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Abstract. Mapping the intensity of objects, as animal or plant species in ecological studies, is cum-
bersome as soon as these objects are not accessible by automated methods. The knowledge at large
scale of the underlying process variability can then only be obtained through sampling and spatial
prediction. Here, we aim to predict the intensity of a point process, at locations where it has not
been observed, conditional to the observation using the best linear unbiased combination of the point
process realization in the observation window. We show that the weight function associated to the pre-
dictor is the solution of a Fredholm equation of second kind. Both the kernel and the source term of the
Fredholm equation are related to the second-order characteristics of the point process through the pair
correlation function. We propose here several approximations to solve the Fredholm equation in order
to obtain practical solutions and restrict the solution space to that generated by linear combinations
of (i) step functions, which lead to a direct solution and (ii) elementary functions of a finite element
basis, which provide a continuous approximation. Results are illustrated on simulations and to predict
the intensity of Black Locust in a region of France.

Keywords. Fredholm equation; Finite element approach; Intensity estimation; Point process; Predic-
tion; Spatial statistics.

1 Introduction

In many applications the study window is too large to extensively map local intensity variations of the
point process of interest since observation methods may be available at a much smaller scale only. That
is for instance the case when studying the spatial repartition of a bird species at a regional scale, while
the observations are made in windows of few hectares; or when detecting disease at the field scale,
while observations correspond to spots of a few meter squares; or when mapping the presence of plant
species at the catchment scale, while the observation scale is the meter square. The intensity must then
be estimated from data issued out of samples spread in the study window, and hence, from a partial
realization of the point process in this window.

We thus want to predict the intensity of a stationary point process conditional to its realization within
the observation window W at any point xo /∈W . In the sequel, this conditional intensity is called local
intensity [10]. It allows us, through the conditioning, to take into account the second-order structure in
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the prediction. As an example, let us consider the Thomas process which is a Poisson cluster process
where the cluster centers (parents) are assumed to be Poisson and the offsprings are normally distributed
around their parent points. This process is stationary. When the boundary of W splits a cluster, the local
intensity across the boundary should be larger than the global intensity, i.e. the mean number of points
per unit area. Another example is a soft core process, which is a pairwise interaction process. In this case,
when an observed data point is located close to the boundary of W , the local intensity should be smaller
than the global intensity as fewer points are expected around this point due to an interpoint interaction
which decreases with distance.

Few ways exist to predict the local intensity. A first way consists of using [19]’s reconstruction
method based on the first- and second-order characteristics of the point process. Once the empirical
point pattern predicted within a given window, one can get the intensity by kernel smoothing. As it is
a simulation-based method, it requires long computation times, especially when the prediction window
is large and/or the point process is complex. In alternative methods, the intensity of the point process is
driven by a stationary random field, and whilst based on different concepts, Bayesian [9, 8] or geostatis-
tics [14, 1], they are constrained within the class of Cox processes. [20] developed for a wider class of
parametric models a Bayesian approach for extrapolating and interpolating clustered point patterns. [16]
compared geostatistical methods for mapping object counts collected from strip transects. Although no
model is then required, the direct application of kriging methods does not allow to make good prediction
for repulsive processes or processes with peaky local variations. Indeed, variograms are directly com-
puted on count data and do not take explicitly into account the structure of the point process through the
pair correlation function for instance. In what follows, we propose to predict the local intensity from the
first- and second-order characteristics of the point process, which we can classically estimate in prac-
tice and which allow to handle a large scope of models. A first version of such an approach has been
developed in [10], where the point process is regularized to get a count process over a grid and where
the ordinary kriging is then adapted, with kriging weights defined from the structure of the point process
(intensity and pair correlation function). This empirical approach thus mimics geostatistics through the
link between the variogram and the pair correlation function. Whilst it can be applied in practice, it does
not allow us to understand how the weights are built. The continuous approach developed in this paper
generalizes the previous one and offers new (and better) approximations.

The predictor of the local intensity is defined in Section 2 as a linear combination of the point process
realization. We get an exact, but not explicit, solution of the related weights, given by an integral equation
(second kind Fredholm equation). Our approach clearly brings out how the pair correlation function
operates and then why the proposition given in Gabriel et al. (2016) is a good approximation of our new
theoretical solution. It also opens to other approximations, in particular we present here a finite element
approach. Finally in Section 3, we illustrate the method on simulated and real data, including mixing
processes with different interaction structures, at different scales.

2 Method

Let Φ be a stationary point process, with global intensity λ and pair correlation function g. We assume
that Φ is absolutely continuous w.r.t the Poisson measure and we denote ΦW its realization in the obser-
vation window W . We define the local intensity of Φ by its intensity conditional to ΦW and we denote it
λ(x|ΦW ). We denote Wpred the window in which we want to predict the local intensity, W ∩Wpred = /0.
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2.1 Definition of the predictor

We propose to predict the local intensity at locations where the process has not been observed, xo ∈Wpred ,
using the best linear unbiased combination of the point process realization in the observation window
(which may be generally not a connected set due to sampling rules). Our predictor is similarly built as
the kriging interpolator in geostatistics, except that we don’t have a continuous random field in R.

Proposition 2.1 For xo ∈Wpred , the predictor

λ̂(xo|ΦW ) =
∫

R2
w(x;xo) ∑

y∈ΦW

δ(x− y)dx = ∑
x∈ΦW

w(x;xo)

is the Best Linear Unbiased Predictor of λ(xo|ΦW ). Its variance is

Var
(

λ̂(xo|ΦW )
)
= λ

∫

W
w2(x;xo)dx+λ2

∫

W×W
w(x;xo)w(y;xo)(g(x− y)−1) dxdy. (1)

The weight function w(x;xo) satisfies
∫

W w(x;xo)dx = 1 and is solution of the Fredholm equation of the
second kind:

w(x;xo)+
∫

W
w(y;xo)k(x,y)dy = f (x;xo), (2)

with kernel

k(x,y) = λ
(

g(x− y)− 1
ν(W )

∫

W
g(x− y)dx

)
(3)

and source term

f (x;xo) =
1

ν(W )
+λ
(

g(x− xo)−
1

ν(W )

∫

W
g(x− xo)dx

)
. (4)

Note that the weights depend on the location xo at which the prediction is made (see the proof below).
However for ease of notation, we will use the notation w(x) throughout the paper.

Similar results were found by [17, 4] on continuous random fields, where the kernel and the source
term of the Fredholm equation were related to the variogram.

Sketch of proof:

We build the predictor as a kriging interpolator. Thus, we want it to be (i) a linear combination of
the point process realization, (ii) unbiased and (iii) minimizing the variance prediction error.

(i) Using [6]’s notations, we set λ̂(xo|ΦW ) =
∫
R2 w(x;xo)∑y∈ΦW δ(x− y)dx = ∑x∈ΦW w(x).

(ii) The local intensity at a location xo given ΦW is the limit λ(xo|ΦW ) = limν(B)→0
E [Φ(B⊕ xo)|ΦW ]

ν(B)
,

where B is an elementary surface around xo.

3
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As we want the predictor to be unbiased, we get the constraint on the weight function:

E
[
λ̂(xo|ΦW )−λ(xo|ΦW )

]
= 0 ⇐⇒

∫

W
λw(x)dx−E

[
lim

ν(B)→0

E [Φ(B⊕ xo)|ΦW ]

ν(B)

]
= 0

⇐⇒ λ
(∫

W
w(x)dx−1

)
= 0

⇐⇒
∫

W
w(x)dx = 1.

(iii) Finally, the predictor must minimize the error prediction variance. Reminding the variance of the
number of points of a point process (see e.g. [6])

Var(Φ(B)) = λν(B)+λ2
∫

B×B
(g(x− y)−1) dxdy

and the following limit for a continuous pair correlation function

lim
ν(B)→0

1
ν(B)

∫

Bo×W
(g(x− y)−1) dxdy =

∫

W
(g(xo− x)−1) dx,

we have that minimizing the error prediction variance is equivalent to minimize

λ
∫

W
w2(x)dx+λ2

∫

W×W
w(x)w(y)(g(x− y)−1) dxdy−2λ2

∫

W
w(x)(g(xo− x)−1) dx.

We use Lagrange multipliers under the constraint on the weight function and we set

T (w(x)) = λ
∫

W
w2(x)dx+λ2

∫

W×W
w(x)w(y)(g(x− y)−1) dxdy

−2λ2
∫

W
w(x)(g(xo− x)−1) dx+µ

(∫

W
w(x)dx−1

)
,

where µ is the Lagrange multiplier. Then for α(x) = w(x)+ ε(x), we get

T (α(x))≈ T (w(x))+2λ
∫

W
ε(x)

[
w(x)+λw(y)(g(x− y)−1) dy−λ(g(xo− x)−1)+

µ
2λ

]
dx.

Variational calculation and the Riesz representation theorem lead to

T (α(x)) − T (w(x)) = o(ε(x))

⇔
∫

W
ε(x)

[
w(x)+λ

∫

W
w(y)(g(x− y)−1) dy−λ(g(xo− x)−1)+

µ
2λ

]
dx = 0

⇔ w(x)+λ
∫

W
w(y)(g(x− y)−1) dy−λ(g(xo− x)−1)+

µ
2λ

= 0 (5)

The integration of Equation (5) leads to

1+λ
∫

W 2
w(y)(g(x− y)−1) dydx−λ

∫

W
(g(xo− x)−1) dx+

ν(W )

2λ
µ = 0,

from which we can obtain parameter µ. Then we replace µ in Equation (5) to get

w(x)+λ
∫

W
w(y)(g(x− y)−1) dy− 1

ν(W )

[
1+λ

∫

W 2
w(y)(g(x− y)−1) dxdy

]

= λ(g(xo− x)−1)− λ
ν(W )

∫

W
(g(xo− x)−1) dx.

and then the Fredholm equation (2). From this integral equation, we can see that w(x) is a weight func-
tion defined on W and which depends on xo. �

4
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2.2 Approximated solutions

Our objective is now to solve the Fredholm equation (2). Any existing solution already considered in the
literature can be used. However, we don’t aim to predict the local intensity at few number of points only,
but rather to map the intensity in a given window. The problem is then to compute fast and accurately
solutions of this Fredholm equation. We propose here to restrict the solution space to that generated by
linear combinations of basis functions. We consider different bases: step functions, finite elements and
splines.

Step functions

Let us consider that the observation window W is partitioned as an union of squared cells. We denote B
an elementary square centered at 0, Bi = xi⊕B the elementary square centered at xi such that Bi∩B j = /0,
and n is the number of grid cell centers lying in W . For weight function defined as step function

w(x) =
n

∑
j=1

w j
1{x∈B j}
ν(B)

.

The solution of the Fredholm equation is direct as we thus get the classical kriging equations (see e.g.
[5]). The predictor corresponds to the ordinary kriging interpolator of the number of points in each grid
cell over the elementary area of a cell (see [10]):

λ̂(xo|ΦW ) =
n

∑
j=1

w j
Φ(B j)

ν(B)
,

where the weights w j depend on the local structure of the point process through the covariance matrix C
and the covariance vector Co which are both expressed from the intensity and the pair correlation function
of the point process Φ:

w = (w1, . . . ,wn) =
1

ν(W )
C−1Co +

1−1TC−1Co

1TC−11
C−11,

where C = λν(B)II+λ2ν2(B)(G− 1) with G = {gi j}i, j=1,...,n, gi j =
1

ν2(B)

∫
B×B g(xi− x j + u− v)dudv, II

is the n×n-identity matrix, and Co = λ2ν2(B)(Go−1), with Go = {gio}i=1,...,n.

It is then possible to get some properties of this predictor. In particular, [10] used Neuman series to
invert the covariance matrix, when λν(B) tends to 0,

C−1 =
1

λν(B)
[II+λν(B)Jλ] ,

where a generic element of the matrix Jλ is given by

Jλ[i, j] =
∞

∑
k=1

(−1)kλk−1 (g(xi,xl1)−1)
(
g(xlk−1 ,x j)−1

)
×

∫

W k−1

k−2

∏
m=1

(g(xlm ,xlm+1)−1) dxl1 . . . dxlk−1 .

This leads to the following variance of the predictor

Var
(

λ̂(xo|ΦW )
)

= λ3ν2(B)(Go−1)T (Go−1)+λ4ν3(B)(Go−1)T Jλ(Go−1)

1−
[
λν(B)1T (Go−1)+λ2ν2(B)1T Jλ(Go−1)

]2

ν(W )
λ +ν2(B)1T Jλ1

.

5
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Finite Element Approach

In this section we use a Galerkin method (see for example [13] for a detailed presentation of the method)
and as in [3, 7] we use a Finite Element Space for the approximation space. To be more precise, let Th
be a mesh of the observation window W , that is a collection of geometrically simple elements (we used
triangles in the simulations) partitioning1 Wobs. The positive real parameter h is related to the size of
the elements in Th. We construct an approximation space Vh, which is a finite dimensional subspace of
L2(Wobs). As in a standard Galerkin scheme, setting N = dimVh and considering a basis {ϕi}i=1,...,N of
Vh, we can then approximate w(x) ≈ ∑N

j=1 ω jϕ j(x) which, plugged into the equation leads to the linear
problem for all ϕi

N

∑
j=1

w j

∫

W

(
ϕi(x)ϕ j(x)+

∫

W
k(x,y)ϕ j(y)ϕi(x)dy

)
dx =

∫

W
f (x)ϕi(x)dx, (6)

where the kernel k(x,y) and the source term f (x) are defined by (3) and (4) respectively, By introducing
a matrix formulation equation (6) reformulates as the so-called Galerkin equation

Mw+Kw = F, (7)

where M is the FEM mass matrix, F is the vector
(∫

W
f (x)ϕi(x)dx

)

i=1,...,N
and K is a matrix with

elements defined by

Ki j =
∫

Wobs

∫

Wobs

k(x,y)ϕi(x)ϕ j(y)dxdy.

To simplify the resolution of (7), we approximate the matrix K by using the projection on Vh×Vh,

k(x,y)≈∑
l,m

Klmϕl(x)ϕm(y).

By setting K the matrix defined by this projection, we then get K = MK M and the system (7) leads to
consider the problem:

(Id +K M)w = M−1F,

where Id denotes the identix matrix. When the mesh Th is sufficiently fine, the above linear problem
inherits the resolvability of the Fredholm equation ensuring the consistency of the approximation.

Linear splines

The weight function of λ̂(xo|ΦW ) = ∑x∈ΦW w(x) could be defined as a degree d spline curve. For sake
of clarity, in the sequel we illustrate this approximation in R and we consider linear splines with equally
spaced knots.

Let W =
[
t0, tn

]
∪
[
t ′0, t
′
n′
]

be an observation window defined by two disjoint intervals as illustrated
Figure 1 and ∆ be the distance between two consecutive knots of each interval, ∆ = ti+1− ti, ti < ti+1.

1In practice, the mesh may produce only an approximation of the domain, which can possibly entice several technical
difficulties when analysing the convergence of the method.

6
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Figure 1: Observation window W defined as the union of two disjoint intervals

We define the weight function as a piecewise linear curve on W with real parameters ai, bi, a′i, b′i:

w(x) =
n

∑
i=0

(
ai +bi(x− ti)

)
I[ti,ti+1](x)+

n′

∑
j=0

(
a′j +b′j(x− t ′j)

)
I[t ′j,t ′j+1]

(x).

The continuity property of the spline curve and the constraint
∫

W w(x)dx = 1 lead to

w(x) = a0 +b0(x− t0)I[t0,t1](x)+
n−1

∑
i=1

(
∆

i−1

∑
j=0

b j +bi(x− ti)

)
I[ti,ti+1](x)

+a′0 +b′0(x− t ′0)I[t ′0,t ′1](x)+
n′−1

∑
j=1

(
∆

j−1

∑
k=0

b′k +b′j(x− t ′j)

)
I[t ′j,t ′j+1]

(x).

The Fredholm equation (2) becomes

F (x) = a0

[
1+λA(x)− λ

ν(W )

∫

W
A(x)dx

]
+a′0

[
1+λA′(x)− λ

ν(W )

∫

W
A′(x)dx

]

+b0

[
(x− t0)I[t0,t1](x)+∆I[t1,tn](x)+λC0(x)−

λ
ν(W )

∫

W
C0(x)dx

]

+
n−2

∑
i=1

bi

[
(x− ti)I[ti,ti+1](x)+∆I[ti+1,tn](x)+λCi(x)−

λ
ν(W )

∫

W
Ci(x)dx

]

+bn−1

[
(x− tn−1)I[tn−1,tn](x)+λB(x)− λ

ν(W )

∫

W
B(x)dx

]

+b′0

[
(x− t ′0)I[t ′0,t ′1](x)+∆I[t ′1,t ′n′ ](x)+λC′0(x)−

λ
ν(W )

∫

W
C′0(x)dx

]

+
n′−2

∑
j=1

b′j

[
(x− t ′j)I[t ′j,t ′j+1]

(x)+∆I[t ′j+1,tn′ ]
(x)+λC′j(x)−

λ
ν(W )

∫

W
C′j(x)dx

]

+b′n′−1

[
(x− t ′n′−1)I[t ′n′−1,tn′ ]

(x)+λB′(x)− λ
ν(W )

∫

W
B′(x)dx

]

−λ(g(x− xo)−1)+
λ

ν(W )

∫

W
(g(x− xo)−1) dx = 0, (8)

where A(x) = ∑n−1
i=0

∫ ∆
0 (g(x− ti−u)−1) du, A′(x) = ∑n′−1

j=0
∫ ∆

0

(
g(x− t ′j−u)−1

)
du,

B(x) =
∫ ∆

0 u(g(x− tn−1−u)−1) du, B′(x) =
∫ ∆

0 u
(
g(x− t ′n′−1−u)−1

)
du,

Ci(x) = ∆∑n−1
j=i+1

∫ ∆
0 (g(x− t j−u)−1) du+

∫ ∆
0 u(g(x− ti−u)−1) du and

C′j(x) = ∆∑n′−1
k= j+1

∫ ∆
0

(
g(x− t ′j−u)−1

)
du+

∫ ∆
0 u
(

g(x− t ′j−u)−1
)

du.

We thus obtain a linear system w.r.t. a0, a′0, bi and b′j when considering a set of test points x inside
W , whose resolution leads to an approximated solution of the Fredholm equation.

7
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3 Illustrative examples

In this section, we provide illustrative examples of our method both on simulations and real data. A focus
is put on the continuous solutions and we refer the reader to [10] for further simulation-based results in
the case of weights defined by step functions. We also illustrate the method to map the local intensity
of Black Locust in a region of France, whose pattern shows aggregation and inhibition at several spatial
scales.

3.1 Simulated examples

3.1.1 Finite Element Approach

The method described in Section 2.2 was implemented using FreeFem++ [12]. The same mesh was
used in all the simulations and composed of approximately 30000 triangles. We also choose a P1 finite
element space as our interpolation space for the weights.

To illustrate the method on simulated data we considered two cluster point processes. The first is a
Thomas process with parameters κ = 10 the intensity of the Poisson parent process, µ = 50 the mean
number of offsprings per parents and σ = 0.05 the standard deviation of Gaussian displacement of the
offsprings around the parent. The top left panel of Figure 2 shows one realization of this process in the
unit square. The second, which we refer to as mixing process, has a hard-core process with interaction
radius R = 0.5 for the parent process, on average µ = 10 offsprings per parent and the offsprings are nor-
mally distributed around the parent with standard deviation σ = 0.1. Thus, this process shows clustering
at some scale and regularity at some other scale. One realization in W = [0,10]× [0,10] is illustrated on
the top right panel of Figure 2.

Our predictor depends on the global intensity and the pair correlation function of the point pro-
cess. For the Thomas process we considered the theoretical moments: λ = κµ = 500 and g(r) =
1+ 1

4πκσ2 exp
(
− r2

4σ2

)
. For the mixing process, we estimated the first- and second-order moments as

follows: λ̂ = Φ(W )
ν(W ) = 12.58 and g(r) = 1+α

(
γ
r exp

(
−
(

r
γ

)β
))

sin
(

r
γ

)
, with α̂ = 11.65, β̂ = 0.35 and

γ̂ = 0.093. The related pair correlation functions are plotted on the bottom panels of Figure 2. Note that
[10] showed the little effect of the pair correlation function estimation in the prediction, as confirmed in
the next section.

For the prediction purpose, we removed three horizontal bands (grey shades on the top panels of
Figure 2) and hence the points of the process in it (red dots). Middle panels of Figure 2 depict the
overlay of the prediction of the local intensity in the prediction window and a kernel smoothing of the
data in the observation window (as it is the best estimation when we have all points). We could take the
average of m kernel-smoothed empirical intensity functions to compare with our prediction. But it is not
straight and requires conditional simulations as discussed in Section 4. We considered Gaussian kernels,
with bandwidth selected by cross-validation [2].

These examples illustrate that our method is able to reproduce the second-order structure of the point
process. In particular, it reproduces clusters as soon as there are points close enough to the boundary of
the prediction window. However as ‖xo−ΦW‖ is larger than the interaction range, λ̂(xo|ΦW ) tends to
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the global intensity λ. These results are even more clear in the one-dimensional example.

Figure 3 illustrates the approximated weight function w(x;xo) associated to the point xo =(0.18,0.57)
(cyan dot on the top left panel of Figure 2) when predicting the local intensity of the Thomas process. It
shows a radial function, with high positive values for locations close to xo, negative values at intermediate
range, and 0 values when ‖xo− x‖ is larger than the interaction range.

3.1.2 Linear splines in 1D

We simulate a Thomas process on the interval [0,20], with a Poisson process of parents of intensity κ= 5,
an average of µ = 10 offsprings per parent, normally distributed around the parent point with standard
deviation σ = 1. The intensity and the pair correlation function of the Thomas process are given by:

λ = κµ and g(r) = 1+ 1
2
√

πκσ exp
(
− r2

4σ2

)
.

To avoid border effects, we restrict the observation of the process to W = [3,δ1]∪ [δ2,17] and we predict
the local intensity in [δ1,δ2] ∈ {[9,11] , [8,12] , [7,13] , [6,14]}. In the spline approximation, knots are
equally spaced, with distance ∆ ∈ {0.5,1,2}. Parameters a0, a′0, bi, b′j, i = 1, . . .n−1, j = 1, . . . ,n′−1,
of Equation (8) minimize ∑x∈X F 2(x), where X is a set of test points regularly located in W . Figure 4
(left panel) shows one realization of the Thomas process in S (magenta vertical bars) and its restriction
to W (black vertical bars).

At first, the method is applied assuming the pair correlation function to be known. The local intensity
prediction in [δ1,δ2] = [9,11] obtained with ∆ = 0.5 (red curve), ∆ = 1 (orange curve) and ∆ = 2 (yellow
curve) is superimposed on the empirical local intensity obtained by kernel smoothing on S (grey curve)
and W (black curve) using the reflection method [18] to correct edge effects on the neighborhood of δ1
and δ2. Figure 4 illustrates the behavior of the prediction w.r.t. the spacing distance ∆ between knots.
Here, the prediction is good whatever ∆. We note however a better prediction when ∆ = 0.5, in the sense
that it is closer to the empirical local intensity. This is particularly true at δ2, but not at δ1. Indeed,
in the latter case the empirical local intensity is underestimated as there are only few points close to
δ1. More generally, the smaller ∆, the better the prediction as the weight function w(x) is then better
approximated. The right panel of Figure 4 shows the piecewise approximation of the weight function
obtained for xo = 10 and with ∆ = 0.5 (red curve), ∆ = 1 (orange curve) and ∆ = 2 (yellow curve). Note
that in this example, the observation window is symmetric around xo = 10. Thus, the weight function
for xo = 10 should be symmetric around this point, but this requires both a sufficient number of knots
(in Figure 4 the weight function tends to be symmetric as ∆ decreases) and a sufficient number of test
points used to estimate parameters a0, bi, a′0 and b′j. Here, only forty test points have been used. Further
simulations with ∆ = 0.25 and ∆ = 0.1 and eighty test points confirm these results but are not showed
her for conciseness.

Figure 5 illustrates the prediction of the local intensity when the size of the prediction window [δ1,δ2]
varies: the smaller the prediction window, the more the point locations inside W influence the predictor
and better the prediction w.r.t. the empirical local intensity of the point process (grey curve). In fact, the
quality of the prediction in [δ1,δ2] is related to the range of the pair correlation function. We get good
predictions when δ2− δ1 is less than 4σ and the prediction of the local intensity tends to the intensity
of the point process when the distance between xo and the observation window is much larger than the
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interaction range. It corresponds to the fact that point locations in W do not bring any information on the
intensity. This is particularly clear in the fourth case where [δ1,δ2] = [6,14] (Figure 5 right panel).

So far the pair correlation function was assumed to be know, but in practice it must be estimated.
Figure 6 (left panel) compares the prediction of the local intensity when using the theoretical pair cor-
relation function (red curve) or an estimate (orange curve) fitted from a realization of the process on
[0,300]. Figure 6 (right panel) illustrates the theoretical pair correlation function (black curve) and its
estimate modelled as g(r) = 1+ βexp(−αrγ). This model has been empirically chosen and fitted by
least squares in order to mimic practical situations. Here, we get α̂ = 0.213, β̂ = 0.048 and γ̂ = 2.33
(red curve). As the estimated pair correlation function is close to the theoretical one, the related weight
function, and thus the prediction, are rather similar.

We also computed an empirical confidence band defined as twice the standard deviation (green curve
on Figure 6). From Equation (1), the standard deviation is proportional to the global intensity of the point
process. Thus, in this example because the ratio between the standard deviation and the local intensity
is close to one, the confidence band seems to be large. Its relative width decreases as the local intensity
increases.

3.2 An example with real data

To illustrate how the method can be used in practice, we applied it to the spatial distribution of 582 Black
locust (Robinia p.pseudoacacia L.) of a 25 year old coppice of 8ha located in the Val-de-Loire region
(France) [15]. Coppicing consists in cutting the tree trunk off close to the ground in order to stimulate the
growth of new shoots on the stump. The realization of shoots and the prediction windows (grey shades)
are plotted on the top left panel of Figure 7. We remove the points in these areas and use the remaining
Black Locust locations to predict the local intensity.

The pair correlation function globally shows an aggregative pattern (bottom left panel of Figure 7)
attached to a given stump at the origin of the coppice. Looking more closely (bottom right panel of
Figure 7) we can notice a repulsive pattern at small scale (≈ 10 m) reflecting the woodland management.
To describe this complex structure, we modelled the pair correlation function as

g(r) =

{
1+α

( γ
r

)β sin
(

r
γ

)
, if r ≥ 0.01 m

0, otherwise.

In this model, we imposed a hard-core radius of 0.01 m corresponding to the fact that tree trunk bases
cannot overlay. We get α̂ = 3.5, β̂ = 1.89 and γ̂ = 2.34.

We consider a finite element approach, with a P1 finite element basis constructed on a mesh com-
posed of about 45000 triangles, to approximate the weight function and predict the local intensity. The
result (top right panel of Figure 7) shows that the predictor is able to reproduce the structures revealed by
the pair correlation function: high aggregation at small scale (< 5 m), inhibition at 10 m, and aggregation
at 20 m. Clearly, the prediction continuously match the clusters split by the boundary of the prediction
window, i.e. λ̂(xo|ΦW ) >> λ as minx∈ΦW ‖xo− x‖ < 5 m. Then, values of the predicted local intensity
tend to be smaller (close to 0) at distances close to the inhibition range. Finally, λ(xo|ΦW ) tends to λ as
minx∈ΦW ‖xo− x‖> 20 m. This behavior is straightly related to the weight function. Figure 8 illustrates
w(x;xo) at xo = (106,251) and xo = (106,43.75) (blue and green dots respectively, on the left panel of
Figure 8). It clearly shows how much the weight function, and thus the prediction, depends on the pair
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correlation function.

4 Discussion

Our approach aims to predict the local intensity of a point process outside the observation window,
i.e. its intensity conditional to the realization of the point process. It uses the concept of geostatistics of
defining an unbiased linear predictor of the local intensity, which minimizes the error prediction variance.
However, there is a fundamental difference between the two approaches: in geostatistics data locations
are issued out of samples and do not contain information a priori; it is the variable of interest evaluated
at these locations which is informative. Conversely, in our context of point processes, point locations
are informative. Consequently, we have to take into account all the observed area, meaning both points
and empty space. Then, the kriging equations given by geostatistics become an integral equation and
we do not have an explicit solution. We consider solution spaces generated by linear combinations of
step functions, finite elements and splines. In the latter, the rough fitting of the spline approximation
could be improved by refining the number of knots, the number of test points and using splines of higher
order. In all cases, we could explore the sensitivity of the method w.r.t the parameters involved in the
approximations, but also its performances.

Several approximations have been proposed in this paper to predict the local intensity and their
respective performances need to be compared. To achieve it, we need to know the true local intensity.
This knowledge becomes then the crucial issue since it is not known for many processes. Here, we
used a kernel smoothing of the realization to approximate it. It would be better to take the average of m
kernel-smoothed empirical intensity functions. This requires conditional simulations and thus raises the
issue to know how to perform it. The two main methods of conditional simulations assume either that
the point process distribution is known, or that its first- and second-order moments are known. For many
point processes, the conditional point process distribution is also not known so that the method proposed
by [19] remains the only available one. However, relying only on first- and second-order moments, this
conditional simulation procedure is only an approximated one. As an example let us consider a Neyman-
Scott model where offsprings are spread on a segment centered on the parent point, segment orientations
being randomly uniformly distributed. This leads to an isotropic point process with visually observable
random alignments which cannot be described with the first two moments. Thus, there remains to clarify
when such procedures based on the two first moments are valid.

Our method can be used to improve or to optimize sampling schemes. Indeed, as in classical geo-
statistics, this can be achieved from the variance of the predictor. This could particularly be useful when
mapping the intensity of cryptic species in large areas in an adaptative scheme.

Our approach depends heavily on the pair correlation function and therefore on its estimation at any
distances up to the interaction range. This leads to a trade-off between having adapted samples catching
structures at different scales and spending a minimal time for data collection. The sample spatial unit
must be large enough to get an accurate estimation of the pair correlation function at the origin, but must
also allow its estimation at distances covered by the prediction and observation windows. A solution
could be to consider a combination of thin transects to get estimates at moderate to large distances and
large quadrats to get estimates at small distances.

This paper offers a conceptual toolbox which could be extended to more general cases covered in
geostatistics, provided that features of point processes are taken into account. In particular we are show-
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ing that the extension to non-stationary point processes is rather straightforward when assuming the point
process to be second-order intensity reweighted stationary, with an intensity driven by non-stationary co-
variates. However for spatio-temporal point processes, predicting beyond the last observation date raises
some issues about how to integrate the structure of the spatio-temporal pair correlation function. If the
dependence structure varies with time, one could stationarize the process (as for inhomogeneous point
processes, see e.g. [11]). But this issue is still open for processes with a more complex dependence
structure.
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Figure 2: Top - Point process realization: the black dots correspond to Φ∩W , the red dots are removed
for prediction. The prediction window is defined by the grey shade. Middle - prediction of the local
intensity in W and kernel smoothing in the prediction window. Bottom - Pair correlation function.
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Figure 3: Weight function associated to xo = (0.18,0.57)
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Figure 4: Left - Realization of the Thomas process in S (grey dots) and W (black dots) and prediction of
the local intensity (red curve) when using different spacing distances in the spline approximation. Right -
Weight function obtained for xo = 10.
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Figure 5: Prediction of the local intensity in increasing intervals [δ1,δ2].
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Figure 6: Left - Prediction of the local intensity and related confidence band. Right - Theoretical and
estimated pair correlation function.
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Figure 7: Top left - Point process realization: the black dots correspond to Φ∩W , the red dots are
removed for prediction. The prediction window is defined by the grey shade. Top right - Prediction
of the local intensity in W and kernel smoothing in the prediction window. Bottom - Empirical and
estimated pair correlation function.
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xo = (106,251) xo = (106,43.75)

Figure 8: Left - Prediction of the local intensity in W and kernel smoothing in the prediction window.
Blue and green squares delineate the zones where the weight function is plotted for xo =+ (Middle) and
xo =+ (Right).
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