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Highlights 

 Increasing levels of isoleucine, leucine or valine affected the metabolic profiles  

 Modelling plasma metabolites could estimate optimum amino acid requirement in piglets 

 Two days of feeding may be sufficient to mediate relevant biological changes in blood 

 

ABSTRACT 

Traditional AA dose-response studies utilize many animals for evaluation of growth performance, and it is 

hypothesized that a new experimental design based on modern analytical techniques can reduce the number 

of used animals. The objective was to evaluate a short-term approach with a low number of pigs based on 

plasma metabolites as a method to determine the dietary Ile, Leu, and Val requirements. Three separate 6 x 

6 Latin square experiments having 6 replicates per treatment were conducted with 6 diets containing 

increasing concentrations of Ile, Leu, and Val which were fed to 6 pigs (BW 8 to 9 kg) for 2 days, each without 

a wash-out period for a period of 12 days. The diets were prepared and used in 3 previous traditional-design 

dose-response studies and had been stored at -20 °C. Blood samples were collected at the end of each 2-day 
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period, and plasma was analyzed for AA and other metabolites using a metabolomics approach. Out of the 

18 analyzed plasma AA, 11, 16, and 3 AA for Ile, Leu, or Val, respectively, showed linear or quadratic 

responses (P < 0.05) which could be linked to animal growth. The same was found for 4 non-AA metabolites 

in the Ile, and for 7 non-AA metabolites in the Leu study. 3-Methyl-2-oxovaleric acid, ketohexanoic acid, and 

α-ketoisovaleric acid were discriminating metabolites for both Ile and Leu. It was possible to fit least squares 

means of 5, 14, and 2 metabolites in the Ile, Leu, and Val experiments to curvilinear-plateau, broken-line, or 

quadratic models and thereby estimate an optimum dietary BCAA level. The average optimum BCAA levels 

across metabolites and models were 0.54 standardized ileal digestible (SID) Ile:Lys, 1.04 SID Leu:Lys, and 0.68 

SID Val:Lys which was close to optimums of 0.52, 0.93, and 0.70 found in the previous dose-response studies 

based on animal growth performance. In conclusion, certain plasma metabolites could be used to estimate 

Ile, Leu, and Val requirements, and 2 days of adaptation to a new diet was sufficient to reflect relevant 

biological changes in the blood to different levels of dietary AA in the current study. 

 

Abbreviations: BCAA, branched chain amino acid; BL, broken-line; CL, curvilinear-plateau; PUN, plasma urea 

nitrogen; SID, standardized ileal digestible; Q, quadratic. 

 

Keywords: Branched chain amino acid; growth performance; metabolomics; metabolic profile; pig1. 

Introduction 

Supplementation of crystalline AA allows reduction of the dietary CP level and supplies the animal with 

a more balanced AA profile covering the animal’s requirements for maintenance and growth. This approach 

to improve nitrogen utilization and, consequently, to reduce nitrogen excretion and emissions to the 

environment without affecting animal performance is known to be effective (Hansen et al., 2014; Nørgaard 
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et al., 2014). To reduce dietary CP by supplementing crystalline AA, it is necessary to have a clear 

understanding of the AA requirement to supply an ideal dietary protein profile (Boisen et al., 2000).  

A common approach to studying AA requirement is to run dose-response experiments where body 

weight gain and feed intake are evaluated for 2 to 4 weeks. In our previous 3 studies on Ile (Soumeh et al., 

2014), Leu (Soumeh et al., 2015a), and Val (Soumeh et al., 2015b), the requirement of those AA was 

estimated for 8 to 18 kg pigs by evaluating feed intake and weight gain during 2 weeks, but also by 

quantifying AA and other metabolites in the blood and urine. In these studies, a general trend of a decrease 

in plasma AA concentrations with increasing provision of the limiting AA was observed which can be 

indicative of improved AA utilization for growth. Furthermore, blood plasma and urine samples were 

analyzed by a metabolomics approach identifying several metabolites which could be related to growth 

performance (Soumeh et al., 2016). The plasma concentrations of glycocholic acid and taurocholic acid 

could be used to estimate the optimum Ile level in the diet, and plasma creatine and urinary 2-aminoadipic 

acid, ascorbic acid, and choline could be used to estimate the optimum Leu level, whereas the metabolic 

response to the optimum dietary Val level was less pronounced in plasma, and only profiles of the other 

branched chain AA (BCAA) could be used to estimate the optimum BCAA level (Soumeh et al., 2016).  

As an alternative to evaluating animal performance to determine AA requirement, Pedersen and 

Boisen (2001) developed, and later validated (Pedersen et al., 2003), an approach which was based on 

measuring plasma urea nitrogen (PUN) as the sole response trait in dose-response studies. In brief, they fed 

pigs diets with different levels of Thr:Lys in a randomized order for 2 days with 3 daily feedings. Jugular vein 

blood samples were obtained 2, 4, and 6 hours after the sixth feeding whereafter the next experimental 

treatment was fed. Thus, by using this approach, a dose-response experiment was conducted with 4 AA 

levels for a duration of 8 days and with the use of 5 pigs per period in a cross-over design (Pedersen et al., 

2003). In the present study, it was hypothesized that feeding increasing levels of Ile, Leu, or Val would 

result in appearance the metabolites previously identified in blood (Soumeh et al., 2016), which correlate 
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with animal performance, and that these metabolites could be used in short-term studies as response traits 

instead of feed intake and weight gain.  

The objective of the study was to evaluate a short-term approach with a limited number of animals 

based on blood samples as a method to determine the optimal ratio for Ile, Leu, and Val in young piglets 

fed diets previously used in dose-response growth performance studies, thus having a documented effect 

on growth performance. 

2. Materials and Methods 

All animal experimental procedures were carried out in accordance with the Danish Ministry of 

Justice, Law no. 253 of March 8, 2013 concerning experiments with animals and care of experimental 

animals and license issued by the Danish Animal Experiments Inspectorate, Ministry of Food, Agriculture 

and Fisheries, the Danish Veterinary and Food Administration. 

2.1. Animals and diets 

A total of 18 cross-bred (Danish Landrace, Yorkshire × Duroc) gilts were weaned at 28 days of age 

and fed a commercial diet for 1 week before the experiment started. Pigs were weighed at the beginning 

and every second day of the experiment without preceding fasting. The average initial body weights of pigs 

(mean ± SD) were 7.6 ± 0.1, 7.8 ± 0.1, and 8.0 ± 0.2 kg in the Ile, Val, and Leu experiments, respectively. The 

average final body weights of pigs (mean ± SD) were 10.2 ± 1.0, 10.2 ± 0.4, and 10.3 ± 1.0 kg in the Ile, Val, 

and Leu experiments, respectively. Pigs were housed individually in 1 × 2.2 m pens with two-thirds heated 

concrete floor and one-third cast iron slatted floor. The temperature was reduced gradually from 24 °C to 

22 °C, and humidity was kept around 60% during the experimental period. 

Diets from the 3 previous studies (Soumeh et al., 2014; Soumeh et al., 2015a; Soumeh et al., 2015b) 

were stored at -20 °C and used in the 3 new experiments. The diets were based on wheat, barley, and 
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fermented soybean meal as the main ingredients and were formulated to provide the same nitrogen and 

NE content (Table 1). Estimation of NE and standardized ileal digestible (SID) AA was done by using a diet 

optimization software (WinOpti version. 1.127, AgroSoft A/S, DK-7160 Tørring, Denmark) based on the feed 

evaluation system and matrix values published by Boisen (2007). The diets were planned to contain 0.42, 

0.46, 0.50, 0.54, 0.58, and 0.62 SID Ile:Lys; 0.58, 0.62, 0.66, 0.70, 0.74, and 0.78 SID Val:Lys; and 0.70, 0.80, 

0.90, 1.00, 1.10, and 1.20 of SID Leu:Lys in the Ile, Val, and Leu dose-response studies, respectively. Dietary 

Lys was 12.2 g total Lys/kg (11.4 g SID Lys/kg) corresponding to 93% of the requirements (Tybirk et al., 

2012) in the Ile dose-response experiment and 11.8 g total Lys/kg (10.95 g SID Lys/kg) corresponding to 

90% of the Lys requirement (Tybirk et al., 2012) in the Val and Leu dose-response experiments. The other 

non-dispensable AA and calcium and phosphorus were supplied according to or slightly exceeding the 

Danish recommendations for pigs weighing 9 to 15 kg (Tybirk et al., 2012). The calculated compositions of 

the diets are presented in Table 2.  

2.2. Protocol 

The experiment was designed as 3 separate randomized 6 x 6 Latin squares designs (Fisher and 

Yates, 1934) where 6 pigs were fed 1 of the 6 diets for 2 days, i.e. 12 days in total for each experiment 

having 6 replicates per treatment. During the 2 days on each diet, pigs had free access to feed for 1.5 days 

and were fasted overnight before they were fed 25 g diet/kg BW0.75 at 0700 hour on day 2. Blood samples 

were collected 180 min after feeding the fixed ration. The meal size and feeding time before blood 

sampling were fixed to reduce variation. Blood samples were assumed to be collected during the 

absorptive phase (Nørgaard et al., 2016) and were collected by jugular vein puncture into 10-mL 

heparinized tubes (Greiner BioOne GmbH, Kremsmünster, Austria) and placed on ice. Blood samples were 

centrifuged at 1,050 × g at 4 °C for 10 min, and the plasma was immediately harvested and stored at -80 °C 

until the laboratory analyses.  
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2.3. Chemical Analysis 

Representative samples (n = 3) of each diet were analyzed to confirm the dietary treatmentand 

assure that storage did not change the AA composition. Samples were hydrolyzed for 23 hours at 110 °C 

with (for Cys and Met) or without (for all other AA) performic acid oxidation, and AA were separated by ion 

exchange chromatography and quantified by photometric detection after ninhydrin reaction (European 

Commission, 1998). Plasma free AA, taurine, urea, 1-methyl-L-histidine, L-α-aminoadipic acid, and L-α-

amino-n-butyric acid were analyzed using an AA analyzer fitted to a lithium high performance system for 

physiological AA (Biochrome 30+ Amino Acid Analyzer; Biochrome, Cambridge, England). The AA analyzer 

was calibrated using standards for acidic, neutral, and basic AA (Sigma Aldrich, St. Louis, MO).  

Plasma was analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) for the Ile 

and Leu experiments. Based on our previous study (Soumeh et al., 2016), in which only 1 metabolite 

(hippuric acid) was found by liquid chromatography–mass spectrometry (LC-MS) analysis of blood from pigs 

fed increasing levels of SID Val:Lys, it was decided not to carry out LC-MS analysis in the current Val 

experiment. The analysis was done as described in detail by Soumeh et al. (2016). In brief, metabolites 

were extracted from 200 µl plasma mixed with 600 µl ice-cold acetonitrile (ACN) containing glycocholic 

acid-(glycyl-1-13C) (Sigma-Aldrich, St. Louis, MO, US) and p-chlorophenylalanine (Sigma-Aldrich, St. Louis, 

MO, US) as internal standards (IS). After centrifugation, the supernatant was evaporated to complete 

dryness and re-suspended in 200 µl water/ACN/formic acid (94.9 : 5:0.1, v/v/v) followed by transferring to 

vials for LC-MS/MS analysis. Chromatographic separation was performed on an UltiMate 3000 System 

(Thermo Scientific Dionex, Sunnyvale, CA, US) equipped with a Fortis 1.7 µm C18 column 100 × 2.1 mm and 

a Fortis UHPLC filter (Fortis Technologies, Ltd., Chesire, England). The HPLC system was connected to an 

Impact HD Quadrupole Time-of-Flight (QTOF) mass spectrometer (Bruker Daltonics GmbH, Bremen, 

Germany).  
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2.4. Data processing and statistical analysis 

In the study by Soumeh et al. (2016) 9, 7, and 7, molecular features were reported as discriminating 

metabolites which correlate with the optimum dietary Ile, Leu, and Val, respectively. Fragments and 

unidentified molecular features were excluded resulting in 8 compounds (i.e., 3-methyl-2-oxovaleric acid, 

hypoxanthine, tryptophan, indoxylsulfuric acid, glycocholic acid, tauroursodeoxycholic acid, taurocholic 

acid, and [M+CH3COOH] PC (14:0/0-1:0)) which were further analyzed in the Ile dose-response and 5 

compounds (i.e. α-ketoisovaleric acid, creatine, isoleucine, tryptophan, and 3-methyl-2-oxovaleric acid) in 

the Leu dose-response. Although 2-ketohexanoic acid was not reported in the initial study, it showed good 

correlations to the dietary effects of Ile and Leu in plasma and was included in the analysis. Information 

about compound mass and retention times was used to target and extract data from the analyzed samples 

using QuantAnalysis (version 2.2, Bruker Daltonics GmbH) and imported to SAS for statistical analysis as 

described by Soumeh et al. (2016).  

The AA and metabolomics data were analyzed by the MIXED procedure of SAS (version 9.3; SAS Inst. 

Inc., Cary, NC, US). The experimental unit was the individual pig. The data were analyzed as a Latin square 

design with AA level as fixed effect and pig and sample day as random effects. Orthogonal polynomial 

contrast coefficients were used to determine linear and quadratic effects of increasing the AA level (Littell 

et al., 2002). The PROC NLIN and NLMIXED procedures of SAS were used to estimate the optimum AA level 

by subjecting the least squares means of the individual response metabolite to curvilinear-plateau (CLP) 

and broken-line (BL) models (Robbins et al., 2006). The PROC GLM was used for fitting quadratic (Q) 

models. The breakpoint or optimum of the curve in each model (where the first derivative could be 

defined) was considered the minimum AA requirement, and this estimate is presented in the Results 

section following the R2 (Q models) or the parameter estimate standard error (SE) (BL and CLP models). 

Statistical significance was accepted at P < 0.05 and tendencies at P < 0.10. Presented data are least 

squares means and standard error of the mean (SEM).  
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3. Results 

The plasma concentrations of AA and other metabolites are shown in Tables 3 to 5 for the Ile, Leu, 

and Val studies, respectively, and the results of fitting descriptive models to the metabolites are presented 

in Table 6 for all studies.  

3.1. Isoleucine study 

Eight discriminating metabolites other than AA were evaluated using the metabolomics approach, 

and plasma concentrations of 11 out of 18 analyzed AA and 4 out of the 8 other metabolites showed linear 

or quadratic responses (P < 0.05) to the SID Ile:Lys level (Table 3). The concentration of urea was lowest at 

0.54 SID Ile:Lys but showed neither a linear (P = 0.55) nor a quadratic (P = 0.61) response. Increasing SID 

Ile:Lys increased Ile concentration both linearly (P < 0.001) and quadratically (P < 0.001) by a steeper 

increase for the 2 highest SID Ile:Lys levels, and corresponding keto-acid for Ile, 3-methyl-2-oxovaleric acid, 

showed a similar pattern. The other 2 BCAA were linearly (P < 0.05) increased by increasing SID Ile:Lys, and 

Leu also displayed a quadratic (P = 0.005) pattern with highest concentrations at 0.42 and 0.62 SID Ile:Lys. 

The Val keto-acid α-ketoisovaleric acid showed a quadratic response (P = 0.01) with lowest concentrations 

at 0.54 SID Ile:Lys. A common pattern of the 5 AA and other metabolites which could be modelled was a 

decreasing concentration until the optimum and an increased concentration at the highest SID Ile:Lys level. 

Optimum dietary SID Ile:Lys was found by fitting His (0.54; SE 0.09), Ser (0.52; SE 0.03), and indoxylsulfuric 

acid (0.54; SE 0.09) to BL models (mean of 0.53); His (0.58; SE 0.18), Ser (0.55; SE 0.05), and indoxylsulfuric 

acid (0.55; SE 0.12) to CLP models (mean of 0.56); and His (0.54; R2 0.59), Ser (0.56; R2 0.96), ketohexanoic 

acid (0.52; R2 0.77), indoxylsulfuric acid (0.54; R2 0.78), and α-ketoisovaleric acid (0.53; R2 0.87) to Q models 

(mean of 0.54) with an overall mean of 0.54 SID Ile:Lys as optimum across the models (Table 6).  

3.2. Leucine study 
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Nine non-AA metabolites and 16 out of the 18 analyzed AA in plasma showed linear or quadratic 

responses (P < 0.05) to an increasing SID Leu:Lys level (Table 4). Plasma urea showed a quadratic response 

(P = 0.001) by being reduced until 1.10 SID Leu:Lys and then an increase. Keto-hexanoic acid showed an 

increase until 1.10 SID Leu:Lys and then a decrease in concentration. The other 13 AA and other 

metabolites which could be modelled commonly showed a steep decrease from 0.70 to 0.90 SID Leu:Lys 

and then a plateau or a slight decrease. The concentration of Leu itself increased until 1.00 SID Leu:Lys and 

was then slightly reduced. The concentration of Ile and Val, and their corresponding keto-acids 3-methyl-2-

oxovaleric acid and α-ketoisovaleric acid, respectively, showed a similar linear and quadratic pattern (P < 

0.05) with a 3-5 fold decrease until 1.10 SID Leu:Lys and then a plateau. Optimum dietary SID Leu:Lys was 

defined by fitting Arg (0.86; SE 0.14), Glu (0.90; SE 0.12), Ile (0.93; SE 0.01), Met (0.90; SE 0.04), Phe (1.03; 

SE 0.10), Ser (0.95; SE 0.02), Tyr (0.90; SE 0.04), Val (0.93; SE 0.02), Tau (0.90; SE 0.04), L-α-aminoadipic acid 

(1.04; SE 0.07), L-α-amino-n-butyric acid (0.96; SE 0.02), 3-methyl-oxovaleric acid (1.03; SE 0.01), keto-

hexanoic acid (1.04; SE 0.04), and α-ketoisovaleric acid (1.02; SE 0.02) to BL models (mean of 0.96 SID 

Leu:Lys). Fitting CLP models estimated the optimum dietary SID Leu:Lys by Arg (0.91; SE 0.24), Glu (0.96; SE 

0.15), Ile (1.06; SE 0.04), Met (0.99; SE 0.12), Ser (1.11; SE 0.04), Tyr (1.00; SE 0.11), Val (1.08; SE 0.04), Tau 

(1.01; SE 0.14), L-α-aminoadipic acid (1.14; SE 0.17), L-α-amino-n-butyric acid (1.10; SE 0.06), 3-methyl-

oxovaleric acid (1.21; SE 0.05), and α-ketoisovaleric acid (1.17; SE 0.05) (mean of all metabolites: 1.06 SID 

Leu:Lys). Quadratic modelling found optimums for Tau (1.03; R2 0.92), L- α-aminoadipic acid (1.10; R2 0.89), 

L-α-amino-n-butyric acid (1.10; R2 0.98), and α-ketoisovaleric acid (1.17; R2 0.99) (mean of 1.10 SID Leu:Lys). 

The overall mean across models and metabolites was 1.04 SID Leu:Lys as the optimum (Table 6). 

3.3. Valine study 

In the Val experiment, besides Val, only Cys and Gly showed a linear decreasing response (P < 0.05) 

to increasing SID Val:Lys (Table 5). The pattern of plasma urea tended to be quadratic (P = 0.07) with the 

lowest concentration at 0.70 SID Val:Lys. Broken-line models could be fitted to Lys (0.63; SE 0.04) and Tyr 
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(0.69; SE 0.14) with an mean of 0.66 SID Val:Lys as optimum, and CLP models could be fitted to Lys (0.65; SE 

0.10) and Tyr (0.71; SE 0.22) with a mean of 0.68 as the optimum dietary SID Val:Lys (Table 6).  

4. Discussion 

The pattern of plasma AA and other metabolites allowed regression model fitting only to a few of them 

(Table 6). In previous dose-response studies in our lab using the same feed batches as the current study, it 

was demonstrated that 0.52 SID Ile:Lys, 0.93 SID Leu:Lys, and 0.70 SID Val:Lys were the minimum Ile, Leu, 

and Val requirements, respectively, to support the best growth performance of weaned piglets (Soumeh et 

al., 2014; Soumeh et al., 2015a; Soumeh et al., 2015b). Thus, the average of optimums of 0.54 SID Ile:Lys, 

1.04 SID Leu:Lys, and 0.68 SID Val:Lys found across the 3 types of regression models reflected well the 

optimums found in the previous standard-design dose-response studies. 

Previous work on PUN as a response variable in AA studies has led to conclusions that 2 (Pedersen and 

Boisen, 2001) and 3 (Coma et al., 1995) days of feeding a new diet was sufficient to re-equilibrate PUN 

concentrations after a change in the dietary AA concentration. The duration of feeding the experimental diets 

before blood sampling was 2 days, and it was hypothesized that this would be long enough to reflect dietary 

BCAA effects on plasma concentrations of metabolites. Plasma Ile, Leu, and Val concentrations showed close 

to identical relations to dietary AA levels compared to our previous 3 studies. This indicates that 2 days of 

adaptation may be sufficient and thus supports the conclusions by Pedersen and Boisen (2001). In their later 

experiment where they evaluated the Thr requirement by using a short-term plasma urea based method, a 

growth performance or a nitrogen balance approach, they found Thr requirement estimates close to 

previously reported values regardless of the methodological approach. It was not possible to fit mathematical 

models to the plasma urea concentrations of the current experiments, and in several other studies on 

estimating optimum AA requirements, plasma urea has not been proven a good biomarker (Nørgaard et al., 

2015; Soumeh et al., 2015b). Pedersen and Boisen (2001) argued for taking blood samples at 3 time points 

after feeding an 800 g meal to reduce variation, but in the current study, variation was reduced by feeding a 
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small and readily edible portion (120 to 145 g) according to metabolic body weight, because variation in feed 

intake is a main source of variation in plasma urea concentrations (Dean et al., 2005). The inconsistency in 

results on plasma urea as a biomarker for protein utilization was one of the driving forces for studying the 

use of other plasma biomarkers as response traits in dose-response studies.  

The BCAA, Ile, Leu, and Val, besides being indispensable AA, are of interest to study, because they 

share the same enzymes in their catabolic pathways which causes interactions among them (Harper et al., 

1984), and the excess of one BCAA could increase the catabolism of the others and change the nutritional 

requirements (van Milgen et al., 2012). The regulatory role of especially Leu on Val and Ile degradation is 

reflected in the concentrations of Ile, Val, and their corresponding α-keto acids in both plasma and urine 

(Soumeh et al., 2016). 

For the Ile experiment, the concentrations of indoxylsulfuric acid, ketohexanoic acid, and α-

ketoisovaleric acid allowed to estimate an Ile requirement. In our previous study on blood samples obtained 

after feeding diets with increasing SID Ile:Lys for 8 and 15 days (Soumeh et al., 2016), plasma glycocholic acid 

and taurocholic acid were also well linked to the animal performance. The concentrations of these 

metabolites did not differ significantly among the dietary treatments in the present study and could not be 

used to estimate the Ile requirement. The current study cannot state if plasma glycocholic acid and 

taurocholic acid are appropriate biomarkers of different SID Ile:Lys levels because of the different study 

design, and it cannot be ignored that the number of days of feeding (i.e. 2 vs. 8 and 15 days) may affect the 

metabolic profile. In addition, to claim that a specific metabolite is a good and general biomarker, the 

metabolite should be validated in another experiment with different diets. 

In plasma, only concentrations of creatine and 3-methyl-2-oxovaleric acid could discriminate the 

optimum dietary Leu to support animal growth performance (Soumeh et al., 2016), whereas in the current 

experiment, several AA and other metabolites could be used to estimate the Leu requirement. 3-Methyl-2-

oxovaleric acid is the corresponding α-keto acid for Ile, and α-ketoisovaleric acid is the corresponding α-keto 
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acid for Val. The concentrations of these metabolites as well as Ile and Val were relatively lower in plasma 

with increasing SID Leu:Lys. The results underline the important roles of Leu in the regulation of protein 

synthesis and activity of enzymes involved in oxidative decarboxylation of BCAA.  

Only metabolites showing biologically meaningful patterns are reasonable to model, and thus it may 

be difficult to model response curves for AA where the growth performance response is unknown. There is 

a variation among studies in which AA and other metabolites are reflecting the changes in growth 

performance. Thus, it may not be possible to choose a distinct panel of biomarkers beforehand, and relevant 

biomarkers need to be identified from study to study by their metabolic relevance and consistency of their 

expression patterns. Although this way to evaluate an optimal AA requirement is based on a somewhat 

subjective evaluation, the strength in the methodological approach will lie in a greater number of evaluated 

and modelled metabolites as response traits. However, the choice of whether to perform an intensive short-

term experiment based on blood samples or carry out a traditional longer-term experiment based on 

performance traits from numerous animals may also be affected by the greater costs of laboratory analysis 

associated with evaluating blood biomarkers. Thus, the blood biomarkers analyzed by LC-MS/MS can be 

useful in evaluating AA requirements in dose-response experiments – at least as supplements to the 

traditional growth performance traits. In the long term, i.e. when a sufficient validation of consistency of the 

metabolic profile has occurred, cheaper analytical methods such as ELISA (Enzyme-linked immunosorbent 

assay) may be developed for efficient analysis.  

5. Conclusions 

These results indicated that the response of plasma metabolites, associated with a short-term 

feeding to pigs, were suitable to fit to regression models to obtain an optimum SID Ile, Leu, and Val ratios 

close to those obtained in previous conventional studies using the same diets. Furthermore, the results 

indicated that 2 days of adaptation may be sufficient to reflect relevant biological changes in blood to 

different levels of dietary AA.  
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6. Implications 

The current experiment evaluated a new approach to study Ile, Leu, and Val requirements in pigs 

with a considerably lower number of experimental animals compared to traditional animal performance 

experiments. The results indicated that modelling plasma metabolites in AA dose-response studies can be 

used as the sole response trait in estimating the AA requirement of pigs. Until this approach is fully 

validated, metabolites found by metabolomics can complement the traditional gain and feed intake 

response traits. The use of resources for laboratory analysis using LC-MS/MS is much greater than a 

performance-based approach, and more efficient assays should be developed. However, in addition to 

estimating a value for optimum dietary AA level, a metabolite-based approach may provide interesting 

knowledge on physiological mechanisms.  
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Table 1  

Composition of experimental diets (g/kg, as-fed).  

 Study 

Item Isoleucine1  Valine2 Leucine3  

Wheat 705.6 672.0 726.1 

Barley 100.0 100.0 100.0 

Fermented soybean meal4 106.5 151.0 78.9 

Animal fat 20.0 20.0 20.0 

Calcium carbonate 16.6 17.0 16.3 

Monocalcium phosphate 13.3 11.3 14.8 

NaCl 4.4 4.3 4.4 

Vitamin-mineral premix5 4.0 4.0 4.0 

L-Lys HCl (78%) 7.9 5.6 8.5 

DL-Met (99%) 2.5 2.0 2.9 

L-Thr (98%) 3.5 2.6 4.0 

L-Trp (98%) 1.1 0.8 1.3 

L-Val (99%) 3.2 - 3.8 

L-Ile (98%) - 0.7 2.4 

L-His (98%) 1.0 0.5 1.4 

L-Leu (98%) 3.8 2.1 - 
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L-Phe (98%) 1.7 0.6 3.3 

L-Tyr (98%) 1.4 0.6 1.0 

Phytase6 0.2 0.2 0.2 

Microgrits7 0.7 0.7 0.7 

1 L-Ile (98%) was added to the basal diet at graded levels of 0, 0.5, 0.9, 1.4, 1.9, and 2.3 g/kg to provide 0.42, 

0.46, 0.50, 0.54, 0.58, and 0.62 SID Ile:Lys levels. L-Glu (98%) was included at graded levels of 2.5, 2.0, 1.6, 

1.1, 0.6, and 0.2 g/kg to compose isonitrogenic diets. 

2 L-Val (99%) was added to the basal diet at graded levels of 0, 0.4, 0.9, 1.3, 1.8, and 2.2 g/kg to provide 0.58, 

0.62, 0.66, 0.70, and 0.78 SID Val:Lys levels. L-Glu (98%) was included at graded levels of 4.0, 3.6, 3.8, 3.1, 

2.7, and 1.8 g/kg to compose isonitrogenic diets. 

3 L-Leu (98%) was added to the basal diet at graded levels of 0, 1.1, 2.2, 3.3, 4.5, and 5.6 g/kg to provide 0.70, 

0.80, 0.90, 1.00, 1.10, and 1.20 SID Leu:Lys levels. L-Glu (98%) was included at graded levels of 6.0, 4.9, 3.8, 

2.7, 1.5, and 0.4 g/kg to compose isonitrogenic diets. 

4 HP300 (Hamlet Protein, Horsens, Denmark). 

5 Provided the following per kg of diet: 10,000 IU vitamin A, 2,000 IU vitamin D3, 94 IU vitamin E, 2.4 mg 

vitamin K3, 2.4 mg vitamin B1, 4.8 mg vitamin B2, 2.4 mg vitamin B6, 0.02 mg vitamin B12, 12 mg D-panthotenic 

acid, 26 mg niacin, 0.2 mg biotin, 200 mg Fe (Fe(II) sulphate), 165 mg Cu (Cu(II) sulphate), 200 mg Zn (Zn(II) 

oxide), 56 mg Mn (Mn(II) oxide), 0.3 mg KI, 0.3 mg Se (Se-selenite). 

6 Natuphos 5000, 5641 FTU/g (BASF, Ludwigshafen, Germany). 

7 Corn bran in various colors to identify diets. 
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Table 2 

Chemical composition of the experimental diets (g/kg, as-fed). 

 Study 

Item Isoleucine1  Valine2 Leucine3  

Net energy MJ/kg 10.5 10.4 10.4 

Crude protein  163.0 177.0 154.0 

Lys  12.2 11.8 11.8 

Met  4.5 4.0 4.7 

Met + Cys  7.2 6.6 7.3 

Thr  8.2 7.4 8.2 

Val 9.5 - 9.5 

Ile  - 6.4 7.1 

Leu 13.7 12.4 - 

Phe 7.6 6.9 8.5 

His 4.4 3.9 4.3 

1 Ile content was 5.4, 5.9, 6.3, 6.8, 7.2, and 7.8 g/kg in 0.42, 0.46, 0.50, 0.54, 0.58, and 0.62 SID Ile:Lys diets. 

2 Val content was 7.4, 7.8, 8.2, 8.7, 9.1, and 9.5 g/kg in 0.58, 0.62, 0.66, 0.70, 0.74, and 0.78 SID Val:Lys 

diets. 

3 Leu content was 9.0, 10.1, 11.2, 12.2, 13.3, and 14.4 g/kg in 0.70, 0.80, 0.90, 1.00, 1.10, and 1.20 SID 

Leu:Lys diets. 
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Table 3 

Effect of increasing dietary standardized ileal digestible (SID) Ile:Lys for pigs fed 1 of 6 diets for 2 days in a 

Latin square design on plasma concentrations of urea (mmol/L) amino acids (mmol/L) and non-amino acid 

metabolites (arb units).  

 SID Ile:Lys SEM1 P-value2 

 0.42 0.46 0.50 0.54 0.58 0.62  Lin Quad 

Urea 1.625 1.471 1.706 1.054 1.508 1.454 0.437 0.55 0.61 

Ala 0.925 0.817 0.842 0.922 0.799 0.820 0.069 0.19 0.90 

Arg 0.182 0.133 0.176 0.159 0.139 0.193 0.017 0.46 0.002 

Cys 0.020 0.019 0.022 0.022 0.022 0.022 0.005 0.11 0.99 

Glu 0.304 0.256 0.241 0.314 0.230 0.262 0.036 0.27 0.54 

Gly 1.151 1.117 1.069 1.081 0.952 0.993 0.128 0.02 0.93 

His 0.018 0.017 0.015 0.015 0.012 0.017 0.003 0.25 0.24 

Ile 0.079 0.061 0.113 0.110 0.144 0.197 0.014 <0.001 <0.001 

Leu 0.241 0.181 0.226 0.233 0.224 0.271 0.017 0.01 0.005 

Lys 0.521 0.373 0.422 0.505 0.442 0.506 0.053 0.36 0.03 

Met 0.109 0.104 0.109 0.100 0.112 0.123 0.009 0.10 0.05 

Orn 0.162 0.118 0.137 0.116 0.106 0.134 0.014 0.003 0.001 

Phe 0.126 0.106 0.127 0.113 0.118 0.139 0.006 0.03 0.003 

Pro 0.416 0.408 0.409 0.388 0.356 0.401 0.036 0.18 0.53 

Ser 0.258 0.237 0.228 0.211 0.216 0.226 0.021 0.05 0.12 

Tau 0.061 0.098 0.076 0.053 0.069 0.064 0.015 0.20 0.49 

Thr 0.501 0.634 0.537 0.480 0.437 0.533 0.065 0.06 0.92 

Trp 0.095 0.087 0.094 0.087 0.087 0.094 0.067 0.62 0.09 
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Tyr 0.161 0.135 0.159 0.138 0.138 0.179 0.017 0.48 0.05 

Val 0.422 0.418 0.437 0.442 0.423 0.491 0.027 0.05 0.29 

[M+CH3COOH] PC3 1980 1930 2133 1989 1996 2013 125 0.77 0.58 

3-m-2-oxoval.4 557 446 711 666 817 1176 124 <0.001 0.003 

Glycocholic acid 349 242 203 303 294 237 63 0.37 0.31 

Hypoxanthine 1153 1498 1023 888 1122 937 103 0.01 0.82 

Indoxylsulfuric acid 2308 2129 2068 1744 1908 2136 430 0.45 0.289 

Ketohexanoic acid 1643 1307 1334 1253 1175 1668 136 0.53 <0.001 

Tauro.cholic acid5 73 99 76 97 121 78 18 0.38 0.27 

α-ketoisovaleric acid 290 266 250 237 238 287 22 0.43 0.01 

1 SEM = standard error of the mean 

2 Orthogonal polynomial contrast coefficients were used to determine linear (Lin) and quadratic (Quad) 

effects of increasing SID Ile:Lys. 

3 [M+CH3COOH] PC = [M+CH3COOH] PC(14:0/0-1:0). 

4 3-m-2-oxoval. = 3-methyl-2-oxovaleric acid. 

5 Tauro.cholic acid = Tauroursodeoxycholic acid. 
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Table 4 

Effect of increasing dietary standardized ileal digestible (SID) Leu:Lys for pigs fed 1 of 6 diets for 2 days in a 

Latin square design on plasma concentrations of urea (mmol/L) amino acids (mmol/L) and non-amino acid 

metabolites (arb units).  

 SID Leu:Lys SEM1 P-value2 

 0.70 0.80 0.90 1.00 1.10 1.20  Lin Quad 

Urea 1.179 0.798 0.767 0.972 0.560 1.673 0.213 0.19 0.001 

Ala 1.373 1.044 0.767 0.750 0.614 0.576 0.082 <0.001 <0.001 

Arg 0.164 0.138 0.096 0.138 0.114 0.142 0.019 0.05 <0.001 

Cys 0.024 0.022 0.022 0.023 0.022 0.019 0.003 0.09 0.55 

Glu 0.411 0.338 0.237 0.315 0.221 0.251 0.040 <0.001 0.01 

Gly 1.078 0.987 0.803 0.866 0.742 0.711 0.083 <0.001 0.21 

His bd bd bd bd bd bd bd   

Ile 0.593 0.380 0.183 0.157 0.115 0.109 0.023 <0.001 <0.001 

Leu 0.079 0.114 0.135 0.177 0.171 0.146 0.019 <0.001 <0.001 

Lys 0.460 0.448 0.324 0.424 0.379 0.406 0.056 0.11 0.05 

Met 0.122 0.111 0.091 0.100 0.094 0.087 0.011 0.002 0.25 

Orn 0.116 0.110 0.082 0.100 0.086 0.089 0.011 0.002 0.09 

Phe 0.161 0.173 0.144 0.128 0.124 0.134 0.016 0.003 0.36 

Pro 0.433 0.404 0.307 0.387 0.301 0.267 0.033 <0.001 0.94 

Ser 0.238 0.212 0.181 0.172 0.166 0.165 0.019 <0.001 0.02 

Tau 0.076 0.070 0.053 0.052 0.052 0.060 0.009 0.010 0.02 

Thr 0.630 0.551 0.450 0.517 0.447 0.424 0.053 0.01 0.38 

Trp 0.093 0.091 0.072 0.085 0.073 0.074 0.011 0.004 0.40 
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Tyr 0.164 0.147 0.111 0.125 0.113 0.108 0.013 <0.001 0.06 

Val 1.565 1.036 0.585 0.517 0.380 0.358 0.053 <0.001 <0.001 

1-Methyl-L-histidine 0.012 0.012 0.014 0.012 0.014 0.014 0.001 0.004 0.36 

3-m-2-oxoval.3 1237 997 725 498 422 402 92 <0.001 0.01 

Creatine 176 139 147 139 89 202 42 0.89 0.03 

Ketohexanoic acid 161 229 368 527 603 520 68 <0.001 0.010 

L-α-aminoadipic acid 0.117 0.110 0.099 0.093 0.083 0.095 0.010 <0.001 0.01 

L-α-amino-butyric4 0.095 0.079 0.055 0.046 0.043 0.047 0.007 <0.001 <0.001 

α-ketoisovaleric acid 339 277 191 150 135 126 21 <0.001 0.003 

1 SEM = standard error of the mean 

2 Orthogonal polynomial contrast coefficients were used to determine linear (Lin) and quadratic (Quad) 

effects of increasing SID Leu:Lys. 

3 3-m-2-oxoval. = 3-methyl-2-oxovaleric acid.  

4 L-α-amino-butyric = L-α-amino-n-butyric acid. 

 

  



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Nørgaard, J., Soumeh, Curtasu, Corrent, E., van Milgen, J., Hedemann (2017). Use of metabolic

23 

 

Table 5 

Effect of increasing dietary standardized ileal digestible (SID) Val:Lys for pigs fed 1 of 6 diets for 2 days in a 

Latin square design on plasma concentrations of urea (mmol/L) and amino acids (mmol/L). 

 SID Val:Lys SEM1 P-value2 

 0.58 0.62 0.66 0.70 0.74 0.78  Lin Quad 

Urea 3.135 2.841 2.929 2.806 3.192 3.370 0.301 0.22 0.07 

Ala 0.666 0.840 0.755 0.721 0.702 0.750 0.060 0.93 0.25 

Arg 0.232 0.228 0.226 0.220 0.194 0.257 0.025 0.92 0.12 

Cys 0.025 0.023 0.021 0.020 0.017 0.020 0.003 0.01 0.23 

Glu 0.295 0.306 0.294 0.291 0.252 0.300 0.041 0.53 0.74 

Gly 0.903 1.124 0.853 0.871 0.857 0.883 0.092 0.05 0.91 

His 0.015 0.015 0.014 0.015 0.015 0.016 0.001 0.89 0.45 

Ile 0.128 0.142 0.137 0.122 0.128 0.145 0.010 0.64 0.34 

Leu 0.205 0.224 0.211 0.210 0.188 0.219 0.016 0.79 0.89 

Lys 0.450 0.406 0.389 0.407 0.349 0.434 0.048 0.52 0.22 

Met 0.088 0.088 0.089 0.084 0.074 0.089 0.008 0.51 0.63 

Orn 0.150 0.144 0.143 0.140 0.119 0.147 0.013 0.31 0.37 

Phe 0.135 0.131 0.120 0.128 0.117 0.126 0.008 0.13 0.27 

Pro 0.395 0.444 0.425 0.398 0.397 0.428 0.052 0.99 0.97 

Ser 0.232 0.261 0.252 0.219 0.210 0.243 0.022 0.10 0.81 

Tau 0.045 0.052 0.056 0.044 0.051 0.050 0.061 0.63 0.31 

Thr 0.400 0.450 0.442 0.372 0.306 0.440 0.051 0.13 0.36 

Trp 0.092 0.102 0.097 0.084 0.084 0.096 0.008 0.36 0.54 

Tyr 0.148 0.141 0.136 0.122 0.123 0.151 0.015 0.35 0.13 
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Val 0.191 0.232 0.288 0.306 0.325 0.446 0.018 <0.001 0.13 

1 SEM = standard error of the mean 

2 Orthogonal polynomial contrast coefficients were used to determine linear (Lin) and quadratic (Quad) 

effects of increasing SID Val:Lys. 

  



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Nørgaard, J., Soumeh, Curtasu, Corrent, E., van Milgen, J., Hedemann (2017). Use of metabolic

25 

 

Table 6 

Optimum SID Ile:Lys, Leu:Lys and Val:Lys of broken-line (BL), curvilinear-plateau (CLP), and quadratic (Q) 

models fitted to blood metabolites and the number of metabolites.  

 Fitting model  Former study 

 BL CLP Q 

Optimum or n 

metab.1 Reference Conclusion 

Ile:Lys 0.53 0.56 0.54 0.54 Soumeh et al., 2014 0.52 

Leu:Lys 0.96 1.06 1.10 1.04 Soumeh et al., 2015a 0.93 

Val:Lys 0.66 0.68 0.69 0.68 Soumeh et al., 2015b 0.70 

Ile:Lys, n metab.2 3 3 5 5     

Leu:Lys, n metab. 14 12 4 14     

Val:Lys, n metab. 2 2 1 2     

1 Mean of the 3 models or number of unique amino acids and other metabolites used for modelling. 

2 Number of amino acids and other metabolites used for modelling. 


