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Highlights 10 

 A participatory Bayesian Belief network method is proposed to sort out ambiguities among 11 

different stakeholders’ perspective about how their socio-ecological system works. 12 

 A Bayesian Belief modeling approach based on participation of stakeholders all along, from 13 

framing the research question to scenario exploration 14 

 The method, applied on a case study, explored the ambiguities between local stakeholders and 15 

a landscape ecology scientist about the ecological effect of a complex landscape on natural 16 

enemies’ pest control ecosystem service. 17 

Abstract 18 

Participatory modelling must often deal with the challenge of ambiguity when diverse 19 

stakeholders do not share a common understanding of the problem and measures for its solution. 20 

In this paper, we propose a framework and a methodology to elicit ambiguities among different 21 

stakeholders by using a participatory Bayesian Belief Network (BBN) modelling approach. Our 22 

approach consists of four steps undertaken with stakeholders: (1) co-construction of a 23 

consensual conceptual model of their socio-ecological system, (2) translation of the model into 24 

a consensual Bayesian Net structure, (3) individual parametrization of conditional probabilities, 25 

and (4) elicitation of ambiguity through the use of scenarios. We tested this methodology on 26 

the ambiguity surrounding the effect of an ecological process on a potential innovation in 27 

biological control, and it proved useful in eliciting ambiguity. Further research could explore 28 

more conflictual or controversial ambiguities to test this methodology in other settings. 29 
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 34 

1. Introduction 35 

Modelling with stakeholders is widely recognized for its ability to enhance stakeholder 36 

knowledge and understanding of a system as well as clarify the impacts of potential solutions 37 

to a problem (Voinov and Bousquet 2010). Stakeholder participation enhances the success of 38 

the process in which such stakeholders are involved because it favors improved decision-39 

making processes and fewer conflicts (Voinov and Bousquet 2010) as well as faster impact 40 

(Couvet and Teyssèdre 2013). However, involving stakeholders comes with specific 41 

challenges. Indeed, involving multiple parties from diverse backgrounds means that a spectrum 42 

of opinions, frames and ways of making sense must be accommodated (Brugnach et al. 2008). 43 

Such endeavor is particularly challenging as different stakeholders have equally valid ways of 44 

framing a problem (Dewulf et al. 2005). Stakeholders having radically different representations 45 

of a system is recognized as being associated with action situations exposed to “wicked 46 

problems” (Rittel and Webber 1973). A wicked problem is a complex issue to which there is 47 

no straightforward and definitive solution. Several authors suggest that, in such situations, 48 

stakeholders should construct a common understanding (Brugnach et al. 2008, Etienne 2010). 49 

However, creating a common understanding is challenged by many different types of 50 

uncertainties that complicate this endeavor (Brugnach et al. 2008). 51 

Uncertainty is a widely recognized concept that has been approached differently in many 52 

different scientific domains (e.g. Knight 1921, Shannon 1948, Crozier and Friedberg 1977). In 53 

socio-ecological settings, three different types of uncertainties have been identified: epistemic 54 

uncertainty, ontological uncertainty (Walker et al. 2003), and ambiguity (Brugnach et al. 2008). 55 

Epistemic uncertainty is the most traditional way to consider uncertainties, as it represents the 56 

imperfection of knowledge. As Walker et al. (2003) puts it, epistemic uncertainty may be 57 

reduced by more research and empirical efforts. Ontological uncertainty refers to the inherent 58 

variability or unpredictability of a phenomenon (Walker et al. 2003), and ambiguity relates to 59 

the plurality of different persons’ representations of a system. By representation, we mean a 60 

mental model of external reality that allows people to interact with the world (Jones et al. 2011). 61 

Ambiguity occurs in particular when stakeholders build different representations about their 62 

environment (Brugnach et al. 2008).  63 



As regards to modelling uncertainties, the Bayesian Belief Network (BBN) approach is 64 

recognized as particularly appropriate (Aguilera et al. 2011, Ropero et al. 2016), including in 65 

the case of modelling with stakeholder participation (Voinov and Bousquet 2010). In the field 66 

of environment management, participatory BBN modelling is recognized for its capacity to (1) 67 

represent and integrate knowledge from diverse disciplines and spheres, (2) explicitly support 68 

the inclusion of stakeholders’ representations, and (3) take into account epistemic and 69 

ontological uncertainties (Düspohl et al. 2012). However, without a few exceptions (Henriksen 70 

et al. 2012, Kelly et al. 2013), BBN construction with stakeholders do not prescribe or guide on 71 

how to consider ambiguity as part of participatory modelling with stakeholders. Most of the 72 

time, different stakeholder’s representations in participatory BBN are integrated either by 73 

averaging all representations in a single model (e.g. Shaw et al. 2016) or by choosing the “best 74 

available source of information” (Voinov and Bousquet 2010:1268, Holzkämper et al. 2012). 75 

Such simplification makes sense when the objective of a participatory BBN model is decision 76 

support (Cain et al. 2003) or prediction, because integrating all available information (scientific 77 

and non-scientific) in a single final model may improve the model’s explanatory power. Such 78 

integration is not satisfactory when the modelling objective is not prediction but rather 79 

exploration of different framing issues and exchanges of representations among stakeholders to 80 

“illuminate core uncertainties” (Epstein 2008) like ambiguity. The objective of this paper is to 81 

present the testing of a participatory modelling method using BBN that enables the analysis, 82 

and comparison of the different representations brought forward by multiple stakeholders. This 83 

method allows for dealing with ontological uncertainty, which is common for BBN, in order to 84 

deal with ambiguity, which is less researched. A couple of papers mention this issue (Henriksen 85 

et al. 2012, Kelly et al. 2013), but do not provide an operational approach to deal with 86 

ambiguity, which is the purpose of the present paper and as such is an original proposition. 87 

 88 

2. Method 89 

2.1 Case study background 90 

We tested our BBN participatory modelling approach in southwest France in an agricultural 91 

region specializing in fruit tree production (mainly apples) located on alluvial terraces along 92 

the Aveyron and Tarn rivers. Conventional apple orchards require intensive chemical 93 

treatments to control pests. Integrated pest management (IPM) in the 1980–90s promoted the 94 

use of natural enemies in the area to encourage fruit growers to implement biological control 95 

of some insect pests. Natural enemies are species which activity of predating or parasiting other 96 

species considered as pests may reduce their negative impacts on crops. Recent public policies 97 



in France are trying to reduce farmers’ pesticide use by 50% by 2025. They foresee the 98 

possibility of doing so by enhancing natural enemy activity by engineering pest-suppressing 99 

landscapes (Potier 2014). Some landscape ecologists’ findings back up such potential 100 

innovation by demonstrating that a high presence of natural habitats such as meadows and 101 

woods enhances biological pest control by providing food and shelter for these natural enemies 102 

(Bianchi et al. 2006, Rusch et al. 2016). Some authors modelled pest-suppressing landscapes 103 

and indicated that agent-farmers would always benefit from such landscape-scale management 104 

(Cong et al. 2014). Another theoretical model indicated a high outcome when farmers cooperate 105 

in the management of natural enemy habitats (Bell et al. 2016). However, scant attention has 106 

been paid to the question of whether it is in the interest of farmers to manage habitats at the 107 

landscape scale (Cong et al. 2014). In this regard, we previously identified that, in this area, 108 

local stakeholders (whether farmers or their advisors) had representations of their landscape in 109 

which landscape stimulated occasional pest damage, and no effect whatsoever of the landscape 110 

on natural enemies was mentioned (Salliou and Barnaud 2017). This difference in 111 

representations between scientists and local stakeholders came as a surprise, as the effect of 112 

local or regional landscapes on the natural enemy populations of orchards is reported by many 113 

authors (see Simon et al.’s 2010 synthesis). A top-down science-based approach to innovation 114 

might consider scientific findings as more relevant than farmers’ local knowledge. In our co-115 

innovation approach however, we wanted to give careful consideration to both scientific and 116 

local representations, which are a priori equally legitimate in regard to this potential innovation 117 

(Jalonen 2012). The modelling approach presented here aims to explore ambiguity between 118 

landscape ecology findings and local stakeholders’ knowledge about the effect of the landscape 119 

on natural enemies and pest control. In our study area, the modelling process involved five 120 

willing stakeholders: a conventional fruit tree grower, an organic fruit tree grower, a pedagogic 121 

fruit farm manager, a technical advisor, and a landscape ecology researcher. These participants 122 

are representative of the diversity of local stakeholders involved in the fruit tree production 123 

sector studied. 124 

 125 

2.2 Modelling approach 126 

We designed a four-step protocol in order to compare stakeholders’ representations about the 127 

same socio-ecological system (Figure 1). We describe here the global modelling approach and 128 

main steps, which are detailed in later sections. As a first step, stakeholders (the scientist and 129 

local stakeholders) co-constructed a consensual conceptual model of the socio-ecological 130 

system using the ARDI methodology, specifically designed for it (Etienne et al. 2011). In a 131 



second step, this conceptual model was collectively turned into a Bayesian net structure. This 132 

Bayesian net structure is a collectively agreed understanding among involved stakeholders 133 

about how main variables and states of the system are defined and connected. In the following 134 

step, each stakeholder individually parametrized the Bayesian net structure by eliciting 135 

probabilities attached to each variable in the system. Doing so, we finally constructed five 136 

individual BBNs of the same socio-ecological system conceptualization, one for each 137 

stakeholder. As a final step, we applied the same scenario of a pest-suppressing landscape to 138 

each individual BBN. The impact of the scenario on each individual BBN model was then 139 

discussed together with each participant. Ambiguities were analyzed by comparing the effect 140 

of the same scenario on each stakeholder’s BBN. 141 

 142 
Figure 1: The four main steps of our participatory BBN modelling process. 143 

Note: ARDI: participatory methodology to co-construct a conceptual model of a socio-ecological system following 144 

Actors (A), Resources (R), Dynamics (D), and Interactions (I) elicitation workshops. CPT: conditional probability 145 

table. 146 

 147 

2.2.1 Co-constructing a consensual conceptual model of a socio-ecological system using the 148 

ARDI methodology (step 1) 149 

The ARDI (Actor–Resource–Dynamic–Interaction) method is specifically designed to build 150 

together with stakeholders a consensual conceptual model of a socio-ecological system (Etienne 151 

et al. 2011). It consists of a series of workshops where stakeholders are aided by a facilitator to 152 

build collectively a conceptual model of a socio-ecological system representing its key actors 153 

(humans and non-humans), its key resources, their dynamics, and the interactions among them. 154 

Workshops first focus on listing Actors (A) and Resources (R) and eventually Dynamics (D). 155 



Finally, the last step is about synthesizing and connecting previously identified actors, 156 

resources, and dynamics to form the final Interaction (I) diagram. This interaction diagram is 157 

the final conceptual model of the socio-ecological system. The interaction diagram consists of 158 

boxes for actors and for resources, as well as arrows connecting them when a causal interaction 159 

is mentioned between some of these boxes. Each arrow is topped with an action description 160 

characterizing the nature of the interaction (Figure 2). 161 

 162 

 163 

Figure 2: Example of a simplified interaction diagram using the ARDI methodology. 164 

Note: Green boxes indicate resources and black boxes indicate actors in the system. 165 

 166 

The construction of such diagrams enables a consensual conceptualization of the socio-167 

ecological system among stakeholders involved in the modelling process. In order to achieve 168 

this objective, several principles are followed during the workshops:  169 

 Each stakeholder is invited to indicate the resources, actors, processes, and interactions 170 

that are important to him regarding the socio-ecological system at stake. The method is 171 

neutral regarding stakeholders’ proposals, as every proposal is considered legitimate. 172 

 Each proposal made by a stakeholder should be explained to the other stakeholders, 173 

discussed, and agreed upon. 174 

 The facilitator eases the agreement process by eventually reframing each stakeholder’s 175 

proposal with his agreement. 176 

This method is particularly interesting because it facilitates the step-by-step construction of a 177 

consensual conceptual model by stakeholders. The final conceptual model is consequently well 178 

understood and appropriated. Ensuring this common structure of understanding is critical for 179 

further individual comparison of each stakeholder representation of this system in the last step 180 

of our modelling approach. 181 

 182 

2.2.1.1 The consensual representation in our case study 183 



The ARDI conceptual model of our studied system was constructed with the five participants 184 

in response to the following question: “What coordinated actions might be undertaken for 185 

biological control of insect pests?” The model was developed during two workshops of three 186 

hours each (Figure 1). The first workshop focused on listing Actors (A) and Resources (R). The 187 

second focused on the creation of the Interaction (I) diagram. No key Dynamic (D) (whether 188 

social or ecological) was judged relevant to be detailed even though the possibility was open to 189 

participants. The final interaction diagram is presented in the Annex. 190 

 191 

2.2.2 Participatory Bayesian Belief Network 192 

2.2.2.1 General principles of Bayesian Belief Network modelling 193 

A Bayesian Belief Network is a multivariate model for a set of variables, defined by three main 194 

components:  195 

1. A directed acyclic graph (DAG) which connects variables together when they are 196 

statistically dependent. Figure 3 is an example of a DAG involving four variables 197 

visualized as nodes indicating the variable’s name.  198 

 199 

 200 

 201 

 202 

 203 

 204 

Figure 3: Example of directed acyclic graph (DAG) with nodes indicating variables.  205 

Arrows between nodes indicate causal relationship and are visualized as directed links 206 

that point from cause to effect. For example here, aphids are dependent on pesticide use, 207 

which aims at killing them, and ladybugs, which prey on them. 208 

2. Each variable is defined by several states. For example, the aphid variable may have 209 

two states: “under damage threshold” and “above damage threshold”. In pest control, 210 

“damage threshold” refers to a level of pest population above which significant damages 211 

are predicted. These states must represent the full scope of possible states for this 212 

variable in the network considered. 213 

3. Each variable has a conditional probability table (CPT), indicating all conditional 214 

probabilities between connected variables. For example, if we consider that the variable, 215 

crop yield, has three states “0 to 5 tons”, “5 to 10 tons”, and “10 to 15 tons”, the CPT 216 

for the crop yield variable might be as in Table 1:  217 



 218 

 219 

 220 

 221 

Table 1: Conditional probability table for the crop yield variable 222 

Table 1 indicates, for example, that under the condition that aphids are under damage 223 

threshold the probability of the crop yield variable being between 5 and 10 tons is 0.2, 224 

i.e. 20%. 225 

With these three components, the probability distribution of all the variables in the network can 226 

be calculated using Bayes’ theorem. Once such Bayesian network has been set-up, it is possible 227 

to feed new information into the network about the probability distributions of one or several 228 

variables. This process is called Bayesian inference. In our example, it is possible that we 229 

actually know with certainty thanks to an observation that the Aphid variable is in the “Under 230 

damage threshold” state (probability of 1 for this state for the Aphid variable). As a consequence 231 

of this new piece of information, the Bayesian network can be updated regarding all the other 232 

probability distributions of the network’s variables in order to accommodate this new piece of 233 

information. In our simple example, it means that the crop yield variable would take the 234 

distribution in the table line corresponding to “under damage threshold”. This adaptation to new 235 

information is called “belief propagation”. It is possible to use this belief propagation feature 236 

of BBN to explore scenarios with stakeholders (Düspohl et al. 2012). In this case, the new 237 

information input (i.e. “Aphids are under the threshold damage”) is the scenario and the 238 

modification of the BBN by “belief propagation” is the effect of the scenario.  239 

 240 

2.2.2.2 From a consensual ARDI representation to a consensual Bayesian net structure (step 241 

2) 242 

The conceptual model was used as a baseline to be translated into a Bayesian net structure. By 243 

Bayesian net structure, we understand adding the DAG with characterization of all states. In 244 

this workshop, stakeholders had first to agree on variables and causality links to be kept from 245 

ARDI in the Bayesian net structure. Because both ARDI and Bayesian nets are causal networks, 246 

variables and arrows representing causal interactions could be transferred directly.  247 

 248 

However, two main challenges may appear during this step. First, ARDI representation allows 249 

feedback loops and is consequently potentially a cyclic graph, in contrast to Bayesian networks, 250 

which are based on an acyclic graph approach. BBNs are known to create difficulty for the 251 

Crop yield 
Aphids 0 to 5 tons 5 to 10 tons 10 to 15 tons 

Under damage 
threshold 

0.1 0.2 0.7 

Above damage 
threshold 

0.2 0.3 0.5 



integration of feedback loops (Düspohl et al. 2012, Landuyt et al. 2013). If feedback loops had 252 

been present, it would have been necessary to establish a Dynamic Bayesian Network approach, 253 

which can represent feedback loops (Grzegorczyk and Husmeier 2009). This situation did not 254 

occur in our case study. The second challenge relates to the preparation for step 3, which deals 255 

with conditional probability elicitation. As the number of combinations of variable states grows 256 

exponentially with model complexity, probability elicitation quickly becomes impractical for 257 

the direct elicitation of probabilities by stakeholders (Shaw et al. 2016). Consequently, for direct 258 

elicitation of conditional probabilities to be manageable, we took action to keep the Bayesian 259 

net structure within a manageable complexity range. We proposed simplifications during the 260 

workshop to reduce proactively the quantity of variables and consequently limit the probability 261 

elicitation challenge in step 3. This simplification process has been recognized as good practice 262 

in participatory BBN when, after a broad range of potentially relevant variables have been 263 

defined, variables should be reviewed with regard to their relevance (Düspohl et al. 2012). Two 264 

types of simplification were considered: grouping similar variables and deleting irrelevant ones. 265 

We proposed grouping variables when similar behaviors were described. We proposed deleting 266 

variables when their relevance was not obvious. We proposed that every simplification 267 

identified should be submitted for approval by participants. If the participants did not reach 268 

consensus on a given simplification, the network was left untouched. We invited the 269 

participants to propose their own simplification proposals. Finally, we proposed adding some 270 

variables to the Bayesian net structure as we had good reason to think that some obvious nodes 271 

were forgotten or implicit. For example, from our previous round of interviews, agricultural 272 

advisors were regularly spontaneously mentioned as key agents by farmers regarding their pest 273 

management strategy (Salliou and Barnaud 2017). As they did not appear in the Bayesian net, 274 

they were proposed and agreed by stakeholders as a new variable. Stakeholders also made their 275 

own additions. They added for example the “mating disruption” technique variable. Mating 276 

disruption is a technique that releases mating pheromones to disrupt Codling moth and Tortrix 277 

reproduction. This whole translation process simplified the original ARDI representation, 278 

which included 38 nodes and 57 edges, into an 18 nodes and 27 edges Bayesian net structure 279 

(Figure 4). 280 



 281 
Figure 4: Final directed acyclic graph (DAG) constructed together with stakeholders. 282 

Note: Colors distinguish variables about landscape (light blue), agricultural practices (green), social factors 283 

(red), insect populations (dark blue), abiotic factor (purple), and economic output (yellow). 284 

 285 

Once the DAG structure was defined, the second step towards a final consensual Bayesian net 286 

structure was to define and agree on all variable states (Table 2). Participants agreed on most 287 

states relatively easily. Some involved much discussion, like the “rusticity” state of the Plant 288 

variety variable. This qualitative state hides divergent interpretations, from pest resistance to 289 

traditional tree varieties. This “rusticity” state was nevertheless kept in the final BBN structure 290 

as it is a term widely used by sellers and buyers of fruit trees. If this variable had been important 291 

for our final analysis, it might have been necessary to detail it. In general, we tried to avoid such 292 

polysemy to ensure a mutual understanding among participants.  293 

 294 

Variable States Remark 
Supply chain Short, Long n/a 
Agricultural advisor Coop and public, Pesticide seller, None n/a 
Plant variety Rustic, Non rustic Polysemy of “rustic”  
Mating disruption None, Present n/a 
Pesticides Specific, Broad spectrum Does not include, Affirm 
Affirm Used, Not used Pesticide sprayed against Codling moth 

and Tortrix’s eggs 
Aphelinus mali Absent, Present Natural enemy parasitizing woolly aphids 
Sheltering hedgerow Absent, Present Aims to shelter natural enemies 
Neighboring fields 
grain growers 

Crops, Woods, Meadows n/a 

Neighboring fields 
fruit tree growers 

Organic, Conventional, None n/a 

Inter-row vegetation Mowed, Not mowed Not mowing is thought to generate 
habitats for insects 

Codling moth and 
Oriental fruit moth 

Below 0.5% threshold, Above 0.5% 
threshold 

Threshold = 0.5% of fruits observed in the 
orchard attacked by the pest 

Pests Harmful to sales, Not harmful Except Codling moth and Tortrix and 
Woolly aphids 



Generalist predators Active, Non active This variable covers many species of 
natural enemies. The state “active” is 
defined by stakeholders as a judgment 
based on quantity, diversity, and 
seasonality of these predators 

Woolly aphids Absent, Very strong presence n/a 
Pollinators Satisfactory presence, Unsatisfactory n/a 
Water Deficit, No deficit n/a 
Apple production Fresh, For processing, Discarded “Fresh” is the better priced type of apple 

on the market (no defect) 

 295 
Table 2: Overview of BBN variables and states collectively discussed and agreed by participants 296 

 297 

2.2.3 Individual elicitation of each participant’s CPT and validation (step 3) 298 

For each variable, the participants were asked to elicit a conditional probability table (CPT); 299 

this can be very time-consuming when model complexity is rising. If the direct probability 300 

elicitation workload is too heavy, an algorithm can be used to populate the CPT to ease the 301 

knowledge acquisition process (Das 2004). In our case, with 266 probabilities to be elicited, it 302 

meant that one probability had to be elicited every 40 seconds on average for a three-hour-long 303 

interview. We considered this process to be feasible without using an algorithm. 304 

Another challenge in probability elicitation by stakeholders is that potentially not all 305 

participants are at ease with probability reasoning. In this regard, it has been demonstrated that 306 

elicitation using frequencies is more intuitive (Anderson 1998). Furthermore, it has been 307 

demonstrated that imagery is more effective than abstract presentations in mobilizing an 308 

expert’s experience (Brunner et al. 1987, cited in Anderson 1998). Consequently, during the 309 

interview, while asking questions to elicit probabilities, we showed images on cards about 310 

variables and states to facilitate the cognitive process.  311 

 312 

Once the Bayesian net structure and individual CPTs were obtained, we compiled this 313 

information using the BBN modelling software Netica (V5.18). Through this process, we 314 

obtained five BBNs, one for each participant, representing their individual representation about 315 

the question of coordination for biological control. Each BBN was introduced to its “owner” 316 

and was validated individually. For some, minor corrections were made on the conditional 317 

probabilities previously indicated. However, in general, the participants recognized and 318 

validated their personal perspective. 319 

 320 



2.2.4 Scenario exploration using Bayesian inference (step 4) 321 

In this section, we introduce our original framework for ambiguity analysis using participatory 322 

BBN modelling. In the first section, we introduce our typology of uncertainties, detailing how 323 

ontological uncertainty and ambiguity are represented and understood in our participatory 324 

BBN. In the second section, we present the use of scenarios in BBN in order to shed light on 325 

ambiguities among stakeholders. 326 

 327 

2.2.4.1 Uncertainty typology 328 

 Ontological uncertainty 329 

Ontological uncertainty relates to inherent variability and unpredictability (Walker et al. 2003). 330 

When we analyze an individual BBN, we considered that ontological variability could be 331 

approximated through the probability distribution of a variable (Figure 5). To represent 332 

unpredictability of a variable, we follow the principle of indifference (a classical approach to 333 

assign probabilities in cases of ignorance (Castell 1998)). Following this principle, 334 

unpredictability situations were indicated by a normal distribution law or equiprobability. 335 

  336 

 337 
Figure 5: Typology of ontological uncertainties that can be analyzed in an individual Bayesian Belief Network 338 

 Ambiguity 339 

Ambiguity occurs when stakeholders perceive their environment differently and build different 340 

representations about it (Brugnach et al. 2008). Representations are mental constructions 341 

elaborated by individuals in a certain context and period of time (Gaonac’h et al. 2006). 342 

Ambiguity can be analyzed by comparing individual BBNs – more specifically, by comparing 343 

probability distributions of the same variable among different stakeholders (see Figure 6). 344 

When two stakeholders share the same representation in a variable’s probability distribution, 345 

there is no ambiguity. 346 



 347 

Figure 6: Agreement and disagreement between two stakeholders regarding ambiguity about a variable. 348 

 349 

2.2.4.2 BBN scenario exploration and uncertainty analysis 350 

 BBN scenario 351 

In the previous section, we proposed a way to characterize two types of uncertainty in static 352 

BBNs, that is to say, the stakeholder’s representation at the moment of the probability 353 

elicitation. Thanks to Bayesian inference, it is possible to “feed” each network with new 354 

information. In our case, we call such new information a scenario. A scenario is explored by 355 

imposing new probability distributions on one or several variables in a Bayesian network. When 356 

a new piece of information is introduced in a BBN, all other variables update their probability 357 

distribution accordingly. Changes in probability distributions on child nodes indicate the impact 358 

of each scenario (Düspohl et al. 2012). 359 

 360 

In this study, we tested the effect of a pest-suppressing landscape scenario, i.e. the scenario of 361 

a complex landscape that would be favorable to natural enemies. According to the scientific 362 

literature (Bianchi et al. 2006), landscape complexity means a high proportion of meadows, 363 

hedgerows, and woods in the landscape (sometimes called semi-natural habitats). To explore 364 

the effects of such landscape, we directly modified landscape variables in each individual BBN 365 

(variables in light blue in Figure 4) to be as close as possible to these pest-suppressing 366 

conditions. The variables explicitly referring to landscape variables in the BBN are the 367 

following: (1) grain growers’ neighboring fields with forest, meadow, and cereal crops as 368 



potential states; (2) fruit growers’ neighboring fields with organic, conventional, or absent 369 

states; and (3) sheltering hedgerows with absence and presence as alternative states. As the 370 

scientific literature says that complex landscapes that enhance biological control are composed 371 

of a high proportion of semi-natural habitats (Bianchi et al. 2006), we imposed the following 372 

information on each individual BBN: 373 

1. Certainty of sheltering hedgerows presence (probability of presence: 100%) 374 

2. Grain growers’ neighboring fields are composed of woods and meadows with equal 375 

probability (50%). It means also that there is certainty that there are no crop fields 376 

(probability: 0%) 377 

3. Fruit growers’ neighboring fields are considered to be not present with certainty; there 378 

is no orchards in the landscape (probability of “none” state: 100%) 379 

 380 

 BBN scenario and ambiguity analysis 381 

When a scenario is tested, probability distributions may change, and two components of this 382 

change can be analyzed for each stakeholder’s BBN (Figure 7):  383 

1. The effect of the scenario on probability distributions of variables through belief 384 

propagation 385 

2. The final state of probability distributions of variables once the BBN has been modified 386 

by the scenario. 387 

 388 

 389 
Figure 7: Effect of the scenario on probability distribution through belief propagation. Distinction between the 390 

effect of the scenario and the final state of a BBN variable.  391 

Note: Red and green bars show the modification of the initial probability distribution. 392 

 393 



As a consequence, it is possible to analyze ambiguity on both effect of the scenario and final 394 

states. As stakeholders may agree or disagree on both components, there are four potential 395 

situations. They are represented in the Figure 8.  396 

 397 

 398 
Figure 8: The four standard cases covering agreement and disagreement about the effect of the scenario and the 399 

final state of a variable from the BBN. 400 

Note: Red and green bars show the modification of the initial probability distribution due to the effect of the 401 

scenario. The bar surrounded by a black line is the final state for each state of the variable. 402 

 403 

Depending on the objective of the modelling process, scenario impact analysis may focus on 404 

the effect of the scenario, final states, or both. In our case study, as we focused on the effect of 405 

a complex landscape for different stakeholders, it is especially the effect of the scenario that we 406 

analyzed. 407 

 408 

 BBN scenario and stakeholders’ feedback 409 

We explored together with each participant the effect of this scenario. Probably because they 410 

participated in the construction of their BBN model, none of them mentioned any problem 411 

understanding the model and the way the scenario impacted other variables. Participatory 412 

exploration of the scenario allows for direct feedback from each stakeholder. Each stakeholder 413 

indicated his interpretation of the effect of the scenario in his own words. Such feedback is 414 

complementary to our formal analysis of uncertainty, which is conducted in the lab. Both 415 

uncertainty analysis and stakeholders’ feedback are used to shed light on each stakeholder’s 416 

representation of the socio-ecological system. 417 

 418 



3. Results 419 

Through the abovementioned modelling process, we constructed a conceptual model of the 420 

socio-ecological systems agreed among the five participants, and then five individual BBNs 421 

corresponding to each participant’s personal probabilities applied to this common socio-422 

ecological system structure. Once each BBN had been fed with the scenario about landscape 423 

complexity, we analyzed and compared the effect of the scenario. The effect of the scenario on 424 

all individual BBNs is presented in the graph in Figure 9. 425 

 426 

 427 
Figure 9: Effect of the “complex landscape” scenario on each stakeholder’s Bayesian Belief Network on the 428 

Pests, Generalist predators, and Apple production variables in the BBN. 429 



Note: Each bar corresponds to one state of the variable and is indicated within brackets. Red and green bars show 430 

the modification of the initial probability distribution due to the effect of the scenario. Bars surrounded by a black 431 

line are the probability value of the final state of each described variable. The “complex landscape” scenario is 432 

based on the following parametrization: Probability of “presence” of a sheltering hedgerow: 100%, Probability 433 

of “woods” and “meadows” as grain growers’ neighboring fields: 50%, probability of no orchards in neighboring 434 

fields: 100%.  435 

 436 

The effect of the scenario is diverse among participants regarding the Pests variable, ranging 437 

from -24.4% to +11.8%. Whereas the fruit tree advisor considers that such scenario has no 438 

effect whatsoever, other stakeholders’ models indicate a modification in the probability law of 439 

this variable. Three participants’ BBNs indicate a reduction in the probability that pests are 440 

harmful to sales. Whereas the landscape ecologist and conventional fruit tree grower are close 441 

to full agreement on the effect of the landscape on pests (-2% and -3.84% respectively), the 442 

organic fruit tree grower’s model indicates a reduction in this probability by 24.4%. This 443 

disagreement on the effect of the scenario relates specifically to the organic fruit tree grower’s 444 

belief that neighboring conventional orchards strongly favor pests. The pedagogic farm 445 

manager indicated a positive effect on pests harmful to sales (+11.8%). It is important to notice 446 

here that the pedagogic farm manager result should be considered with much care. Indeed, he 447 

indicated when giving information to fill his CPT that he did not know the effect of the 448 

surrounding landscape in the sense that, according to him, it might have a strongly positive or 449 

a strongly negative effect. Consequently, he indicated that he was unable to capture this 450 

variability through a probability law and considered the effect between landscape and pests to 451 

be unpredictable. 452 

 453 

The effect of the scenario about the activity of generalist predators also varies among 454 

participants, ranging from -23.4% to +10.8%. Again, whereas the fruit tree advisor considers 455 

that such scenario has no effect whatsoever, other stakeholders’ models indicate a modification 456 

in the probability law for this variable. The same three stakeholders whose models indicated a 457 

reduction in pests as a result of the scenario connect a more complex landscape with more active 458 

generalist predators. The landscape ecologist and the organic fruit tree grower agree on the 459 

effect of a complex landscape on the activity of generalist predators (+10.8% and +10.7% 460 

respectively). The conventional fruit tree grower’s model indicates a close representation of 461 

this effect, with a +6.6% rise in probability of generalist predators being active. The pedagogic 462 

farm manager’s result, indicating a negative effect on generalist predators (-23.4%), should be 463 

taken with the same care due to the same unpredictability issue previously described. 464 



 465 

The effect of the scenario on the probability law for the Apple production variable is consistent 466 

among all stakeholders. The effect of the scenario ranges from -3.2% to +2% probability of 467 

getting first quality apples (fresh). Apart from the fruit tree advisor, all indicated an effect of 468 

the scenario on this variable. This effect, however, appears very limited, as some stakeholders 469 

indicated when interviewed about it. Again, the same three stakeholders (landscape ecologist, 470 

organic fruit tree grower, and conventional fruit tree grower) shared a similar representation 471 

that a complex landscape favors a small increase in the “fresh” state of the Apple production 472 

variable (+2%, +1.4%, and +0.2% respectively). Given the very limited effect of the scenario 473 

on the Apple production variable among all participants, we can say that participants agree on 474 

this effect. 475 

 476 

4. Discussion 477 

In a first section, we discuss how this study of ambiguity in socio-ecological systems may be 478 

of interest to those interested in landscape ecology applied to agriculture. In the second section, 479 

we discuss alternatives to ambiguity modelling. In the final section, we discuss the difficulties 480 

involved in participatory BBN modelling regarding stakes and time involved for participants. 481 

 482 

4.1 Ambiguity in landscape effect  483 

Our participatory BBN approach was successful in representing and analyzing ambiguity 484 

among stakeholders. Regarding our specific case study, we showed that stakeholders disagree 485 

on the effect of the landscape on insects. This variability is consistent with Bianchi et al.’s 486 

(2006) synthesis mentioning variability in the measurement of landscape effects from 487 

increasing or neutral to decreasing natural enemies’ populations. The relation between natural 488 

enemies enhanced by the landscape and benefit from pest control is more and more widely 489 

challenged in the agroecology literature (e.g. Chaplin-Kramer et al. 2011, Tscharntke et al. 490 

2016). In this regard, our results clearly show that the stakeholders actually agree that the 491 

landscape effect has a low impact on apple production. We were able to get new insight on why 492 

farmers did not previously mention any effect of the landscape on natural enemies, whereas 493 

landscape ecology findings regularly do. Even though landscape ecologists may measure more 494 

activity by natural enemies in relation to more complex landscapes, local stakeholders do not 495 

perceive a significant effect of this phenomenon on farms’ economic results. This sheds light 496 

on an important distinction between ecological function and ecosystem services (de Groot et al. 497 

2010). It stresses that, even though landscape ecologists may identify a correlation between a 498 



more complex landscape and some useful insects (Bianchi et al. 2006), they identify an 499 

ecological function and not an ecosystem service of pest control to farmers. Our study suggests 500 

that this relation between ecological function and ecological benefits to farmers is far from 501 

obvious. It questions the local feasibility of designing pest-suppressing landscapes as long as 502 

such causality is not identified. This is in line with some scholars who challenge ecologists to 503 

make biodiversity useful for farmers (Letourneau and Bothwell 2008). It explains why local 504 

stakeholders may be resistant to such an innovation approach in pest regulation, because they 505 

do not think it will bring any significant benefit. It suggests that landscape ecologists should 506 

study more explicitly the relation between ecosystem functions stimulated by landscape 507 

complexity and benefits farmers may obtain from them. 508 

 509 

4.2 Modelling alternatives to ambiguity exploration 510 

Other modelling approaches could have been considered to explore ambiguity between 511 

stakeholders. Consensus analysis (Romney et al. 1986) or Q methodology (Stephenson 1953) 512 

are statistical methods designed to explore the subjectivity of different stakeholders. They are 513 

based on each stakeholder answering a questionnaire (consensus analysis) or ranking a set of 514 

assertions (Q methodology) in order to identify groups of stakeholders that are similarly minded 515 

about a topic. These two methods deal with ambiguity because their aim is to identify different 516 

groups with similar representations on a topic. Stone-Jovicich et al. (2011), for example, used 517 

consensus analysis to compare the mental models of two types of stakeholders in a river 518 

catchment in South Africa. However, they do not detail the causal relationships between 519 

variables involved in a topic. In particular, they do not explore in probabilistic terms how each 520 

variable behaves for each stakeholder. In this regard, our approach focuses on each individual 521 

representation of these probabilities, whereas the two other methods look for group similarities 522 

and differences. Depending on the objective of the research, whether focused on comparing 523 

detailed individual representations of a system or grouping similar individuals sharing similar 524 

representations, BBN or other methodologies mentioned here may be preferred. Application of 525 

all three methods on a similar case study could be useful to compare their respective advantages 526 

and efficiency in exploring ambiguity. 527 

 528 

The methodology proposed in this paper supposes that it is feasible to reach -together with 529 

participating stakeholders- a consensual conceptual model of the socio-ecological system at 530 

stake. And what if such consensus is not possible because some stakeholders disagree on some 531 

components to be included in the conceptual model? In other words, how can we deal with 532 



ambiguity about the structure of the conceptual model? First, structural ambiguity of the 533 

conceptual model could be conserved by maintaining in parallel two or several conceptual 534 

models at the same time. Each conceptual model could be translated into a BBN and each BBN 535 

parametrized by each stakeholder. A similar scenario could be applied to each BBN, allowing 536 

to explore the impact on the components on which stakeholders disagree. An alternative option 537 

could be to explore individual mental models of stakeholders. Carley and Palmquist (1992) 538 

proposed a method to elicit and compare individual mental models through network analysis 539 

and statistical testing for similarities and differences in the content and structure of mental 540 

models. Rather than being statistically analyzed, ambiguity could also be sorted out through 541 

dialogical learning between stakeholders (Brugnach et al. 2011). Indeed, mental models of 542 

disagreeing participants could be directly introduced, discussed and compared by stakeholders 543 

themselves in a collective workshop. According to our knowledge, this latter approach remains 544 

to be tested and documented. Finally, another approach to manage this ambiguity could rely on 545 

the possibility to bring external expertise in case the uncertainty would be epistemic (when 546 

more information reduces the uncertainty). Indeed, in some cases, invited or external expertise 547 

can solve the problem of which stakeholder’s representation of a system is correct or not 548 

(Etienne et al. 2011, Halbrendt et al. 2014).  549 

4.3 Stakes and time constraint in participatory BBN modelling 550 

Another challenge regarding this approach is the time involved in participatory BBN. Each 551 

stakeholder had to mobilize around 12 hours for the whole process (twice three hours for the 552 

consensual conceptual model construction, three hours to arrive at the common Bayesian net 553 

structure, two hours to elicit the CPT, and one hour for scenario exploration). This is quite a 554 

significant amount of time for each stakeholder. In our case study, probably because the stakes 555 

were low, we experienced no major controversies or disagreement when constructing the 556 

conceptual model of the socio-ecological system and the Bayesian net structure. For the same 557 

reason however, we experienced some stakeholder fatigue and difficulty in mobilizing them at 558 

the end of the modelling process. The time constraint has to be put into perspective with the 559 

importance of what is at stake for the participants. In the case of serious disagreement among 560 

stakeholders, it could have been much more time-consuming because each step could have 561 

involved much more discussion to reach consensus. However, if stakes had been high, 562 

willingness to participate would have probably been higher and stakeholders keener to invest 563 

time and energy in a motivating topic. The time constraint is also quite significant in the 564 

probability elicitation step, which may be demanding (Düspohl et al. 2012). Shaw et al. (2016), 565 

for example, mentioned that a probability elicitation step with one expert required more than 566 



five hours to answer 120 probabilities, which is way more than what was needed in our 567 

elicitation process. Our opinion is that, because stakeholders were involved in each step of the 568 

construction process, from the initial question to scenario exploration, this favored a clear 569 

understanding and appropriation of the model. Such observation argues in favor of stakeholder 570 

participation all along the participatory BBN modelling approach, but this is never undertaken 571 

according to Düspohl et al. (2012). The participants also mentioned that co-constructing step 572 

by step a common framework of understanding helped them to understand other participants’ 573 

perspectives and sometimes even build new knowledge. This learning effect has already been 574 

stressed in the case of other modelling approaches involving representation elicitation where 575 

interactions between stakeholders favored a shared mental model of a socio-ecological system 576 

(Mathevet et al. 2011). 577 

 578 

5. Conclusion 579 

BBNs are well known for their capacity to deal with ontological uncertainty. However, the 580 

participatory BBN construction process are normally not specifically exploring the 581 

uncertainties which are related to ambiguity. Eliciting and eventually sorting out ambiguities 582 

can be critical when it comes to participatory processes. We introduced in this paper an 583 

approach alternating collective and individual steps to build individual BBNs for different 584 

stakeholders about the same socio-ecological system. This participatory BBN modelling 585 

demonstrated its ability to capture different stakeholders’ representations and thus detail 586 

ambiguity about how a socio-ecological system may function. This participatory BBN 587 

modelling approach engaged stakeholders in all the steps. Comparison of stakeholders’ BBNs 588 

enabled visualization of each stakeholder’s subjectivity and identification of areas of agreement 589 

or disagreement about the way stakeholders think the socio-ecological system works and how 590 

it reacts to an exploratory scenario. This method applied to a case study regarding different 591 

representations of the effect of the landscape on natural enemies within orchards led to 592 

understanding the underlying reason for differing representations between local stakeholders 593 

and landscape ecology findings. This method is an innovative approach to sorting out 594 

ambiguities among stakeholders while conserving ontological uncertainties. It could be used in 595 

any context facing apparently contradictory representations among different stakeholders about 596 

a socio-ecological system. It would be particularly interesting to eventually use this method, if 597 

needed, for use in controversial situations where higher stakes may necessitate a detailed 598 

understanding of each stakeholder’s representation of an issue. 599 

 600 
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