

CLUSTERING AND GENETIC ANALYSIS OF BODY CONDITION SCORE AND BODY WEIGHT VARIATIONS IN MEAT SHEEP

MACE Tiphaine¹,

Hazard D.¹, Carriere F.², Douls S.², *Foulquié D.*² González-García F.³ ¹INRA UMR1388 GENPHYSE, 31326 Castanet-Tolosan, France ²INRA UE321 La Fage, 12250 Roquefort-sur-soulzon, France; ³ INRA UMR868 SELMET, 34060 Montpellier, France

Plan

- Context Robustness
- Cluster analysis
 - Materials and methods
 - ➢ Results
- Genetic analysis
 - Creation of new traits
 - Materials and methods
 - Results
- Discussion Conclusion
- Perspective

Robustness

Robust animals to assure the farm sustainability in harsh condition

Russel *et al.,* 1971 Blanc *et al.,* 2006

Macé Tiphaine – Oral Defense

Robustness

Robust animals to assure the farm sustainability in harsh condition

Blanc *et al.,* 2006

Macé Tiphaine – Oral Defense

Robustness – Body Condition Score and Body Weight

- Body Condition Score (BCS) and BW to characterize robustness
 - BCS: grid from 1 to 5
 - Capacity of mobilization or accretion of body reserves (BR)
- > Heritability
 - BCS
 - $\,\circ\,$ From 0.10 to 0.30 for Targhee ewes
 - Body Weight (BW)
 - $\,\circ\,$ From 0.30 to 0.56 for adult sheep
- > No study on genetic for BCS and BW variations across productive cycle

Borg *et al.,*Gizaw *et al.,*Loker *et al.,*Shackell *et al.,*

Robustness – Body Condition Score and Body Weight

Objectives

- To characterize the different patterns of BCS and BW variation during productive cycle and career
- To analyze the genetic variability of BCS and BW changes throughout several productive cycles

Materials and Methods

La Fage: meat Romane flock (n=250 ewes) reared exclusively outdoors in harsh conditions

Materials and Methods

- La Fage: meat Romane flock (n=250 ewes) reared exclusively outdoors in harsh conditions
- BCS and BW measured on 1448 ewes from 78 sires (2002-2015)
 - Cycle 1: 1448
 - Cycle 2: 1170
 - $\circ\,$ Cycle 3 and more: 665

Materials and Methods

- La Fage: meat Romane flock (n=250 ewes) reared exclusively outdoors in harsh conditions
- BCS and BW measured on 1448 ewes from 78 sires (2002-2015)
 - Cycle 1: 1448
 - Cycle 2: 1170
 - $\circ\,$ Cycle 3 and more: 665

8 BCS and 7 BW measurements per production cycle

Materials and Methods – Cluster analysis

Clustering

- To describe profiles
- Smoothing
- o PCA
- Clusters construction
 - Expectation-Maximization Algorithm

Composant 1

Results for BCS Clusters

Results for BCS Clusters

Macé Tiphaine – Oral Defense

$$Y = BCS_{Weaning} - BCS_{Early Pregnancy}$$

Macé Tiphaine – Oral Defense

$$Y = BCS_{Suckling} - BCS_{Lambing}$$

$$Y = BCS_{Dry off} - BCS_{Weaning}$$

$$Y = BCS_{Mating} - BCS_{Weaning}$$

Macé Tiphaine – Oral Defense

Materials and Methods – Genetic Analysis

Univariate and multivariate analysis (animal model): Heritabilities and correlations estimation with (ASReml), use of all cycles

Y = mu + animal + perm + age + parity + litter + year + e

Y: trait mu: mean of the trait animal: additive genetic effect of the ewe perm: environmental permanent effect of the ewe age of the ewe, parity, litter, year of measurements as fixed effects e: residual

- \blacktriangleright Low to medium heritabilities (0.06 ± 0.01 to 0.15 ± 0.01)
- Positive correlations between periods characterizing BR mobilization

Variables BCS	Lambing - Suckling
Early pregnancy - Weaning	0.49 (0.12)

- \blacktriangleright Low to medium heritabilities (0.06 ± 0.01 to 0.15 ± 0.01)
- Positive correlations between periods characterizing BR mobilization
- Positive correlations between periods characterizing BR accretion

Variables BCS	Weaning - Mating
Weaning – Dry off	0.75 (0.10)

- \blacktriangleright Low to medium heritabilities (0.06 ± 0.01 to 0.15 ± 0.01)
- Positive correlations between periods characterizing BR mobilization
- Positive correlations between periods characterizing BR accretion
- Negative correlations between periods characterizing BR accretion and mobilization

Variables BCS	Weaning – Dry off
Early pregnancy - Weaning	- 0.71 (0.08)
Lambing - Suckling	- 0.46 (0.12)

Discussion - Conclusion

BCS: three similar profiles across productive cycles

- BCS and BW variations heritable: first demonstration
- Increase in weight during dry-off correlated to heavier lambs

Discussion - Conclusion

> Perspectives

- Modelisation of the variations profiles (BCS and BW)
- Longitudinal genetic analysis with reaction norm model
- Joint analysis with climatic data (reaction norm model)
- Better phenotyping for BR variations (key metabolites /hormones /ultra sound...)

Thanks for your attention

Results

Macé Tiphaine – Oral Defense

