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Introduction

Modelling with stakeholders is widely recognized for its ability to enhance stakeholder knowledge and understanding of a system as well as clarify the impacts of potential solutions to a problem [START_REF] Voinov | Modelling with stakeholders[END_REF]. Stakeholder participation enhances the success of the process in which such stakeholders are involved because it favors improved decisionmaking processes and fewer conflicts [START_REF] Voinov | Modelling with stakeholders[END_REF] as well as faster impact [START_REF] Couvet | Sciences participatives et biodiversité : de l'exploration à la transformation des socio-écosystèmes[END_REF]. However, involving stakeholders comes with specific challenges. Indeed, involving multiple parties from diverse backgrounds means that a spectrum of opinions, frames and ways of making sense must be accommodated [START_REF] Brugnach | Toward a relational concept of uncertainty: about knowing too little, knowing too differently, and accepting not to know[END_REF]).

Such endeavor is particularly challenging as different stakeholders have equally valid ways of framing a problem [START_REF] Dewulf | Integrated management of natural resources: dealing with ambiguous issues, multiple actors and diverging frames[END_REF]. Stakeholders having radically different representations of a system is recognized as being associated with action situations exposed to "wicked problems" [START_REF] Rittel | Dilemmas in a General Theory of Planning[END_REF]. A wicked problem is a complex issue to which there is no straightforward and definitive solution. Several authors suggest that, in such situations, stakeholders should construct a common understanding [START_REF] Brugnach | Toward a relational concept of uncertainty: about knowing too little, knowing too differently, and accepting not to know[END_REF][START_REF] Etienne | La modélisation d'accompagnement[END_REF]). However, creating a common understanding is challenged by many different types of uncertainties that complicate this endeavor [START_REF] Brugnach | Toward a relational concept of uncertainty: about knowing too little, knowing too differently, and accepting not to know[END_REF].

Uncertainty is a widely recognized concept that has been approached differently in many different scientific domains (e.g. [START_REF] Knight | Risk, uncertainty and profit[END_REF][START_REF] Shannon | A mathematical theory of communication[END_REF][START_REF] Crozier | L'acteur et le système : Les contraintes de l'action collective[END_REF]. In socio-ecological settings, three different types of uncertainties have been identified: epistemic uncertainty, ontological uncertainty [START_REF] Walker | Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support[END_REF], and ambiguity [START_REF] Brugnach | Toward a relational concept of uncertainty: about knowing too little, knowing too differently, and accepting not to know[END_REF]).

Epistemic uncertainty is the most traditional way to consider uncertainties, as it represents the imperfection of knowledge. As [START_REF] Walker | Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support[END_REF] puts it, epistemic uncertainty may be reduced by more research and empirical efforts. Ontological uncertainty refers to the inherent variability or unpredictability of a phenomenon [START_REF] Walker | Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support[END_REF], and ambiguity relates to the plurality of different persons' representations of a system. By representation, we mean a mental model of external reality that allows people to interact with the world [START_REF] Jones | Mental Models: An Interdisciplinary Synthesis of Theory and Methods[END_REF]. Ambiguity occurs in particular when stakeholders build different representations about their environment [START_REF] Brugnach | Toward a relational concept of uncertainty: about knowing too little, knowing too differently, and accepting not to know[END_REF]).

As regards to modelling uncertainties, the Bayesian Belief Network (BBN) approach is recognized as particularly appropriate [START_REF] Aguilera | Bayesian networks in environmental modelling[END_REF][START_REF] Ropero | Modelling uncertainty in social-natural interactions[END_REF], including in the case of modelling with stakeholder participation [START_REF] Voinov | Modelling with stakeholders[END_REF]. In the field of environment management, participatory BBN modelling is recognized for its capacity to [START_REF] Aguilera | Bayesian networks in environmental modelling[END_REF] represent and integrate knowledge from diverse disciplines and spheres, (2) explicitly support the inclusion of stakeholders' representations, and (3) take into account epistemic and ontological uncertainties [START_REF] Düspohl | A Review of Bayesian Networks as a Participatory Modeling Approach in Support of Sustainable Environmental Management[END_REF]). However, without a few exceptions (Henriksen et Such simplification makes sense when the objective of a participatory BBN model is decision support [START_REF] Cain | Participatory decision support for agricultural management. A case study from Sri Lanka[END_REF] or prediction, because integrating all available information (scientific and non-scientific) in a single final model may improve the model's explanatory power. Such integration is not satisfactory when the modelling objective is not prediction but rather exploration of different framing issues and exchanges of representations among stakeholders to "illuminate core uncertainties" [START_REF] Epstein | Why model?[END_REF]) like ambiguity. The objective of this paper is to present the testing of a participatory modelling method using BBN that enables the analysis, and comparison of the different representations brought forward by multiple stakeholders. This method allows for dealing with ontological uncertainty, which is common for BBN, in order to deal with ambiguity, which is less researched. A couple of papers mention this issue [START_REF] Henriksen | Use of Bayesian belief networks for dealing with ambiguity in integrated groundwater management[END_REF][START_REF] Kelly (letcher | Selecting among five common modelling approaches for integrated environmental assessment and management[END_REF]), but do not provide an operational approach to deal with ambiguity, which is the purpose of the present paper and as such is an original proposition.

Method

Case study background

We tested our BBN participatory modelling approach in southwest France in an agricultural region specializing in fruit tree production (mainly apples) located on alluvial terraces along the Aveyron and Tarn rivers. Conventional apple orchards require intensive chemical treatments to control pests. Integrated pest management (IPM) in the 1980-90s promoted the use of natural enemies in the area to encourage fruit growers to implement biological control of some insect pests. Natural enemies are species which activity of predating or parasiting other species considered as pests may reduce their negative impacts on crops. Recent public policies in France are trying to reduce farmers' pesticide use by 50% by 2025. They foresee the possibility of doing so by enhancing natural enemy activity by engineering pest-suppressing landscapes [START_REF] Potier | Pesticides et agro-écologie -Les champs du possible[END_REF]. Some landscape ecologists' findings back up such potential innovation by demonstrating that a high presence of natural habitats such as meadows and woods enhances biological pest control by providing food and shelter for these natural enemies [START_REF] Bianchi | Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control[END_REF], Rusch et al. 2016). Some authors modelled pest-suppressing landscapes and indicated that agent-farmers would always benefit from such landscape-scale management [START_REF] Cong | Managing ecosystem services for agriculture: Will landscape-scale management pay[END_REF]). Another theoretical model indicated a high outcome when farmers cooperate in the management of natural enemy habitats [START_REF] Bell | Pesticide use and cooperative management of natural enemy habitat in a framed field experiment[END_REF]). However, scant attention has been paid to the question of whether it is in the interest of farmers to manage habitats at the landscape scale [START_REF] Cong | Managing ecosystem services for agriculture: Will landscape-scale management pay[END_REF]. In this regard, we previously identified that, in this area, local stakeholders (whether farmers or their advisors) had representations of their landscape in which landscape stimulated occasional pest damage, and no effect whatsoever of the landscape on natural enemies was mentioned [START_REF] Salliou | Landscape and biodiversity as new resources for agroecology? Insights from farmers' perspectives[END_REF]. This difference in representations between scientists and local stakeholders came as a surprise, as the effect of local or regional landscapes on the natural enemy populations of orchards is reported by many authors (see Simon et al.'s 2010 synthesis). A top-down science-based approach to innovation might consider scientific findings as more relevant than farmers' local knowledge. In our coinnovation approach however, we wanted to give careful consideration to both scientific and local representations, which are a priori equally legitimate in regard to this potential innovation [START_REF] Jalonen | The uncertainty of innovation: a systematic review of the literature[END_REF]). The modelling approach presented here aims to explore ambiguity between landscape ecology findings and local stakeholders' knowledge about the effect of the landscape on natural enemies and pest control. In our study area, the modelling process involved five willing stakeholders: a conventional fruit tree grower, an organic fruit tree grower, a pedagogic fruit farm manager, a technical advisor, and a landscape ecology researcher. These participants are representative of the diversity of local stakeholders involved in the fruit tree production sector studied.

Modelling approach

We designed a four-step protocol in order to compare stakeholders' representations about the same socio-ecological system (Figure 1). We describe here the global modelling approach and main steps, which are detailed in later sections. As a first step, stakeholders (the scientist and local stakeholders) co-constructed a consensual conceptual model of the socio-ecological system using the ARDI methodology, specifically designed for it [START_REF] Etienne | ARDI: A Co-construction Method for Participatory Modeling in Natural Resources Management[END_REF]). In a second step, this conceptual model was collectively turned into a Bayesian net structure. This Bayesian net structure is a collectively agreed understanding among involved stakeholders about how main variables and states of the system are defined and connected. In the following step, each stakeholder individually parametrized the Bayesian net structure by eliciting probabilities attached to each variable in the system. Doing so, we finally constructed five individual BBNs of the same socio-ecological system conceptualization, one for each stakeholder. As a final step, we applied the same scenario of a pest-suppressing landscape to each individual BBN. The impact of the scenario on each individual BBN model was then discussed together with each participant. Ambiguities were analyzed by comparing the effect of the same scenario on each stakeholder's BBN. The ARDI (Actor-Resource-Dynamic-Interaction) method is specifically designed to build together with stakeholders a consensual conceptual model of a socio-ecological system [START_REF] Etienne | ARDI: A Co-construction Method for Participatory Modeling in Natural Resources Management[END_REF]. It consists of a series of workshops where stakeholders are aided by a facilitator to build collectively a conceptual model of a socio-ecological system representing its key actors (humans and non-humans), its key resources, their dynamics, and the interactions among them.

Workshops first focus on listing Actors (A) and Resources (R) and eventually Dynamics (D).

Finally, the last step is about synthesizing and connecting previously identified actors, resources, and dynamics to form the final Interaction (I) diagram. This interaction diagram is the final conceptual model of the socio-ecological system. The interaction diagram consists of boxes for actors and for resources, as well as arrows connecting them when a causal interaction is mentioned between some of these boxes. Each arrow is topped with an action description characterizing the nature of the interaction (Figure 2). The construction of such diagrams enables a consensual conceptualization of the socioecological system among stakeholders involved in the modelling process. In order to achieve this objective, several principles are followed during the workshops:

 Each stakeholder is invited to indicate the resources, actors, processes, and interactions that are important to him regarding the socio-ecological system at stake. The method is neutral regarding stakeholders' proposals, as every proposal is considered legitimate.

 Each proposal made by a stakeholder should be explained to the other stakeholders, discussed, and agreed upon.

 The facilitator eases the agreement process by eventually reframing each stakeholder's proposal with his agreement. This method is particularly interesting because it facilitates the step-by-step construction of a consensual conceptual model by stakeholders. The final conceptual model is consequently well understood and appropriated. Ensuring this common structure of understanding is critical for further individual comparison of each stakeholder representation of this system in the last step of our modelling approach.

The consensual representation in our case study

The ARDI conceptual model of our studied system was constructed with the five participants in response to the following question: "What coordinated actions might be undertaken for biological control of insect pests?" The model was developed during two workshops of three hours each (Figure 1). The first workshop focused on listing Actors (A) and Resources (R). The second focused on the creation of the Interaction (I) diagram. No key Dynamic (D) (whether social or ecological) was judged relevant to be detailed even though the possibility was open to participants. The final interaction diagram is presented in the Annex.

Participatory Bayesian Belief Network

General principles of Bayesian Belief Network modelling

A Bayesian Belief Network is a multivariate model for a set of variables, defined by three main components:

1. A directed acyclic graph (DAG) which connects variables together when they are statistically dependent. Figure 3 is an example of a DAG involving four variables visualized as nodes indicating the variable's name. Arrows between nodes indicate causal relationship and are visualized as directed links that point from cause to effect. For example here, aphids are dependent on pesticide use, which aims at killing them, and ladybugs, which prey on them.

2. Each variable is defined by several states. For example, the aphid variable may have two states: "under damage threshold" and "above damage threshold". In pest control, "damage threshold" refers to a level of pest population above which significant damages are predicted. These states must represent the full scope of possible states for this variable in the network considered.

Each variable has a conditional probability table (CPT), indicating all conditional

probabilities between connected variables. For example, if we consider that the variable, crop yield, has three states "0 to 5 tons", "5 to 10 tons", and "10 to 15 tons", the CPT for the crop yield variable might be as in Table 1: 1 indicates, for example, that under the condition that aphids are under damage threshold the probability of the crop yield variable being between 5 and 10 tons is 0.2, i.e. 20%.

With these three components, the probability distribution of all the variables in the network can be calculated using Bayes' theorem. Once such Bayesian network has been set-up, it is possible to feed new information into the network about the probability distributions of one or several variables. This process is called Bayesian inference. In our example, it is possible that we actually know with certainty thanks to an observation that the Aphid variable is in the "Under damage threshold" state (probability of 1 for this state for the Aphid variable). As a consequence of this new piece of information, the Bayesian network can be updated regarding all the other probability distributions of the network's variables in order to accommodate this new piece of information. In our simple example, it means that the crop yield variable would take the distribution in the table line corresponding to "under damage threshold". This adaptation to new information is called "belief propagation". It is possible to use this belief propagation feature of BBN to explore scenarios with stakeholders [START_REF] Düspohl | A Review of Bayesian Networks as a Participatory Modeling Approach in Support of Sustainable Environmental Management[END_REF]. In this case, the new information input (i.e. "Aphids are under the threshold damage") is the scenario and the modification of the BBN by "belief propagation" is the effect of the scenario.

From a consensual ARDI representation to a consensual Bayesian net structure (step

2)

The conceptual model was used as a baseline to be translated into a Bayesian net structure. By Bayesian net structure, we understand adding the DAG with characterization of all states. In this workshop, stakeholders had first to agree on variables and causality links to be kept from ARDI in the Bayesian net structure. Because both ARDI and Bayesian nets are causal networks, variables and arrows representing causal interactions could be transferred directly.

However, two main challenges may appear during this step. First, ARDI representation allows feedback loops and is consequently potentially a cyclic graph, in contrast to Bayesian networks, which are based on an acyclic graph approach. BBNs are known to create difficulty for the We proposed grouping variables when similar behaviors were described. We proposed deleting variables when their relevance was not obvious. We proposed that every simplification identified should be submitted for approval by participants. If the participants did not reach consensus on a given simplification, the network was left untouched. We invited the participants to propose their own simplification proposals. Finally, we proposed adding some variables to the Bayesian net structure as we had good reason to think that some obvious nodes were forgotten or implicit. For example, from our previous round of interviews, agricultural advisors were regularly spontaneously mentioned as key agents by farmers regarding their pest management strategy (Salliou and Barnaud 2017). As they did not appear in the Bayesian net, they were proposed and agreed by stakeholders as a new variable. Stakeholders also made their own additions. They added for example the "mating disruption" technique variable. Mating disruption is a technique that releases mating pheromones to disrupt Codling moth and Tortrix reproduction. This whole translation process simplified the original ARDI representation, which included 38 nodes and 57 edges, into an 18 nodes and 27 edges Bayesian net structure (Figure 4). Once the DAG structure was defined, the second step towards a final consensual Bayesian net structure was to define and agree on all variable states (Table 2). Participants agreed on most states relatively easily. Some involved much discussion, like the "rusticity" state of the Plant variety variable. This qualitative state hides divergent interpretations, from pest resistance to traditional tree varieties. This "rusticity" state was nevertheless kept in the final BBN structure as it is a term widely used by sellers and buyers of fruit trees. If this variable had been important

for our final analysis, it might have been necessary to detail it. In general, we tried to avoid such polysemy to ensure a mutual understanding among participants. For each variable, the participants were asked to elicit a conditional probability table (CPT);

this can be very time-consuming when model complexity is rising. If the direct probability elicitation workload is too heavy, an algorithm can be used to populate the CPT to ease the knowledge acquisition process [START_REF] Das | Generating Conditional Probabilities for Bayesian Networks: Easing the Knowledge Acquisition Problem[END_REF]). In our case, with 266 probabilities to be elicited, it meant that one probability had to be elicited every 40 seconds on average for a three-hour-long interview. We considered this process to be feasible without using an algorithm.

Another challenge in probability elicitation by stakeholders is that potentially not all participants are at ease with probability reasoning. In this regard, it has been demonstrated that elicitation using frequencies is more intuitive [START_REF] Anderson | Embracing uncertainty: the interface of Bayesian statistics and cognitive psychology[END_REF]). Furthermore, it has been demonstrated that imagery is more effective than abstract presentations in mobilizing an expert's experience [START_REF] Brunner | Improving Data Utilization: The Case-Wise Alternative[END_REF], cited in [START_REF] Anderson | Embracing uncertainty: the interface of Bayesian statistics and cognitive psychology[END_REF]). Consequently, during the interview, while asking questions to elicit probabilities, we showed images on cards about variables and states to facilitate the cognitive process.

Once the Bayesian net structure and individual CPTs were obtained, we compiled this information using the BBN modelling software Netica (V5.18). Through this process, we obtained five BBNs, one for each participant, representing their individual representation about the question of coordination for biological control. Each BBN was introduced to its "owner" and was validated individually. For some, minor corrections were made on the conditional probabilities previously indicated. However, in general, the participants recognized and validated their personal perspective.

Scenario exploration using Bayesian inference (step 4)

In this section, we introduce our original framework for ambiguity analysis using participatory BBN modelling. In the first section, we introduce our typology of uncertainties, detailing how ontological uncertainty and ambiguity are represented and understood in our participatory BBN. In the second section, we present the use of scenarios in BBN in order to shed light on ambiguities among stakeholders.

Uncertainty typology

 Ontological uncertainty

Ontological uncertainty relates to inherent variability and unpredictability [START_REF] Walker | Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support[END_REF]).

When we analyze an individual BBN, we considered that ontological variability could be approximated through the probability distribution of a variable (Figure 5). To represent unpredictability of a variable, we follow the principle of indifference (a classical approach to assign probabilities in cases of ignorance [START_REF] Castell | A Consistent Restriction of the Principle of Indifference[END_REF])). Following this principle, unpredictability situations were indicated by a normal distribution law or equiprobability. Ambiguity can be analyzed by comparing individual BBNs -more specifically, by comparing probability distributions of the same variable among different stakeholders (see Figure 6).

When two stakeholders share the same representation in a variable's probability distribution, there is no ambiguity. 

BBN scenario exploration and uncertainty analysis  BBN scenario

In the previous section, we proposed a way to characterize two types of uncertainty in static BBNs, that is to say, the stakeholder's representation at the moment of the probability elicitation. Thanks to Bayesian inference, it is possible to "feed" each network with new information. In our case, we call such new information a scenario. A scenario is explored by imposing new probability distributions on one or several variables in a Bayesian network. When a new piece of information is introduced in a BBN, all other variables update their probability distribution accordingly. Changes in probability distributions on child nodes indicate the impact of each scenario [START_REF] Düspohl | A Review of Bayesian Networks as a Participatory Modeling Approach in Support of Sustainable Environmental Management[END_REF].

In this study, we tested the effect of a pest-suppressing landscape scenario, i.e. the scenario of a complex landscape that would be favorable to natural enemies. According to the scientific literature [START_REF] Bianchi | Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control[END_REF], landscape complexity means a high proportion of meadows, hedgerows, and woods in the landscape (sometimes called semi-natural habitats). To explore the effects of such landscape, we directly modified landscape variables in each individual BBN (variables in light blue in Figure 4) to be as close as possible to these pest-suppressing conditions. The variables explicitly referring to landscape variables in the BBN are the following: (1) grain growers' neighboring fields with forest, meadow, and cereal crops as potential states; (2) fruit growers' neighboring fields with organic, conventional, or absent states; and (3) sheltering hedgerows with absence and presence as alternative states. As the scientific literature says that complex landscapes that enhance biological control are composed of a high proportion of semi-natural habitats [START_REF] Bianchi | Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control[END_REF], we imposed the following information on each individual BBN:

1. Certainty of sheltering hedgerows presence (probability of presence: 100%) 2. Grain growers' neighboring fields are composed of woods and meadows with equal probability (50%). It means also that there is certainty that there are no crop fields (probability: 0%)

3. Fruit growers' neighboring fields are considered to be not present with certainty; there is no orchards in the landscape (probability of "none" state: 100%)

 BBN scenario and ambiguity analysis

When a scenario is tested, probability distributions may change, and two components of this change can be analyzed for each stakeholder's BBN (Figure 7): As a consequence, it is possible to analyze ambiguity on both effect of the scenario and final states. As stakeholders may agree or disagree on both components, there are four potential situations. They are represented in the Figure 8. Depending on the objective of the modelling process, scenario impact analysis may focus on the effect of the scenario, final states, or both. In our case study, as we focused on the effect of a complex landscape for different stakeholders, it is especially the effect of the scenario that we analyzed.

 BBN scenario and stakeholders' feedback

We explored together with each participant the effect of this scenario. Probably because they participated in the construction of their BBN model, none of them mentioned any problem understanding the model and the way the scenario impacted other variables. Participatory exploration of the scenario allows for direct feedback from each stakeholder. Each stakeholder indicated his interpretation of the effect of the scenario in his own words. Such feedback is complementary to our formal analysis of uncertainty, which is conducted in the lab. Both uncertainty analysis and stakeholders' feedback are used to shed light on each stakeholder's representation of the socio-ecological system.

Results

Through the abovementioned modelling process, we constructed a conceptual model of the socio-ecological systems agreed among the five participants, and then five individual BBNs corresponding to each participant's personal probabilities applied to this common socioecological system structure. Once each BBN had been fed with the scenario about landscape complexity, we analyzed and compared the effect of the scenario. The effect of the scenario on all individual BBNs is presented in the graph in Figure 9. Note: Each bar corresponds to one state of the variable and is indicated within brackets. Red and green bars show the modification of the initial probability distribution due to the effect of the scenario. Bars surrounded by a black line are the probability value of the final state of each described variable. The "complex landscape" scenario is based on the following parametrization: Probability of "presence" of a sheltering hedgerow: 100%, Probability of "woods" and "meadows" as grain growers' neighboring fields: 50%, probability of no orchards in neighboring fields: 100%.

The effect of the scenario is diverse among participants regarding the Pests variable, ranging from -24.4% to +11.8%. Whereas the fruit tree advisor considers that such scenario has no effect whatsoever, other stakeholders' models indicate a modification in the probability law of this variable. Three participants' BBNs indicate a reduction in the probability that pests are harmful to sales. Whereas the landscape ecologist and conventional fruit tree grower are close to full agreement on the effect of the landscape on pests (-2% and -3.84% respectively), the organic fruit tree grower's model indicates a reduction in this probability by 24.4%. This disagreement on the effect of the scenario relates specifically to the organic fruit tree grower's belief that neighboring conventional orchards strongly favor pests. The pedagogic farm manager indicated a positive effect on pests harmful to sales (+11.8%). It is important to notice here that the pedagogic farm manager result should be considered with much care. Indeed, he indicated when giving information to fill his CPT that he did not know the effect of the surrounding landscape in the sense that, according to him, it might have a strongly positive or a strongly negative effect. Consequently, he indicated that he was unable to capture this variability through a probability law and considered the effect between landscape and pests to be unpredictable.

The effect of the scenario about the activity of generalist predators also varies among participants, ranging from -23.4% to +10.8%. Again, whereas the fruit tree advisor considers that such scenario has no effect whatsoever, other stakeholders' models indicate a modification in the probability law for this variable. The same three stakeholders whose models indicated a reduction in pests as a result of the scenario connect a more complex landscape with more active generalist predators. The landscape ecologist and the organic fruit tree grower agree on the effect of a complex landscape on the activity of generalist predators (+10.8% and +10.7% respectively). The conventional fruit tree grower's model indicates a close representation of this effect, with a +6.6% rise in probability of generalist predators being active. The pedagogic farm manager's result, indicating a negative effect on generalist predators (-23.4%), should be taken with the same care due to the same unpredictability issue previously described.

The effect of the scenario on the probability law for the Apple production variable is consistent among all stakeholders. The effect of the scenario ranges from -3.2% to +2% probability of getting first quality apples (fresh). Apart from the fruit tree advisor, all indicated an effect of the scenario on this variable. This effect, however, appears very limited, as some stakeholders indicated when interviewed about it. Again, the same three stakeholders (landscape ecologist, organic fruit tree grower, and conventional fruit tree grower) shared a similar representation that a complex landscape favors a small increase in the "fresh" state of the Apple production variable (+2%, +1.4%, and +0.2% respectively). Given the very limited effect of the scenario on the Apple production variable among all participants, we can say that participants agree on this effect.

Discussion

In a first section, we discuss how this study of ambiguity in socio-ecological systems may be of interest to those interested in landscape ecology applied to agriculture. In the second section, we discuss alternatives to ambiguity modelling. In the final section, we discuss the difficulties involved in participatory BBN modelling regarding stakes and time involved for participants.

Ambiguity in landscape effect

Our participatory BBN approach was successful in representing and analyzing ambiguity among stakeholders. Regarding our specific case study, we showed that stakeholders disagree on the effect of the landscape on insects. This variability is consistent with 2016). In this regard, our results clearly show that the stakeholders actually agree that the landscape effect has a low impact on apple production. We were able to get new insight on why farmers did not previously mention any effect of the landscape on natural enemies, whereas landscape ecology findings regularly do. Even though landscape ecologists may measure more activity by natural enemies in relation to more complex landscapes, local stakeholders do not perceive a significant effect of this phenomenon on farms' economic results. This sheds light on an important distinction between ecological function and ecosystem services (de Groot et al.

2010

). It stresses that, even though landscape ecologists may identify a correlation between a more complex landscape and some useful insects [START_REF] Bianchi | Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control[END_REF]), they identify an ecological function and not an ecosystem service of pest control to farmers. Our study suggests that this relation between ecological function and ecological benefits to farmers is far from obvious. It questions the local feasibility of designing pest-suppressing landscapes as long as such causality is not identified. This is in line with some scholars who challenge ecologists to make biodiversity useful for farmers [START_REF] Letourneau | Comparison of organic and conventional farms: challenging ecologists to make biodiversity functional[END_REF]. It explains why local stakeholders may be resistant to such an innovation approach in pest regulation, because they do not think it will bring any significant benefit. It suggests that landscape ecologists should study more explicitly the relation between ecosystem functions stimulated by landscape complexity and benefits farmers may obtain from them.

Modelling alternatives to ambiguity exploration

Other modelling approaches could have been considered to explore ambiguity between stakeholders. Consensus analysis [START_REF] Romney | Culture as consensus: A theory of culture and informant accuracy[END_REF]) or Q methodology [START_REF] Stephenson | The Study of Behavior: Q-technique and Its Methodology[END_REF] are statistical methods designed to explore the subjectivity of different stakeholders. They are based on each stakeholder answering a questionnaire (consensus analysis) or ranking a set of assertions (Q methodology) in order to identify groups of stakeholders that are similarly minded about a topic. These two methods deal with ambiguity because their aim is to identify different groups with similar representations on a topic. Stone-Jovicich et al. (2011), for example, used consensus analysis to compare the mental models of two types of stakeholders in a river catchment in South Africa. However, they do not detail the causal relationships between variables involved in a topic. In particular, they do not explore in probabilistic terms how each variable behaves for each stakeholder. In this regard, our approach focuses on each individual representation of these probabilities, whereas the two other methods look for group similarities and differences. Depending on the objective of the research, whether focused on comparing detailed individual representations of a system or grouping similar individuals sharing similar representations, BBN or other methodologies mentioned here may be preferred. Application of all three methods on a similar case study could be useful to compare their respective advantages and efficiency in exploring ambiguity.

The methodology proposed in this paper supposes that it is feasible to reach -together with participating stakeholders-a consensual conceptual model of the socio-ecological system at stake. And what if such consensus is not possible because some stakeholders disagree on some components to be included in the conceptual model? In other words, how can we deal with ambiguity about the structure of the conceptual model? First, structural ambiguity of the conceptual model could be conserved by maintaining in parallel two or several conceptual models at the same time. Each conceptual model could be translated into a BBN and each BBN parametrized by each stakeholder. A similar scenario could be applied to each BBN, allowing to explore the impact on the components on which stakeholders disagree. An alternative option could be to explore individual mental models of stakeholders. [START_REF] Carley | Extracting, representing, and analyzing mental models[END_REF] proposed a method to elicit and compare individual mental models through network analysis and statistical testing for similarities and differences in the content and structure of mental models. Rather than being statistically analyzed, ambiguity could also be sorted out through dialogical learning between stakeholders [START_REF] Brugnach | More is not always better: Coping with ambiguity in natural resources management[END_REF]). Indeed, mental models of disagreeing participants could be directly introduced, discussed and compared by stakeholders themselves in a collective workshop. According to our knowledge, this latter approach remains to be tested and documented. Finally, another approach to manage this ambiguity could rely on the possibility to bring external expertise in case the uncertainty would be epistemic (when more information reduces the uncertainty). Indeed, in some cases, invited or external expertise can solve the problem of which stakeholder's representation of a system is correct or not 

Stakes and time constraint in participatory BBN modelling

Another challenge regarding this approach is the time involved in participatory BBN. Each stakeholder had to mobilize around 12 hours for the whole process (twice three hours for the consensual conceptual model construction, three hours to arrive at the common Bayesian net structure, two hours to elicit the CPT, and one hour for scenario exploration). This is quite a significant amount of time for each stakeholder. In our case study, probably because the stakes were low, we experienced no major controversies or disagreement when constructing the conceptual model of the socio-ecological system and the Bayesian net structure. For the same reason however, we experienced some stakeholder fatigue and difficulty in mobilizing them at the end of the modelling process. The time constraint has to be put into perspective with the importance of what is at stake for the participants. In the case of serious disagreement among stakeholders, it could have been much more time-consuming because each step could have involved much more discussion to reach consensus. However, if stakes had been high, willingness to participate would have probably been higher and stakeholders keener to invest time and energy in a motivating topic. The time constraint is also quite significant in the probability elicitation step, which may be demanding [START_REF] Düspohl | A Review of Bayesian Networks as a Participatory Modeling Approach in Support of Sustainable Environmental Management[END_REF]). [START_REF] Shaw | Exploring the utility of Bayesian Networks for modelling cultural ecosystem services: A canoeing case study[END_REF], for example, mentioned that a probability elicitation step with one expert required more than

five hours to answer 120 probabilities, which is way more than what was needed in our elicitation process. Our opinion is that, because stakeholders were involved in each step of the construction process, from the initial question to scenario exploration, this favored a clear understanding and appropriation of the model. Such observation argues in favor of stakeholder participation all along the participatory BBN modelling approach, but this is never undertaken according to [START_REF] Düspohl | A Review of Bayesian Networks as a Participatory Modeling Approach in Support of Sustainable Environmental Management[END_REF]. The participants also mentioned that co-constructing step by step a common framework of understanding helped them to understand other participants' perspectives and sometimes even build new knowledge. This learning effect has already been stressed in the case of other modelling approaches involving representation elicitation where interactions between stakeholders favored a shared mental model of a socio-ecological system [START_REF] Mathevet | Water Management in the Camargue Biosphere Reserve: Insights from Comparative Mental Models Analysis[END_REF]).

Conclusion

BBNs are well known for their capacity to deal with ontological uncertainty. However, the participatory BBN construction process are normally not specifically exploring the uncertainties which are related to ambiguity. Eliciting and eventually sorting out ambiguities can be critical when it comes to participatory processes. We introduced in this paper an approach alternating collective and individual steps to build individual BBNs for different stakeholders about the same socio-ecological system. This participatory BBN modelling demonstrated its ability to capture different stakeholders' representations and thus detail ambiguity about how a socio-ecological system may function. This participatory BBN modelling approach engaged stakeholders in all the steps. Comparison of stakeholders' BBNs enabled visualization of each stakeholder's subjectivity and identification of areas of agreement or disagreement about the way stakeholders think the socio-ecological system works and how it reacts to an exploratory scenario. This method applied to a case study regarding different representations of the effect of the landscape on natural enemies within orchards led to understanding the underlying reason for differing representations between local stakeholders and landscape ecology findings. This method is an innovative approach to sorting out ambiguities among stakeholders while conserving ontological uncertainties. It could be used in any context facing apparently contradictory representations among different stakeholders about a socio-ecological system. It would be particularly interesting to eventually use this method, if needed, for use in controversial situations where higher stakes may necessitate a detailed understanding of each stakeholder's representation of an issue.

  al. 2012, Kelly et al. 2013), BBN construction with stakeholders do not prescribe or guide on how to consider ambiguity as part of participatory modelling with stakeholders. Most of the time, different stakeholder's representations in participatory BBN are integrated either by averaging all representations in a single model (e.g. Shaw et al. 2016) or by choosing the "best available source of information" (Voinov and Bousquet 2010:1268, Holzkämper et al. 2012).

Figure 1 :

 1 Figure 1: The four main steps of our participatory BBN modelling process. Note: ARDI: participatory methodology to co-construct a conceptual model of a socio-ecological system following Actors (A), Resources (R), Dynamics (D), and Interactions (I) elicitation workshops. CPT: conditional probability table.
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 21 Co-constructing a consensual conceptual model of a socio-ecological system using the ARDI methodology (step 1)

Figure 2 :

 2 Figure 2: Example of a simplified interaction diagram using the ARDI methodology. Note: Green boxes indicate resources and black boxes indicate actors in the system.

Figure 3 :

 3 Figure 3: Example of directed acyclic graph (DAG) with nodes indicating variables.

Figure 4 :

 4 Figure 4: Final directed acyclic graph (DAG) constructed together with stakeholders. Note: Colors distinguish variables about landscape (light blue), agricultural practices (green), social factors (red), insect populations (dark blue), abiotic factor (purple), and economic output (yellow).

Figure 5 :

 5 Figure 5: Typology of ontological uncertainties that can be analyzed in an individual Bayesian Belief Network  Ambiguity Ambiguity occurs when stakeholders perceive their environment differently and build different representations about it (Brugnach et al. 2008). Representations are mental constructions elaborated by individuals in a certain context and period of time (Gaonac'h et al. 2006).

Figure 6 :

 6 Figure 6: Agreement and disagreement between two stakeholders regarding ambiguity about a variable.
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 12 The effect of the scenario on probability distributions of variables through belief propagation The final state of probability distributions of variables once the BBN has been modified by the scenario.

Figure 7 :

 7 Figure 7: Effect of the scenario on probability distribution through belief propagation. Distinction between the effect of the scenario and the final state of a BBN variable. Note: Red and green bars show the modification of the initial probability distribution.

Figure 8 :

 8 Figure 8: The four standard cases covering agreement and disagreement about the effect of the scenario and the final state of a variable from the BBN. Note: Red and green bars show the modification of the initial probability distribution due to the effect of the scenario. The bar surrounded by a black line is the final state for each state of the variable.

Figure 9 :

 9 Figure 9: Effect of the "complex landscape" scenario on each stakeholder's Bayesian Belief Network on the Pests, Generalist predators, and Apple production variables in the BBN.

(

  Etienne et al. 2011, Halbrendt et al. 2014).

Table 1 :

 1 Conditional probability table for the crop yield variable

	Table

  [START_REF] Düspohl | A Review of Bayesian Networks as a Participatory Modeling Approach in Support of Sustainable Environmental Management[END_REF][START_REF] Landuyt | A review of Bayesian belief networks in ecosystem service modelling[END_REF]). If feedback loops had been present, it would have been necessary to establish a Dynamic Bayesian Network approach, which can represent feedback loops[START_REF] Grzegorczyk | Non-stationary continuous dynamic Bayesian networks[END_REF]. This situation did not occur in our case study. The second challenge relates to the preparation for step 3, which deals with conditional probability elicitation. As the number of combinations of variable states grows exponentially with model complexity, probability elicitation quickly becomes impractical for the direct elicitation of probabilities by stakeholders[START_REF] Shaw | Exploring the utility of Bayesian Networks for modelling cultural ecosystem services: A canoeing case study[END_REF]. Consequently, for direct elicitation of conditional probabilities to be manageable, we took action to keep the Bayesian net structure within a manageable complexity range. We proposed simplifications during the workshop to reduce proactively the quantity of variables and consequently limit the probability

	Aphids integration of feedback loops (	Crop yield 0 to 5 tons 5 to 10 tons	10 to 15 tons
	Under threshold	damage	0.1	0.2	0.7
	Above threshold	damage	0.2	0.3	0.5

elicitation challenge in step 3. This simplification process has been recognized as good practice in participatory BBN when, after a broad range of potentially relevant variables have been defined, variables should be reviewed with regard to their relevance

[START_REF] Düspohl | A Review of Bayesian Networks as a Participatory Modeling Approach in Support of Sustainable Environmental Management[END_REF]

. Two types of simplification were considered: grouping similar variables and deleting irrelevant ones.

Table 2 :

 2 Overview of BBN variables and states collectively discussed and agreed by participants 2.2.3 Individual elicitation of each participant's CPT and validation (step 3)

	Variable		States	Remark
	Supply chain		Short, Long	n/a
	Agricultural advisor	Coop and public, Pesticide seller, None n/a
	Plant variety		Rustic, Non rustic	Polysemy of "rustic"
	Mating disruption	None, Present	n/a
	Pesticides		Specific, Broad spectrum	Does not include, Affirm
	Affirm		Used, Not used	Pesticide sprayed against Codling moth
				and Tortrix's eggs
	Aphelinus mali		Absent, Present	Natural enemy parasitizing woolly aphids
	Sheltering hedgerow	Absent, Present	Aims to shelter natural enemies
	Neighboring	fields	Crops, Woods, Meadows	n/a
	grain growers			
	Neighboring	fields	Organic, Conventional, None	n/a
	fruit tree growers		
	Inter-row vegetation	Mowed, Not mowed	Not mowing is thought to generate
				habitats for insects
	Codling moth and	Below 0.5% threshold, Above 0.5%	Threshold = 0.5% of fruits observed in the
	Oriental fruit moth	threshold	orchard attacked by the pest
	Pests		Harmful to sales, Not harmful	Except Codling moth and Tortrix and
				Woolly aphids

  Bianchi et al.'s (2006) synthesis mentioning variability in the measurement of landscape effects from increasing or neutral to decreasing natural enemies' populations. The relation between natural enemies enhanced by the landscape and benefit from pest control is more and more widely challenged in the agroecology literature (e.g. Chaplin-Kramer et al. 2011, Tscharntke et al.
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