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Secretion of biologically active 
pancreatitis-associated protein I (PAP) 
by genetically modified dairy Lactococcus lactis 
NZ9000 in the prevention of intestinal mucositis
Rodrigo D. Carvalho1, Natalia Breyner2, Zelia Menezes‑Garcia1, Nubia M. Rodrigues1, Luisa Lemos1, 
Tatiane U. Maioli1, Danielle da Gloria Souza1,2, Denise Carmona1, Ana M. C. de Faria1, Philippe Langella2, 
Jean‑Marc Chatel2, Luis G. Bermúdez‑Humarán2, Henrique C. P. Figueiredo1, Vasco Azevedo1† 
and Marcela S. de Azevedo1*†

Abstract 

Background: Mucositis is one of the most relevant gastrointestinal inflammatory conditions in humans, gener‑
ated by the use of chemotherapy drugs, such as 5‑fluoracil (5‑FU). 5‑FU‑induced mucositis affects 80% of patients 
undergoing oncological treatment causing mucosal gut dysfunctions and great discomfort. As current therapy drugs 
presents limitations in alleviating mucositis symptoms, alternative strategies are being pursued. Recent studies have 
shown that the antimicrobial pancreatitis‑associated protein (PAP) has a protective role in intestinal inflammatory 
processes. Indeed, it was demonstrated that a recombinant strain of Lactococcus lactis expressing human PAP (LL‑PAP) 
could prevent and improve murine DNBS‑induced colitis, an inflammatory bowel disease (IBD) that causes severe 
inflammation of the colon. Hence, in this study we sought to evaluate the protective effects of LL‑PAP on 5‑FU‑
induced experimental mucositis in BALB/c mice as a novel approach to treat the disease.

Results: Our results show that non‑recombinant L. lactis NZ9000 have antagonistic activity, in vitro, against the 
enteroinvasive gastrointestinal pathogen L. monocytogenes and confirmed PAP inhibitory effect against Opportunistic 
E. faecalis. Moreover, L. lactis was able to prevent histological damage, reduce neutrophil and eosinophil infiltration 
and secretory Immunoglobulin‑A in mice injected with 5‑FU. Recombinant lactococci carrying antimicrobial PAP did 
not improve those markers of inflammation, although its expression was associated with villous architecture preserva‑
tion and increased secretory granules density inside Paneth cells in response to 5‑FU inflammation.

Conclusions: We have demonstrated for the first time that L. lactis NZ9000 by itself, is able to prevent 5‑FU‑induced 
intestinal inflammation in BALB/c mice. Moreover, PAP delivered by recombinant L. lactis strain showed additional 
protective effects in mice epithelium, revealing to be a promising strategy to treat intestinal mucositis.
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Background
Mucositis is a gastrointestinal inflammatory disorder 

caused by radiotherapy or chemotherapeutic agents in 
oncology patients [1–3]. This enfeebling condition has 
been reported in 80% of patients undergoing clinical 
treatment with 5-fluorouracil (5-FU), a drug commonly 
prescribed for treating several types of cancer, includ-
ing gastrointestinal, breast, pancreas, head and neck [2, 
4]. As 5-FU present nonspecific cytotoxicity to cells with 
high replication rate, it inhibits the proliferation of both 
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cancer and normal cells, such as the enterocytes lining 
the digestive tract [5, 6]. Hence, this process often leads 
to mucosal alterations, characterized by leukocyte infil-
tration, ulcers, villus shortening and decreased villus/
crypt ratio, favoring systemic translocation of harmful 
bacteria colonizing the gut, increasing thus the possibil-
ity of infections and fatal consequences [7–11]. Moreo-
ver, 5-FU-induced mucositis has been associated with 
mucosal gut dysfunctions, affecting patients’ food con-
sumption, provoking vomiting, abdominal pain, and diar-
rhea which may cause dehydration [1, 3].

Up to date, mucositis treatment relies mostly on 
mucosal coatings, cryotherapy, antibiotics and analgesics 
administration. However, no current therapy has been 
efficient to alleviate the disease [12, 13]. Thus, alternative 
strategies are currently being investigated. Contemporary 
studies have described promising achievements with the 
administration of lactic acid bacterium (LAB), instead of 
drugs [14–18]. These bacteria are considered to be pro-
biotics, a term defined as “live microorganisms adminis-
tered in adequate amounts that confer a beneficial health 
effect on the host” [19].

Species like Streptococcus thermophilus and several 
Lactobacilli have been shown to reduce intestinal inflam-
mation caused by chemotherapy drugs injection, such as 
5-FU, irinotecan or methotrexate, in rats [14–16]. More-
over, administration of yogurts containing L. johnsonii or 
L. bulgaricus and S. thermophilus, seems to be useful to 
restore intestinal barrier function in these animals [17].

The use of recombinant LAB strains, such as the model 
Lactococus lactis for delivering biologically active mol-
ecules with anti-inflammatory properties has also been 
explored as an alternative therapy for the treatment of 
mucositis and other gastrointestinal inflammatory dis-
orders, as inflammatory bowel diseases (IBD) [20–23]. 
In 2006, a biological confinement strategy to contain the 
dissemination of genetically engineered L. lactis strain 
expressing IL-10 was carried out in phase I clinical trial 
with IBD patients, suggesting the feasibility of mucosal 
therapy using recombinant lactococci [24]. This trial 
provided novel possibilities for testing genetically modi-
fied L. lactis to treat similar intestinal disorders, such as 
mucositis. In fact, recent studies have designed recom-
binant strains of L. lactis to produce anti-inflammatory 
proteins, involved in the maintenance of epithelial barrier 
integrity, such as Trefoil factor 1 (TFF-1), which has been 
promising to treat mucositis in clinical trial as well [25, 
26]. Therefore, other key elements in the host-microbiota 
relationship are being glimpsed as potential candidates to 
be cloned in L. lactis.

Delivery of antimicrobial peptides (AMP) that pro-
tects the host by killing harmful bacteria has been 

shown to prevent inflammation in colitis mice models 
[27, 28]. This positive effect was associated with host 
epithelial cell surface protection against pro-inflamma-
tory bacteria in the intestinal mucosa [27, 28]. As AMP 
have been recently considered to be a very effective 
approach to fight inflammation, various types are being 
explored in basic research such as Reg3A, also known as 
pancreatitis associated protein (PAP). It has been exten-
sively studied due to its protective effect in the intesti-
nal inflammatory process [29–33]. This protein belongs 
to the RegIII gene sub-family, which encodes proteins 
involved in the regulation of epithelial cell proliferation 
and antimicrobial activity in several organs, including 
intestines [29–32]. In the small intestine, PAP is mainly 
produced by Paneth cells that are located in mucosal 
crypts and exerts bactericidal activity against Gram-
positive bacteria species that might pose risk of infec-
tion to the host [32, 33]. Recently, our research group, 
constructed and confirmed the expression of human 
PAP by recombinant L. Lactis NZ9000 using the induc-
ible Nisin Control Expression System (NICE) [34]. This 
work evaluated the therapeutic effect of this strain in 
mice model of dinitrobenzenosulfonic acid (DNBS)-
induced colitis. We found out that PAP delivered by 
lactococci revealed to be anti-inflammatory [34]. As 
this strategy have shown to be useful in the treatment 
of IBD, we sought to investigate LL-PAP protective role 
in another important inflammatory gastrointestinal dis-
order for which conventional therapy is not enough, as 
mucositis, using the 5-FU intestinal mucositis experi-
mental mouse model.

Methods
Bacterial strains and growth conditions
Lactococcus lactis NZ9000 strain harboring pSEC:PAP 
vector (LL-PAP) and L. lactis NZ9000 strain [35] car-
rying pSEC vector without the open reading frame of 
PAP (LL) [36], were grown in M17 medium (Difco) 
supplemented with 0.5% glucose (GM17) at 30  °C 
without shaking. Recombinant strains were selected 
by the addition of chloramphenicol (Cm, 10  µg/mL). 
For nisin-induced PAP expression, LL-PAP was culti-
vated until the optical density at 600  nm reached 0.6. 
Afterwards, 10  ng/mL of nisin (Sigma) were added to 
the medium and cultures were maintained at 30 °C for 
2  h before experimentation. For in  vitro antagonistic 
assays, L. lactis strains were grown in brain–heart infu-
sion (BHI) medium containing Cm (10 µg/mL) at 30 °C, 
as well as Listeria monocytogenes ATCC 15313 and 
Enterococcus faecalis ATCC 19433, which was grown in 
BHI containing or not Cm (10 µg/mL) at 37 °C without 
shaking.
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Antagonistic activity assay against pathogenic Listeria 
monocytogenes and Enterococcus faecalis
Antimicrobial activity of PAP secreted by LL-PAP strain 
was assessed against the food-borne pathogen L. monocy-
togenes or the commensal opportunistic E. faecalis using 
a previously described method [37]. Briefly, LL and LL-
PAP were grown separately in BHI medium containing 
Cm (10 µg/mL) and, after OD600 reached 0.6, 10 ng/mL 
of nisin were added. Cultures were then centrifuged in an 
OD600 of 1.0, at 4000 g for 10 min and supernatants were 
sterilized using 0.20 µm Millipore filters (Sarstedt, Nüm-
brecht, Germany). L. monocytogenes or E. faecalis were 
then inoculated separately into filter-sterilized lactococcal 
supernatant or in BHI medium containing Cm (10 µg/mL) 
and nisin (10 ng/mL) at an initial OD600 of 0.1. Cultures 
were incubated at 37 °C and after 2 and 4 h respectively, 
serial dilutions were seeded in BHI agar plates that were 
maintained at 37  °C for 24 h. Thereafter, number of via-
ble L. monocytogenes or F. faecalis was estimated through 
counting of bacterial colony forming units (CFU).

Animals, bacterial administration and experimental groups
Conventional female BALB/c mice between 6 and 8 weeks 
of age were obtained at Federal University of Minas Ger-
ais (UFMG–Belo Horizonte, Brazil) and the study was 
approved by the Brazilian Ethics Committee on Animal 
Use (CEUA). Mice were kept in a temperature-controlled 
room with ad libitum access to water and standard chow 
diet 24  h prior to experiments. Animals were fed daily 
orally by drinking 5 mL of water; or 5 mL of M17 medium 
supplemented with Cm (10 µg/mL) and nisin (10 ng/mL) 
(M17/Cm/Nisin); or with 5  mL of M17/Cm/Nisin con-
taining 2.5 × 109 CFU/mL of either LL or LL-PAP strains 
for 13 days. In order to induce mucositis, mice received a 
single intraperitoneal injection of 5-fluoracil (300 mg/kg) 
on day 10 and were euthanized on day 14. An injection of 
saline (NaCl 0.9%) was used as a control. For experimen-
tation, BALB/c mice were divided into eight groups, each 
containing 6–9 animals. Animals from group 1–4 were 
injected with 0.9% saline on day 10 (noninflamed groups); 
group 1 received water, group 2 were fed with M17/Cm/
Nisin medium; group 3 were administered with LL culture, 
group 4 received L. lactis expressing PAP. Mouse from 
group 5–8 were injected with 5-FU on day 10 (inflamed 
groups): group 5 received water; group 6 received M17/
Cm/Nisin medium; group 7 were administered with LL 
culture and finally group 8 received LL-PAP strain.

Intestinal histology and morphology
After euthanasia, the distal portion of the small bowel 
(ileum) from the animals was collected, and, after wash-
ing, rolls were prepared for histomorphological analy-
sis. Rolls were fixed with 10% buffered formaldehyde. 

Material was then embedded in paraffin, and a 4 µm sec-
tion of each sample was placed on a glass slide and stained 
with hematoxylin and eosin (HE). Slides of each experi-
mental group were photographed using a digital camera 
(Moticam 2500, China) coupled to an optical microscope 
(Olympus Optical Co., Japan). The histological score was 
determined using a previously described method [10], 
which measures the intensity of both mononuclear and 
polymorphonuclear cells infiltrate in the lamina propria, 
changes in mucosal architecture and presence of ulcera-
tion. For each parameter it was used the ranking values: 
absent (0), mild (1), moderate (2) and severe (3). For mor-
phological analysis, ten images from the ileum of each 
animal were randomly captured and analyzed through 
ImageJ software. Granular density inside Paneth cells was 
determined by measuring the intracellular area occupied 
by secretory granules. Villus height and crypt depth was 
measured vertically from the tip of a villus to the base of 
the adjacent crypt. Villus height⁄crypt height ratio from 
the intestinal epithelium was also obtained.

Determination of intestinal myeloperoxidase 
and eosinophil peroxidase activity
The extent of neutrophil accumulation in the small 
bowel was assessed by determination of myeloperoxi-
dase (MPO) activity, as described previously [38]. Briefly, 
a 3  cm portion of mice intestines were removed and 
100 mg of intestine were weighted and homogenized with 
1 mL of PBS and centrifuged at 12,000g for 10 min. The 
supernatant was discarded, and the erythrocytes were 
lysed. The samples were then centrifuged, the superna-
tant was discarded, and the pellet was suspended in 1 mL 
of 0.05 M Na3PO4, frozen three times in liquid nitrogen, 
and centrifuged at 4 °C at 12,000g for 10 min. The super-
natant was used in the enzymatic assay by the addition of 
an equal amount substrate (2.9 mmol of tetramethylben-
zidine in DMSO). The reaction was stopped with 50 µL 
of 1 M H2SO4, and the absorbance was read at 450 nm. 
Results were expressed as the relative unit that denotes 
activity of MPO related with casein-elicited murine peri-
toneal neutrophils processed in the same way.

The extent of tissue eosinophil infiltration was assessed 
by measurement of eosinophil peroxidase (EPO) activ-
ity, as previously described [39]. Briefly, 100 mg of intes-
tine were weighted, homogenized with 1.9  mL of PBS 
and centrifuged at 12,000g for 10 min. Supernatant was 
discarded, and pellet was resuspended in 1.9 mL of 0.5% 
hexadecyltrimethyl ammonium bromide diluted in PBS. 
After being frozen three times in liquid nitrogen, sam-
ples were centrifuged at 4 °C, 12,000g during 10 min. To 
test EPO activity, the obtained supernatant was mixture 
with a substrate (1:1) containing 1.5  mmol/L of o-phe-
nylenediamine, 6.6  mmol/L of H2O2 and 0.075  mmol/L 
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of Tris–HCl (pH 8). Reaction was stopped with 50 µL of 
1 M H2SO4, and absorbance was measured at 492 nm.

Secretory IgA
Levels of secretory IgA were determined by enzyme 
linked immunosorbent assay (ELISA) in small bowel 
intestinal fluids. Microtitre plates (Nunc-Immuno Plates, 
MaxiSorp) were coated with goat anti-mouse antibody 
(Southern Biotechnology, Birmingham, AL, USA) in car-
bonate-bicarbonate buffer (0.1  M Na2CO3/NaHCO3—
pH 9.6) for 18 h at 4 °C. Wells were washed with washing 
solution (saline 0.9% plus 0.05% tween 20) and blocked 
with 200 µL of 0.05% casein in PBS for 1 h at room tem-
perature. Intestinal fluids previously centrifuged at 432g 
for 20 min were added to the plate and diluted in PBS-
0.25% casein (two times until dilution 1:80). After incu-
bation of 1  h at room temperature, plate was washed 
and biotin conjugated anti-mouse IgA antibody (South-
ern Biotechnology) in PBS-0.25% casein (1:10.000) was 
added to the wells. After incubation of 1  h at 37  °C, 
peroxidase-streptavidin goat anti-mouse IgA (South-
ern Biotechnology, Birmingham, AL, USA) was added; 
plate was incubated for 1 h more and, then, coated with 
100 µL/well of orthophenylenediamine (OPD) (1 mg/mL) 
(Sigma, St. Louis, MO, USA) and 0.04% H2O2 substrates. 
Color was developed at room temperature and reaction 
was stopped by the addition of 20 µL/well of 2 N H2SO4. 
Absorbance was measured at 492  nm using a Bio-Rad 
Model 450 Microplate Reader. Results were expressed as 
concentration (µg/mL), according to the standard curve.

Statistical analysis
Differences between groups were statistically evaluated 
by one way analysis of variance (ANOVA). Bonferroni 
test was applied to calculate statistical significance across 
groups. Non-parametric Mann–Whitney test was used 
for data sets based on scores or percentages. All data was 
processed using GraphPad Prism 5.0 software. P values 
under 0.05 were considered significant.

Results
L. lactis supernatant inhibits in vitro growth of L. 
monocytogenes
The antagonistic activity of LL or LL-PAP culture super-
natants was assessed against the food-borne pathogen L. 
monocytogenes. After 2  h, it was not observed any sta-
tistical differences in CFU counts of L. monocytogenes 
inoculated in BHI  +  Cm  +  Nisin medium or in the 
supernatant of LL and LL-PAP, both containing Cm and 
Nisin (Fig. 1a). However, after 4 h, it was observed a two-
fold decrease in CFU counts of L. monocytogenes grown 
either in LL + Cm + Nisin or in LL-PAP + Cm + Nisin 
culture supernatants when compared to counts obtained 

for the pathogen inoculated in BHI  +  Cm  +  Nisin 
medium. Presence of PAP in the supernatant did not 
reduce L. monocytogenes counts (Fig. 1b).

PAP‑producing L. lactis strain supernatant inhibits in vitro 
of E. faecalis
The inhibitory activity of LL or LL-PAP culture super-
natants was evaluated against the opportunistic com-
mensal E. faecalis. After 2 h, it was observed a statistical 
differences in CFU counts of E. faecalis inoculated in 
BHI +  Cm +  Nisin medium compared to supernatant 
of both LL and LL-PAP cultures, 1.6- and 2-fold respec-
tively (Fig.  2a). Moreover, after 4  h, it was observed a 
2.2-fold decrease in CFU counts of E. faecalis grown in 
LL-PAP + Cm + Nisin culture supernatants when com-
pared to counts obtained for the enterococci inoculated 
in LL  +  Cm  +  Nisin culture. LL supernatant did not 
reduce E. faecalis counts after 4 h (Fig. 2b).

L. lactis administration prevents 5‑FU‑induced mucosal 
inflammation in the ileum
Mice injected with 5-FU showed significant decreases 
in body weight (10 and 17% loss) from groups fed with 
water or M17 + Cm + Nisin medium as expected (Fig. 3). 
Treatment with L. lactis strains did not improve mouse 
weight as groups receiving LL or LL-PAP cultures lost 
approximately 10% of their initial body weight after 5-FU 
injection (Fig. 3b). Histological analysis revealed mucosal 
pattern within normal limits in all groups injected with 
0.9% saline (Fig.  4a). 5-FU injection in mice receiving 
water or M17 + Cm + Nisin medium caused lesions in 
the small intestine characterized by an inflammatory cel-
lular infiltrate in lamina propria, as well as in the sub-
mucosa and muscular layers, with increased number of 
histopathological parameters (Fig. 4b). Mice immunized 
with LL prevented 5-FU-induced mucosal inflammation 
in the ileum, showing reduced infiltration by polymor-
phonuclear neutrophils, ulceration and reduced altera-
tions of intestinal mucosal architecture. Treatment with 
LL-PAP strain did not improve the histological score 
(Fig. 4b).

Delivery of human PAP by L. lactis improves villous 
architecture preservation and Paneth cells activity in ileum
Morphometric analysis was carried out to evaluate 
epithelial integrity. A decrease was observed in villus 
height (Fig. 5a), villus/crypt ratio (Fig. 5c) and granular 
density inside Paneth cells (Fig. 6) after 5-FU injection 
in mice receiving water or M17 + Cm + Nisin medium. 
No statistical differences in crypt depth were observed 
across groups (Fig.  5b). Inflamed mice treated with 
LL-PAP showed increased villus height (Fig. 5a), vilus/
crypt ratio (Fig. 5c) and granular density within Paneth 
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cells (Fig.  6a, b) when compared to mice treated with 
LL.

L. lactis treatment reduces neutrophilic and eosinophilic 
infiltration in the ileum
To evaluate whether treatment with LL or LL-PAP strain 
would have an effect in reducing polymorphonuclear cells 
infiltration in the small bowel of mice, MPO and EPO 
activity were measured in cell lysates of the ileum. As 
expected, 5-FU administration increased both intestinal 
MPO and EPO activity in mice administered with water 
or M17  +  Cm  +  Nisin medium (Figs.  7, 8). Treatment 
with LL culture demonstrated to reduce infiltration those 
enzymes activity when compared to mice that were given 

M17 + Cm + Nisin medium. Expression of PAP by L. lactis 
did not reduce neither EPO nor MPO activity (Figs. 7, 8).

L. lactis reduces IgA secretion in the small bowel
Secretory IgA (sIgA) response was also measured in 
the small bowel of mice as it plays an important role in 
mucosal protection. sIgA secretion increased in mice 
injected with 5-FU receiving water or M17 + Cm + Nisin 
medium, as expected (Fig.  9). Group of animals immu-
nized with LL or LL-PAP strain demonstrated reduced 
levels of IgA when compared to M17-treated group 
(Fig. 9). However, LL-PAP administration did not caused 
a significant reduction of sIgA when compared to LL-
treated mice (Fig. 9).

Fig. 1 Inhibitory activity of bacterial supernantants from L. lactis and L. lactis‑PAP against pathogenic L. monocytogenes, after 2 (a) and 4 h (b) 
incubation. *p < 0.05
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Fig. 2 Inhibitory activity of bacterial supernantants from L. lactis and L. lactis‑PAP against pathogenic E. faecalis, after 2 (a) and 4 h (b) incubation. 
**p < 0.003; *p < 0.05
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Discussion
PAP anti-microbial role against Gram-positive pathogenic 
bacteria has been demonstrated in previous studies [29–
33]. Hence, we decided to investigate whether recom-
binant PAP expressed by Lactococcus lactis would have 
an inhibitory in  vitro effect against Gram-positive food-
borne pathogen Listeria monocytogenes and opportunis-
tic commensal E. faecalis. Interestingly, we found that the 
bacterial supernatant from either L. lactis NZ9000 or L. 
lactis expressing PAP cultures could statistically inhibit 
both L. monocytogenes and E. faecalis growth. Moreover, 

expression of PAP seems to enhance this inhibitory effect 
against E. faecalis. In our work we did not add trypsin, 
which is necessary for PAP N-terminal cleavage and acti-
vation [31–33], to the medium as a recent work demon-
strated that intact unprocessed PAP protein was capable 
of binding and killing Gram-positive bacteria [29, 30]. 
Indeed, although we used non-concentrated supernatant 
from LL-PAP, it inhibited E. faecalis growth revealing PAP 
anti-microbial activity against this Gram-positive species. 
Moreover, L. lactis antagonism against both pathogens 
could be caused by expression of some molecules as lactic 

Fig. 3 Time‑course of body weight for mice injected with saline or 5‑fluoracil receiving water, M17 + Cm + Nisin medium or L. lactis and L. lactis‑
PAP strains (a). Weight loss observed after 5‑FU injection and differences across groups (b).*p < 0.05; ***p < 0.0001

Fig. 4 Representative images from mucosal histopathology (a) and histopathological scores obtained for experimental groups (b). ***p < 0.0001; 
**p < 0.003
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acid, bacteriocins or metabolites naturally produced by 
this LAB species. Actually, Charlier and colleagues [40] 
had tested the inhibitory effect of seventy-five strains of 
L. lactis, including L. lactis NZ9000 strain, against Gram-
positive pathogenic Staphylococcus aureus. They demon-
strated that medium acidification was not involved in the 
inhibition of S. aureus in early growth phases, suggesting 
that further experimentation is required to character-
ize the molecular bases of L. lactis NZ9000 antagonistic 
activity against this pathogen [40].

Besides its antimicrobial activity, PAP has been 
reported to be involved in maintaining intestinal home-
ostasis [32]. Indeed, a recent report from our research 
group showed that L. lactis expressing PAP was capable 
to efficiently prevent colitis in mice [34]. Therefore, we 
supposed that this strain could also display protective 

effects in other inflammatory disorders of the gastroin-
testinal tract, as mucositis in which dysbiosis have been 
implicated as key factor for inducing intestinal inflamma-
tion [41–45]. The medicament 5-FU commonly used in 
oncology generate as an adverse effect mucositis, causing 
weight loss to patients as around 80% of their epithelial 
cells population are destroyed by apoptosis thus leading 
to lower absorption of nutrients [46]. In our study, pre-
treatment with both L. lactis NZ9000 and L. lactis-PAP 
strains during 13 days had no influence on weight recov-
ery of inflamed mice. Differently, Bowen and colleagues 
have shown that VSL#3 probiotic mixture could reduce 
weight loss in mice with mucositis after a long period of 
administration (28 days) [15]. Therefore, we believe that 
longer treatment duration is required to recover weight 
of mice injected with 5-FU.

Fig. 5 Morphometric analysis of villus height (a), crypts depth (b) and villus height/crypt depth ratio (c). ***p < 0,0001; **p < 0.003; *p < 0.005

Fig. 6 Representative images from Paneth cells morphology (a) and microscopic morphometric analysis of Paneth cell secretory granules (b). 
*p > 0.05
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A common feature of mucositis patients receiving 5-FU 
is the presence of inflammatory cells infiltrating into the 
lamina propria [2, 4]. Another characteristic of mucositis 
disorder is altered intestinal morphology, such as villus 
shortening and decreased villus/crypt ratio, with loss of 
the mucosal barrier integrity [7–11]. Thus, all this param-
eters were evaluated in this work in order to test the anti-
inflammatory activity of both LL and LL-PAP strains. 
Histological analysis revealed that the administration of 
L. lactis NZ9000 in inflamed mice decreased the histo-
pathological scores, with less polymorphonuclear infil-
tration and ulceration observed in samples. Surprisingly, 
PAP expression by L. lactis did not improve these param-
eters. Despite LL-PAP did not improve histopathological 
scores, morphometric analysis showed that it was able to 

better preserve intestinal villous architecture. Moreover, 
LL-PAP was able to preserve and improve Paneth cells 
activity, thus augmenting antimicrobial gastrointestinal 
function, as these cells are associated with the secretion 
of antimicrobial peptides. This was a very interesting 
result because PAP has also been reported to stimulate 
the proliferation of epithelial cells in the colon, includ-
ing Paneth cells [47]. Mucositis is characterized by a very 
acute mucosal inflammation, in which the recruitment 
of neutrophils plays a major role on the pathophysiol-
ogy process through the release of reactive oxygen spe-
cies and inflammatory mediators [2]. Thus, we measured 
the activity of MPO enzyme, strictly produced by neu-
trophils, to estimate the cell influx into intestinal lamina 
propria from non-inflamed and inflamed mice receiv-
ing water, medium or LL and LL-PAP strains. Inter-
estingly, we demonstrated that LL or LL-PAP treated 
mice reduced MPO activity after 5-FU injection. This 
result reveals the anti-inflammatory capacity of L. lac-
tis NZ9000 strain to exempt neutrophil recruitment to 
the tissue. Moreover, recent work demonstrated that the 
increased influx of eosinophils is also an important event 
for the pathogenesis of mucositis [45]. Thus, we meas-
ured the activity of EPO enzyme, naturally produced by 
eosinophils, to estimate eosinophil influx into intestinal 
lamina propria across experimental groups. We showed 
that L. lactis NZ9000 strain expressing or not PAP was 
able to reduce eosinophil infiltration. A similar result 
was described by Holvoet colleagues [48] when another 
strain, L. lactis NCC2287, was used for the treatment of 
Eosinophilic esophagitis in mice. They showed that lac-
tococci administration in mice significantly decreased 
esophageal eosinophilia, elicited by epicutaneous sensiti-
zation with Aspergillus fumigatus protein extract, reiter-
ating the beneficial effects of L. lactis in another severe 
inflammatory disease [48].

Levels of secretory IgA were also determined as it is 
crucial to prevent pathogens to penetrate the epithe-
lial barrier and, thus, to contain inflammatory processes 
[49]. We found that animals with mucositis that did not 
receive lactococci treatment had increased sIgA lev-
els in the small bowel. This effect was expected, as the 
amount of this immunoglobulin increases during intesti-
nal inflammatory process as a defense mechanism of the 
host [49, 50]. Interestingly, L. lactis NZ9000 administra-
tion decreased IgA secretion in mouse intestinal lumen. 
Again, no improvements were obtained with the use of L. 
lactis secreting PAP strain.

Altogether, our results have shown that L. lactis 
NZ9000 strain carrying pSEC vector without the cDNA 
of PAP was able to prevent 5-FU-induced intestinal 
inflammation in BALB/c mice. This was a very surprising 
and intriguing result because L. lactis NZ9000 strain is 
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Fig. 7 Differences across experimental groups in myeloperoxidase 
activity from cell lysates of the ileum. ***p < 0.0001; *p > 0.05

Fig. 8 Differences across experimental groups in eosinophil peroxi‑
dase activity from cell lysates of the ileum. **p < 0.003; *p > 0.05
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a derivative of L. lactis MG1363 used as starter cultures 
for cheddar cheese production [51, 52], and has not been 
reported as improving host health. Actually, few studies 
have reported beneficial effects of this species [48, 50, 53, 
54]. Ballal and colleagues found that L. lactis I-1631 ame-
liorated colitis in T-bet−/− Rag2−/− mice and other 
two studies have demonstrated that either NCDO2118 
sub. lactis or FC sub. cremoris presents anti-inflam-
matory properties in inflamed mice receiving chemical 
agent Dextran Sulphate Sodium (DSS) [48, 50, 53].

Furthermore, PAP expression by L. lactis subtly alle-
viate mucositis damage, as it did not show to decrease 
markers of inflammation such as, ulceration, pro-inflam-
matory cells infiltrate and IgA levels, but preserved archi-
tecture and increased secretory granules density inside 
Paneth cells in response to 5-FU inflammation.

Conclusion
In conclusion, we have demonstrated that the allochtho-
nous bacterium, L. lactis NZ9000, derived from dairy 
L. lactis MG1363 reveals to be a promising tool to pre-
vent chemotherapy drug 5-Fluoracil-induced mucositis. 
Moreover, we opened the doors for future studies inves-
tigating possible factors involved in L. lactis NZ9000 
anti-inflammatory effects. As beneficial effects has been 
demonstrated by the recombinant LL-PAP strain, fur-
ther studies should be considered, such as biological 
confinement strategies preventing its dissemination into 
nature, in order to make it a safe approach to be tested in 
humans.
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