ge-
nomes, with an average of 4.5, 4.8, and 3.9, respectively
(Additional file 7: Table S4). This indicates that the relative
abundance values in M1 and M2 may not be an accurate
representation for these families. Nevertheless, Flavobac-
teriaceae remains the most abundant family, with a repre-
sentation eight to ten times higher compared to the other
nine main families identified.
Our results suggest a P. parasitica-associated shift in-

volving a Bacteroidetes/Proteobacteria transition in micro-
biota composition at the root surface. The Bacteroidetes

dominate colonization of tomato roots inoculated with P.
parasitica. The infection of a host plant by P. parasitica re-
lies on the secretion of plant cell wall-degrading enzymes
that leads to successful penetration of the host and to
subsequent acquisition of nutrients [47]. The ability
of the oomycetes to efficiently depolymerize polysac-
charides could contribute to the observed enrichment
of Bacteroidetes within P. parasitica-associated microbiota.
Research indicates that the abundance of Bacteroidetes in
soils is positively correlated to carbon mineralization rates
[49], influenced by oomycetes through pectin digestion
[50]. Localized degradation of plant cell wall at root sites of
biofilm formation should constitute a favorable niche for
soil Flavobacteriaceae, the predominant family found in
M2. Furthermore, within Flavobacteriaceae family, ge-
nomes exhibit a high abundance and diversity of genes in-
volved in metabolism of carbohydrates such as xylose,
arabinose, and pectin [51]. The increased expression of
three genes encoding P. parasitica pectate lyases (Fig. 6b),
included in the top 20 most expressed genes in biofilm
(present study and [52]), is consistent with a causal rela-
tionship between P. parasitica pectin digestion ability and
Bacteroidetes enrichment.
From a pathological perspective, the question of if/how

Bacteroidetes/Proteobacteria community shift interferes
with the infection cycle of oomycetes remains open. Our
research functionally assessed the roles of P. parasitica-as-
sociated bacteria and tested hypotheses generated via
culture-independent profiling. Screening of root-biofilm
complex M2 led us to characterize members of Pseudomo-
nadaceae, one of the ten most abundant families of the
microbiota (OTU affiliation rate of 3.7%), and isolates of
Enterobacteriaceae; a family representing a low part of M2
microbial diversity (OTU affiliation rate of 0.009%, data
not shown). While no Bacteroidetes strains were charac-
terized from M2 with the employed strategy. Further in-
vestigations are required to design effective screening for
isolation of Bacteroidetes strains from the P. parasitica-as-
sociated microbiota [53].

Effects of Pseudomonas spp.-P. parasitica association on
pathogenicity
Associations with bacteria can have a considerable influ-
ence on the growth, physiology, and pathogenicity of
filamentous pathogens [8]. Previous studies reported that
bacteria growing in the rhizosphere may compete with
oomycetes for nutrients or may exhibit properties that
negatively affect growth/survival. For example, competi-
tion for plant-derived unsaturated long-chain fatty acids
has been reported between Enterobacter cloacae and the
seed-rotting oomycete, Pythium ultimum [22]. Here, the
interference of Pseudomonas spp. and Enterobacter spp.
on the biology of oomycete was assessed both in vitro
and in planta. Interactions via antibiosis and probiosis

Fig. 6 P. parasitica gene expression patterns in response to I-1G6-GFP.
Roots of 2-week-old plants covered with a P. parasitica biofilm after 3 h
of incubation with zoospores. They were then incubated in water or in
the presence of I-1G6-GFP. mRNAs relative abundance were measured
by RT-qPCR at 2, 6, and 20 h post-bacterial inoculation and for PPMUCL1,
PPMUCL2, PPMUCL3 (a), PPTG03562, PPTG02949, PPTG4818 (b) and PSE1
(c). A Student’s t test indicated no significant differences between mock
and inoculated situations (0.06 < p< 0.92, n= 3) except at 2 dpi for
PPMUCL1, PPMUCL2, and PPTG4818 (p = 0.01, 0.02, and 0.04, respectively)
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were clearly observed in vitro for members of two
bacterial genera and involving secreted compounds.
Our results indicate that bacteria-oomycete interac-
tions, in the rhizosphere, may have detrimental or
beneficial impact on the growth of the stramenopile.
However, in the context of tripartite interaction S.
lycopersicum-P. parasitica–bacteria strain, the activ-
ities characterized in vitro were not expressed or had no
influence on the ability of the oomycete to colonize a
host plant.
We identified one Pseudomonas phylotype (exhibiting

antibiosis activity), which significantly increased symp-
tom severity on treated plantlets. When inoculated alone
(without P. parasitica), the phylotype never provoked
visible symptoms (Additional file 9: Figure S5D). These
results suggest either an enhancement of the P. parasi-
tica pathogenicity by bacteria or a potentiation of the
infectiveness/pathogenicity of Pseudomonas spp. by the
oomycete. Further studies are required to discriminate
among these alternative hypotheses. Nevertheless, our
results suggest that oomycete infection may facilitate op-
portunistic infection by Pseudomonas spp. The first as-
sumption has been evaluated at the transcriptomic level
through the analysis of gene expression of targeted genes
recruited for structural functions [29] or by brute force
[54] and stealth [48] modes of infection [54]. No influ-
ence of the bacteria-oomycete interaction was observed
on the mRNA abundance of genes during the oomycete
infection process. On the other hand, the second as-
sumption is supported by the location of bacteria at the
P. parasitica infection site which is favored by the pref-
erential adhesion on oomycete material. It is also sup-
ported by the occurrence of subsequent Pseudomonas
infections of adjacent plant cells. Pseudomonas oppor-
tunistic pathogens may have acquired the ability to ad-
here to the oomycete to maximize access to plant
nutrients. At wound sites [43, 55], the oomycete material
would constitute a boarding gate for bacteria of this
family to gain access to nutrients.

Conclusions
Significant changes in microbiota composition during
the oomycete plant infection were identified. Establish-
ment of host-oomycete interaction is characterized by a
higher relative abundance of taxa within Bacteroidetes
and a lower relative abundance of Proteobacteria. The
present study further illustrates an aspect of cooperation
between an oomycete and opportunistic bacteria by
demonstrating that oomycete infection extends the habi-
tat availability for Pseudomonas spp. to host-plant tis-
sues. Future mechanistic insights into bacterial adhesion
on oomycete surfaces and possible optimization of re-
source allocation due to infection will be obtained
through microbial genetics and functional analyses.
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