

Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces

Annette Fagerlund, Trond Møretrø, Even Heir, Romain Briandet, Solveig

Langsrud

▶ To cite this version:

Annette Fagerlund, Trond Møretrø, Even Heir, Romain Briandet, Solveig Langsrud. Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces. Applied and Environmental Microbiology, 2017, 83 (17), pp.AEM.01046-17. 10.1128/AEM.01046-17. hal-01607143

HAL Id: hal-01607143 https://hal.science/hal-01607143

Submitted on 26 May 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

- ¹ Cleaning and disinfection of biofilms
- ² composed of *Listeria monocytogenes* and
- ³ background microbiota from meat
- processing surfaces
- 5 Annette Fagerlund^a#, Trond Møretrø^a, Even Heir^a, Romain Briandet^b, Solveig Langsrud^a
- 6 Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway^a; Micalis
- 7 Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France^b
- 8 Running Head: Cleaning and disinfection of biofilms
- 9 Keywords: Listeria monocytogenes, conveyor belt, biofilm, cleaning, disinfection
- 10 #Address correspondence to Annette Fagerlund, annette.fagerlund@nofima.no

11 ABSTRACT

12	Surfaces of food processing premises are exposed to regular cleaning and disinfection (C&D)
13	regimes, using biocides that are highly effective against bacteria growing as planktonic cells.
14	However, bacteria growing in surface associated communities (biofilms) are typically more
15	tolerant towards C&D than their individual free cells counterparts, and survival of pathogens
16	such as Listeria monocytogenes may be affected by interspecies interactions within biofilms. In
17	this study, Pseudomonas and Acinetobacter were the most frequently isolated genera surviving
18	on conveyor belts subjected to C&D in meat processing plants. In the laboratory, Pseudomonas,
19	Acinetobacter and L. monocytogenes dominated the community both in suspensions and in
20	biofilms formed on conveyor belts, when cultures were inoculated with eleven-genera cocktails
21	of representative bacterial strains from the identified background flora. When biofilms were
22	exposed to daily C&D cycles, mimicking treatments used in food industry, the levels of
23	Acinetobacter and Pseudomonas mandelii diminished, and biofilms were instead dominated by
24	Pseudomonas putida (65-76%), Pseudomonas fluorescens (11-15%) and L. monocytogenes (3-
25	11%). The dominance of certain species after daily C&D correlated with high planktonic growth
26	rates at 12°C and tolerance to C&D. In single-species biofilms, L. monocytogenes developed
27	higher tolerance to C&D over time, both for the peracetic acid and quaternary ammonium
28	disinfectant, indicating that a broad-spectrum mechanism was involved. Survival after C&D
29	appeared to be a common property of L. monocytogenes strains, as both persistent and
30	sporadic subtypes showed equal survival in complex biofilms. Biofilms established preferentially

Applied and Environ<u>mental</u> Microbioloav

31 in surface irregularities of conveyor belts, potentially constituting harborage sites for persistent 32 contamination.

IMPORTANCE

33

34 In food industry, efficient production hygiene is a key measure to avoid accumulation of 35 spoilage bacteria and eliminate pathogens. Persistence of bacteria is however a withstanding 36 problem in food processing environments. This study demonstrated that environmental 37 bacteria can survive foam cleaning and disinfection (C&D) at user concentrations in the 38 industrial environment. The phenomenon was replicated in laboratory experiments. Important 39 characteristics of persisting bacteria were high growth rate at low temperature, tolerance to the cleaning agent and ability to form biofilm. This study also supports other recent research 40 41 suggesting that strain-to-strain variation cannot explain why certain subtypes of Listeria 42 monocytogenes persist in food processing environments while others are found only 43 sporadically. The present investigation highlights the failure of regular C&D and a need for 44 research on improved agents efficiently detaching the biofilm matrix.

INTRODUCTION 45

Food production premises are regularly subjected to cleaning and disinfection (C&D) regimes 46 47 designed to reduce bacterial load and eliminate pathogens. Peracetic acid (PAA) and guaternary 48 ammonium compounds (QAC) such as benzalkonium chloride are widely used as disinfectants in 49 the food industry and in healthcare facilities. Disinfectants are agents that have multiple targets 50 in the cell, and typically kill bacteria by disruption of the bacterial membrane (1). The use of

51	chemical disinfectants in food processing environments is usually based on their efficacy in tests
52	performed with planktonic bacteria (2). However, in natural and industrial environments,
53	bacteria often grow as biofilms, which are complex and structured microbial communities
54	encased in a self-produced protective extracellular matrix composed of polysaccharides,
55	proteins and/or extracellular DNA. The formation of biofilms is important for microbial survival
56	in the food industry, and cells in biofilms typically exhibit increased tolerance towards
57	antimicrobial agents compared with their planktonic counterparts (3, 4). Possible mechanisms
58	contributing to the low efficacy of conventional biocides on biofilms include diffusion-reaction
59	limitation associated with the biofilm matrix, slow growth and development of persister cell
60	subpopulations (4).
61	The microbiota found in food processing plant surfaces after C&D is commonly reported to be
61 62	The microbiota found in food processing plant surfaces after C&D is commonly reported to be diverse and include foodborne pathogens and food spoilage bacteria. Predominant genera in
62	diverse and include foodborne pathogens and food spoilage bacteria. Predominant genera in
62 63	diverse and include foodborne pathogens and food spoilage bacteria. Predominant genera in meat processing plants after C&D include <i>Pseudomonas, Acinetobacter, Staphylococcus</i> and
62 63 64	diverse and include foodborne pathogens and food spoilage bacteria. Predominant genera in meat processing plants after C&D include <i>Pseudomonas, Acinetobacter, Staphylococcus</i> and <i>Serratia</i> (5-7). One of the pathogens regularly encountered in such environments is <i>Listeria</i>
62 63 64 65	diverse and include foodborne pathogens and food spoilage bacteria. Predominant genera in meat processing plants after C&D include <i>Pseudomonas, Acinetobacter, Staphylococcus</i> and <i>Serratia</i> (5-7). One of the pathogens regularly encountered in such environments is <i>Listeria</i> <i>monocytogenes,</i> which causes the life-threatening disease listeriosis. This bacterium poses a
62 63 64 65 66	diverse and include foodborne pathogens and food spoilage bacteria. Predominant genera in meat processing plants after C&D include <i>Pseudomonas, Acinetobacter, Staphylococcus</i> and <i>Serratia</i> (5-7). One of the pathogens regularly encountered in such environments is <i>Listeria</i> <i>monocytogenes</i> , which causes the life-threatening disease listeriosis. This bacterium poses a significant food safety challenge given its wide distribution in nature and its ability to grow at
62 63 64 65 66 67	diverse and include foodborne pathogens and food spoilage bacteria. Predominant genera in meat processing plants after C&D include <i>Pseudomonas, Acinetobacter, Staphylococcus</i> and <i>Serratia</i> (5-7). One of the pathogens regularly encountered in such environments is <i>Listeria</i> <i>monocytogenes</i> , which causes the life-threatening disease listeriosis. This bacterium poses a significant food safety challenge given its wide distribution in nature and its ability to grow at refrigeration temperatures and to survive and persist on equipment in food processing

Comment citer ce document : Fagerlund, A., Møretrø, Heir, Briandet, R., Langsrud, S. (2017). Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces . Applied and Environmental Microbiology. DOI : 10.1128/AEM.01046-17

AEM

71 as conveyor belts onto processed food products have been documented, and in some cases 72 shown to result in outbreaks of listeriosis (8, 9).

73	Certain strains of <i>L. monocytogenes</i> can establish in the production environment and persist for
74	months or even years, especially in humid areas and areas where C&D is difficult. Persistent
75	strains of <i>L. monocytogenes</i> often belong to certain molecular subtypes, while other subtypes
76	are found only sporadically (10-14). Several studies have investigated whether phenotypic traits
77	such as the ability to form biofilms and survive biocide action may be responsible for the
78	prolonged persistence of certain strains on food processing plant surfaces (15-18). Individual
79	strains of <i>L. monocytogenes</i> have been shown to vary in their ability to form biofilms (19, 20)
80	and differ in their tolerance towards disinfectants (21, 22). However, no single genetic
81	determinant or individual trait responsible for L. monocytogenes persistence has been
82	identified, and it is now generally thought that the perceived persistence of certain subtypes of
83	L. monocytogenes is due to a complex combination of factors (13, 14).
0.4	The resident background microflers is recognized to play an important role with respect to
84	The resident background microflora is recognized to play an important role with respect to
85	protecting and sheltering pathogenic strains within food processing environments. Weak biofilm
86	formers can for instance improve their survival by joining a multispecies biofilm (23-25).
87	Additionally, it appears that biofilms composed of multiple genera are generally less susceptible
88	to biocide action than their single-species counterparts (4, 23, 26, 27). For example, under most
89	conditions, dual species biofilms of L. monocytogenes and Lactobacillus plantarum were more
90	tolerant to benzalkonium chloride and PAA than were the corresponding single species biofilms
91	(28). Nevertheless, specific bacterial interactions, which include competition, coaggregation and 5

92

93	community members (23). Growth of <i>L. monocytogenes</i> in dual-species biofilms with
94	representative strains from food production environments has for instance resulted in both
95	enhanced and reduced cell numbers of <i>L. monocytogenes</i> (29). It is, however, not clear to what
96	extent these effects vary between strains or subtypes of <i>L. monocytogenes</i> , or how different <i>L.</i>
97	monocytogenes strains survive in more complex multigenera biofilms subject to conditions
98	similar to those found in food industry.
99	The purpose of this study was to examine biofilm formation and survival of strains belonging to
100	bacterial genera commonly isolated from conveyor belts in meat processing environments,
101	under conditions simulating those encountered in these environments. This included an
102	assessment of the efficacy of C&D under relevant conditions, and an examination of how the
103	background microbiota may affect growth and survival of persistent and sporadic L.
104	monocytogenes subtypes in biofilms exposed to C&D. Initially, the microbiota surviving C&D of
105	conveyor belts in meat processing plants was identified. An experimental biofilm model system
106	was then set up using conditions realistic for food industry, including growth on coupons cut
107	from conveyor belt material and exposure to daily cycles of C&D. Biofilms composed of L.
108	monocytogenes strains were compared with complex multigenera biofilms inoculated with both
109	L. monocytogenes and selected strains dominating the bacterial flora identified in meat
110	processing environments. The development of the biofilm microbiota was investigated using
111	viability counting, amplicon sequencing and imaging techniques.

metabolic cross-feeding, may have variable effects on the survival of individual biofilm

112 **RESULTS**

113	Identification of microbiota on conveyor belts in meat processing plants. Sampling of
114	nine conveyor belts after sanitation in two meat processing plants resulted in identification of a
115	total of 121 isolates from a total of 22 genera (Table 1). Eight genera were common for both
116	plants, but overall, the microbiota after sanitation differed between plants and between single
117	conveyor belts. For two of the six conveyor belts sampled in Plant A, the bacterial numbers were
118	very low and four or less isolates were collected (conveyors 4 and 5). For conveyors with higher
119	bacterial numbers, Pseudomonas was most frequently isolated and dominated alone in one
120	sample, together with Psychrobacter in another, and with Acinetobacter on a third conveyor
121	belt. For one conveyor belt, which was associated with a permanent L. monocytogenes
122	(MF5377) reoccurrence, a diverse microbiota was found in which Microbacterium dominated
123	together with Epilithonimonas. In Plant B, Sphingomonas dominated together with Rhodococcus
124	on one conveyor and with Acinetobacter on another. Only five isolates were collected from the
125	third conveyor belt. A total of 16 isolates were selected for the present study, representing the
126	most dominant bacteria (Table 2).
127	Three <i>Pseudomonas</i> sp. and two <i>Acinetobacter</i> sp. were subjected to whole genome sequencing
127	Thee rseutomonds sp. and two Achietobacter sp. were subjected to whole genome sequencing
128	and phylogenetic analysis to further determine their taxonomic status. This analysis showed

7

Downloaded from http://aem.asm.org/ on July 24, 2017 by INRA - France

129 that strain MF6396 belonged to the *Pseudomonas putida* group, and that strains MF6394 and

130 MF4836 belonged to the Pseudomonas fluorescens and Pseudomonas mandelii subgroups,

131 respectively, within the *P. fluorescens* complex (Fig. S1 in the Supplemental Material). Thus all

three strains belong to the *P. fluorescens* lineage. For simplicity, these strains are referred to as

Applied and Environ<u>mental</u> Microbioloav

133 P. putida MF6396, P. fluorescens MF6394 and P. mandelii MF4836 in the remainder of this text. 134 Both Acinetobacter strains included in the experiments (MF4640 and MF4642) were determined 135 to belong to the species A. johnsonii using in silico multilocus sequence typing (MLST) (Fig. S2 in 136 the Supplemental Material).

137 Pseudomonas and Acinetobacter dominated in laboratory multigenera biofilms. A

138 biofilm model system was set up to examine biofilm formation and survival under conditions 139 simulating food production environments. Biofilms were grown on conveyor belt coupons 140 placed vertically in 24-well plates with BHI broth at 12°C, which is a temperature typically found 141 in Norwegian meat processing facilities. In addition to the 16 strains from the background 142 microbiota found on conveyors in meat processing plants (described above), seven L. 143 monocytogenes strains belonging to different phylogenetic clusters were selected for inclusion 144 in biofilm experiments (according to selection criteria in Materials and Methods section). Four 145 belonged to MLST sequence types (STs) responsible for persistent contaminations in Norwegian 146 food processing plants, while three strains belonged to STs which were only sporadically 147 encountered in Norwegian food industry (Table 2) (22). Coupons were inoculated with a 148 suspension of either the 16 background microbiota strains plus the seven L. monocytogenes 149 strains (referred to as multigenera biofilms), or with only the seven L. monocytogenes strains (L. 150 monocytogenes biofilms). The biofilms were allowed to develop for four days and subsequently 151 subjected to C&D on Days 4 to 7, using a chlorinated alkaline cleaning agent (Alkalifoam) and 152 disinfection with either a QAC- or PAA-based disinfectant, at user concentrations recommended 153 by the manufacturers. Wells containing multigenera biofilms usually contained a floating pellicle

Comment citer ce document Fagerlund, A., Møretrø, Heir, Briandet, R., Langsrud, S. (2017). Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing . Applied and Environmental Microbiology. DOI : 10.1128/AEM.01046-17

Downloaded from http://aem.asm.org/ on July 24, 2017 by INRA - France

<u>p</u>		
scri	154	that was attached to the coupon at the air-liquid interface. Visible biofilm deposits were
Accepted Manuscript	155	generally observed in this zone of the coupons after C&D.
eo	156	The development of the microbiota in the multigenera biofilms was investigated using 16S rRNA
cept	157	amplicon sequencing. The results showed that after four days of biofilm growth, one of the A.
Act	158	johnsonii strains (MF4640) dominated the biofilm, while after seven days of growth, the P.
	159	putida strain (MF6396) had taken over as the dominant strain. The proportion of L.
	160	monocytogenes in the multigenera biofilm was higher on Day 7 than on Day 4 (Fig. 1A). To
	161	investigate whether the shift in microbiota from Day 4 to Day 7 was only due to establishment
	162	of a more mature biofilm, or also affected by the C&D cycles, new experiments were conducted
Applied and Environmental Microbiology	163	in which only the three dominating Pseudomonas spp. strains and A. johnsonii strain MF4640
	164	were included. Here, coupons that were rinsed daily with H_2O were included in addition to
	165	coupons treated with C&D agents. The results presented in Fig. 1B show that the bacterial strain
vppliec /	166	composition identified on coupons subjected to C&D in these two additional experiments were
4	167	similar to those obtained in the first three experiments in which biofilms were inoculated with
	168	all 16 background microbiota strains (Fig. 1A and Fig. S3 in the Supplemental Material).
	169	However, in the absence of C&D, no significant shift in the microbiota composition was

170 observed from Day 4 to Day 7, and the A. johnsonii strain dominated, followed by P. putida. This

171 indicated that daily exposure to C&D selected for P. putida, P. fluorescens and L. monocytogenes

172 and almost eliminated the P. mandelii and A. johnsonii strains.

173 No selection between different L. monocytogenes strains was observed in biofilms. To

174 determine whether the different L. monocytogenes strains had different fitness during growth

<u>Applied</u> and Environmental

194

175	in biofilms subjected to C&D, strain identification of single colonies collected after Day 7 of
176	biofilm growth were performed by sequencing of the <i>dapE</i> MLST allele (Fig. 2A and Fig. S4 in the
177	Supplemental Material). The frequencies of each strain across all tested samples ranged from
178	5% for MF5378, to 28% for MF5360. The four strains belonging to persistent subtypes had an
179	overall frequency of 51% across all samples, indicating that these strains did not have a greater
180	ability to survive in biofilms exposed to C&D than strains belonging to sporadic subtypes. No
181	evidence for selection between different L. monocytogenes strains was observed, neither in the
182	multigenera biofilms where <i>L. monocytogenes</i> was grown in the presence of 16 background
183	flora strains, nor in biofilms containing <i>L. monocytogenes</i> only.
184	Strains dominating in the multigenera biofilm showed high growth rates in planktonic
101	
185	culture. The relative amounts of each bacterial strain in planktonic cultures inoculated with the
185	culture. The relative amounts of each bacterial strain in planktonic cultures inoculated with the
185 186	culture. The relative amounts of each bacterial strain in planktonic cultures inoculated with the same bacteria as were used in the multigenera biofilm experiments is shown in Fig. 1C. As in the
185 186 187	culture. The relative amounts of each bacterial strain in planktonic cultures inoculated with the same bacteria as were used in the multigenera biofilm experiments is shown in Fig. 1C. As in the biofilm experiments, the bacterial composition developed towards <i>A. johnsonii, Pseudomonas</i>
185 186 187 188	culture. The relative amounts of each bacterial strain in planktonic cultures inoculated with the same bacteria as were used in the multigenera biofilm experiments is shown in Fig. 1C. As in the biofilm experiments, the bacterial composition developed towards <i>A. johnsonii, Pseudomonas</i> spp. and <i>L. monocytogenes</i> . In contrast to during growth in biofilm conditions, however, both <i>A</i> .
185 186 187 188 189	culture. The relative amounts of each bacterial strain in planktonic cultures inoculated with the same bacteria as were used in the multigenera biofilm experiments is shown in Fig. 1C. As in the biofilm experiments, the bacterial composition developed towards <i>A. johnsonii, Pseudomonas</i> spp. and <i>L. monocytogenes</i> . In contrast to during growth in biofilm conditions, however, both <i>A. johnsonii</i> strains (MF4640 and MF4642) seemed to compete equally well under planktonic
185 186 187 188 189 190	culture. The relative amounts of each bacterial strain in planktonic cultures inoculated with the same bacteria as were used in the multigenera biofilm experiments is shown in Fig. 1C. As in the biofilm experiments, the bacterial composition developed towards <i>A. johnsonii, Pseudomonas</i> spp. and <i>L. monocytogenes</i> . In contrast to during growth in biofilm conditions, however, both <i>A. johnsonii</i> strains (MF4640 and MF4642) seemed to compete equally well under planktonic culture conditions. Similarly, the three <i>Pseudomonas</i> spp. strains were in approximately equal

together in planktonic culture, both when they were grown alone and when they were grown

195 together with the 16 background microbiota strains (Fig. 2B and Fig. S4 in the Supplemental 196 Material). The proportion of each strain present in the cultures containing only L. 197 monocytogenes, determined using dapE amplicon sequencing, ranged from on average 9% 198 (MF5376/ST7) to 21% (MF5377/ST8) after 72 h of growth. When the seven L. monocytogenes 199 strains were grown together with the 16 background microbiota strains, the proportion of each 200 L. monocytogenes strain after 72 h ranged from 12% (MF5376/ST7 and MF5634/ST121) to 18% 201 (MF5377/ST8). These results indicated that during planktonic growth at 12°C, none of the seven 202 L. monocytogenes strains appeared to have a growth advantage allowing them to outcompete 203 any of the other strains. 204 When the individual strains were grown in separate wells in a Bioscreen C instrument (Fig. 3 and 205 Table S1 in the Supplemental Material), the largest maximal growth rates during the exponential 206 phase of growth was attained by P. fluorescens MF6394, followed by P. mandelii MF4836, the 207 two A. johnsonii strains and then P. putida MF6396. The cultures containing Pseudomonas 208 strains ultimately reached higher values of OD_{600} than the Acinetobacter cultures. Other strains 209 with high growth rates were the seven L. monocytogenes strains (which all had similar growth 210 curves) and Epilithonimonas strain MF6392, followed by the Psychrobacter and Microbacterium

211 strains (MF4641 and MF4634). It thus seems like the strains showing rapid planktonic growth at

212 12°C in BHI culture medium are highly competitive in the biofilms grown on conveyor belt

213 coupons.

214	The Pseudomonas genomes contained different sets of known biofilm-associated
215	genes. The difference in competitiveness between the three Pseudomonas strains and between
216	the two A. johnsonii strains in planktonic culture compared to growth in the conveyor belt
217	biofilm model (Fig. 1) could possibly be due to differences in the ability to form biofilms.
218	Therefore, the Pseudomonas spp. and A. johnsonii genomes were screened for known biofilm-
219	associated genes using BLAST analysis. All three Pseudomonas strains contained the alg operon
220	required for alginate synthesis, and homologs to the <i>lapABCD</i> and <i>lapG</i> genes required for
221	expression of the large surface protein LapA on the cell surface. The genes responsible for Pel,
222	Psl, and cellulose synthesis were however each only present in one of the three strains: P.
223	fluorescens MF6394 contained a psl operon, P. mandelii MF4836 contained a pel operon, while
224	a homolog to the wss operon required for cellulose synthesis was present in P. putida MF6396.
225	It thus appears that all three strains harbor genetic factors enabling biofilm formation (Table S2
226	in the Supplemental Material). With respect to the two A. johnsonii strains, not much is known
227	about biofilm formation in non-baumanii Acinetobacter strains, and no homologs to genes
228	shown to be involved in biofilm formation in Acinetobacter baumanii were identified in the
229	genomes of the two A. johnsonii strains employed in the current study. The two strains did
230	however have different genome sizes, as the genome of A. johnsonii MF4640 was 13% larger
231	than that of the 3.36 Mbp large genome of strain MF4642. A large portion of the additional
232	genetic material in MF4640 appears to constitute plasmids and other mobile genetic elements.

233 The sanitation regime was inefficient at killing bacteria in conveyor belt biofilms. To

234 assess sanitation efficacy in the biofilm model system, the total number of colony-forming units Downloaded from http://aem.asm.org/ on July 24, 2017 by INRA - France

AEM

Applied and Environ<u>mental</u>

Applied and Environmental Microbiology

Microbiology

235 (CFUs) in biofilms growing on conveyor belt coupons was determined both before and after 236 coupons were subjected to C&D.

237 After the initial four days of biofilm development, the cell densities in multigenera biofilms reached about 1×10⁸ CFUs per coupon (3 cm² surface area). Coupons were then subjected to 238 239 daily cycles of C&D for three days, and sampled again on Day 7 after allowing 24 h of regrowth 240 after the last C&D cycle. Control coupons were rinsed with sterile deionized water (H₂O) every 241 day. There was no significant difference in cell densities on coupons with multigenera biofilms 242 sampled prior to C&D on Day 4 and Day 7, regardless of whether coupons had been treated 243 with QAC, PAA, or rinsed in H_2O (P>0.05; Fig. 4, grey bars). Thus neither the QAC- nor PAA-based 244 C&D regimes altered the total amount of biofilm on conveyor belt material present 24 h after 245 C&D treatment.

246 However, while the total number of CFUs on each coupon in the multigenera biofilm was similar 247 in all tested samples, the amount of L. monocytogenes in the biofilm increased about tenfold 248 from Day 4 to Day 7 (Fig. 4, yellow bars). The fraction of L. monocytogenes in the multigenera 249 biofilms increased from 2.3% (SE±1.1%) on Day 4 to 9% (SE±2%), 18% (SE±4%) and 32% (SE±7%) 250 in the H₂O-rinsed, QAC-treated, and PAA-treated biofilms, respectively, harvested on Day 7. In 251 the biofilms where *L. monocytogenes* were grown alone, however, there was no statistically 252 significant difference in L. monocytogenes counts per coupon between Days 4 and 7 (P>0.05; Fig. 4, green bars), with around 2×10^7 CFUs per coupon on both days and across the different 253 254 treatments.

255	When the total numbers of CFUs per coupon before and after C&D were compared, between
256	0.6 and 0.9 \log_{10} reductions in total CFUs were observed on Day 4 and Day 7, respectively, for
257	coupons harboring multigenera biofilms (Fig. 5, grey bars). The difference in log_{10} reductions
258	between treatments or day of sampling was not statistically significant (P>0.05).
259	The log_{10} reduction for the <i>L. monocytogenes</i> component of the multigenera biofilm was
260	significantly lower than the \log_{10} reduction in total CFUs per coupon when the Day 4 coupons
261	were treated with PAA disinfection (0.6 vs. 0.9 log_{10} reduction; <i>P</i> =0.04). For the other
262	treatments (QAC-treatment on Days 4 and 7, and PAA-treatment on Day 7), there was no
263	difference in survival of the flora strains and the <i>L. monocytogenes</i> strains in the multigenera
264	biofilm upon C&D (<i>P</i> >0.05; Fig. 5, compare grey and yellow bars). This indicates that the
265	proportion of <i>L. monocytogenes</i> cells in the biofilm was relatively stable during a cycle of C&D.
266	For the L. monocytogenes biofilms, on Day 4, the reduction in CFUs per coupon upon sanitation
267	treatment was about the same as for the multispecies biofilms. On Day 7, however, there was
268	almost no reduction in bacterial numbers upon C&D, with average reductions in cell numbers of
269	only 0.13 and 0.26 \log_{10} CFUs per coupon upon QAC- and PAA-treatment of the biofilms,
270	respectively (Fig. 5, green bars).
271	Overall, these experiments indicated that biofilms on conveyor belt materials were not
272	eliminated when exposed to a C&D regime relevant for the food industry. Little or no
273	development of tolerance to C&D agents was observed for the multigenera biofilms during the
274	course of the experiment. The L. monocytogenes biofilms, however, did develop increased

Applied and Environmental Microbiology

AEM

AEM

Applied and Environ<u>mental</u>

Microbiology

tolerance over time, as no significant reductions in CFU was observed during the C&D process
after the coupons had been exposed to three daily cycles of cleaning followed by either
disinfection with PAA or a QAC.
All strains were susceptible to the sanitation agents in suspension tests. To examine
whether any of the strains included in the multigenera biofilms had a specific tolerance towards
the employed C&D agents that could explain survival, bactericidal suspension tests were

281 performed on each strain, using both QAC and PAA disinfection agents as well as the Alkalifoam

cleaning agent. For all strains, the bacterial reductions were over 4 log₁₀ units after exposure to

283 recommended user concentrations of the QAC and PAA disinfectants for 5 min at 12°C (Table S3

284 in the Supplemental Material). Most strains also showed the same level of tolerance to the

- 285 cleaning agent alone. The exceptions were the two Corynebacterium sp. strains and the
- 286 Micrococcus sp. strain, which showed only between 10 and 100-fold reduction in CFUs upon
- treatment with the cleaning agent, and the two Kocuria sp. strains, P. putida strain MF6396, and
- the *Psychrobacter* sp. strain, which showed 3 log₁₀ to 4 log₁₀ reductions in CFU per ml upon

treatment with the cleaning agent. These results indicate that all strains were susceptible to the

290 C&D treatment when grown in suspension.

291 CLSM analysis showed that biofilms predominantly settle on the underside of the

- 292 conveyor belt material. Confocal laser scanning microscopy (CLSM) was employed to examine
- 293 the spatial organization of biofilms formed on the conveyor belt coupons. The three-
- 294 dimensional image reconstructions shown in Fig. 6 and Fig. 7 were obtained by scans of several

Applied and Environmental Microbiology

AEM

295

296

297	captured scans, relatively few sparse cells – attached singly or as small clusters – were observed
298	on the coupon surface. However, a significant number of images showed the presence of large
299	heterogeneous three-dimensional biofilms. These were also observed on some of the coupons
300	examined immediately after cleaning and disinfection with QAC or PAA. In the multigenera
301	biofilms, GFP expressing L. monocytogenes cells were often absent despite observations of
302	significant numbers of background flora cells. When present, L. monocytogenes were spatially
303	organized as single cells mixed in between the cells of the background flora strains. In some of
304	the images, the biofilm also appeared to have a slightly layered structure, with L.
305	monocytogenes cells found closer to the bottom layer of the biofilms (Fig. 7K). No separate L.
306	monocytogenes monospecies microcolonies were observed on the coupons in which
307	multigenera biofilms were grown.
308	The top face of the conveyor belt is coated with PVC, and is a matt antistatic surface (Fig. 6D).
309	The underside of the conveyor belt is an urethane-impregnated woven polyester fabric. The
310	photomicrograph in Fig. 7B, taken of the underside of a coupon, shows the linen weave pattern
311	with single smooth warp threads and weft threads composed of bundles of smaller fibers. The
312	difference between the flat top face and the heterogeneous topography of the rear face of the
313	conveyor belt coupons can be seen in the overview images obtained by stitching together
314	multiple CLSM scans – acquired across the length of the coupon from top to bottom – shown in
315	Fig. 6E and Fig. 7D. Notably, for the rear side of the coupons, scans were only obtained for the
	16

pre-defined location patterns on each coupon (see Fig. 6D), and were selected from 174

acquired confocal Z-stack scans (see Table S4 in the Supplemental Material). In the majority of

Applied and Environmental Microbiology

316

317	constituting the «valleys» in the fabric surface. Most striking were images acquired for biofilms
318	formed on weft threads composed of bundles of smaller fibers on the rear side of the conveyor
319	belt coupons, as shown in Fig. 7E and F. Both the background flora and L. monocytogenes cells
320	are predominantly found in the gap between these fibers. In the multigenera biofilms,
321	mushroom shaped biofilm structures could be observed to protrude upwards from the cleft
322	harboring bacterial cells (Fig. 7G).
323	Quantitative analysis of the biovolume of GFP expressing <i>L. monocytogenes</i> cells in the biofilms
324	was performed by analysis of the green channel of the acquired CLSM image stacks (Table 3 and
325	Fig. S5 in the Supplemental Material). The calculated biovolume of <i>L. monocytogenes</i> cells was
326	higher prior to C&D than after treatment with QAC or PAA. Also, the results suggest that the
327	total L. monocytogenes biovolume was higher in biofilms harvested on Day 7 compared to
328	biofilms harvested on Day 4, both in multigenera biofilms and in <i>L. monocytogenes</i> single
329	species biofilms. Finally, the analysis strongly indicates that significantly more L. monocytogenes
330	cells were attached to the woven-structured underside of the conveyor belt than on the PVC-
331	coated top surface. The strongest effect was seen for <i>L. monocytogenes</i> biofilms rinsed in H_2O
332	daily from Days 4 to 7 and harvested on Day 7, in which 14 (SE±11) μm^3 and 2841 (SE±1439)
333	μm^3 L. monocytogenes cells were found on the top and bottom faces of the conveyor belt
334	coupons, respectively.
335	In summary, the microscopy showed that <i>L. monocytogenes</i> cells were spatially intermixed with
336	background flora species in the multigenera biofilms. Furthermore, bacteria appeared to be

most elevated parts of the fabric, since the microscope was not able to focus in the areas

17

Applied and Environmental

AEM

Applied and Environ<u>mental</u>

predominantly situated in the gaps between filament fibers on the underside of the conveyorbelts.

339 DISCUSSION

340 The current study aimed to decipher growth and survival of L. monocytogenes on conveyor belts 341 in food industry using conditions relatively realistic for those found in meat production 342 environments. This included growing strains of L. monocytogenes in multigenera biofilms with 343 strains from the background microbiota isolated in these environments. Initial investigation of 344 the microbiota on conveyor belts after C&D in two RTE meat-processing plants resulted in 345 isolation of a relatively small number of bacteria, but nevertheless, a high diversity was found 346 between and also within samples (Table 1). A relatively diverse microbiota was therefore used 347 in the initial biofilm experiments (Table 2). Similar to what has been found in other studies, 348 Pseudomonas was relatively common after C&D (5-7, 30-32). Enterobacteriaceae has also been 349 reported to be common in meat processing environments (5-7, 30, 31, 33, 34), but was absent 350 in our study. Instead, microbiota of conveyor belts were dominated by bacteria less frequently 351 reported in previous studies, such as Acinetobacter, Microbacterium, Sphingomonas and 352 Epilithonimonas (Table 1). The composition of the microbiota is dependent on a number of 353 factors such as the sanitation regime, the temperature and the humidity. Biofilm formation 354 reflecting all these varying conditions would not be possible in *in vitro* laboratory studies. In this 355 study, we chose to simulate conditions with high humidity and nutrient content at a 356 temperature relevant for meat processing environments (12°C), and apply C&D cycles similar to 357 those found in food industry.

358	The composition of the biofilms formed on conveyor belt coupons under these conditions was
359	largely stable – with a dominance of Pseudomonas and Acinetobacter strains – regardless of
360	whether four or 16 background strains were used as inocula, and regardless of whether
361	coupons had been treated with QAC, PAA, or rinsed in H_2O (Fig. 1A and B). Stable coexistence of
362	Acinetobacter and Pseudomonas strains in biofilms has been reported previously (35, 36). In the
363	current study, the composition of the biofilms shifted from an Acinetobacter-dominated biofilm
364	in the Day 4 samples to a <i>P. putida</i> -dominated biofilm in the Day 7 samples subjected to daily
365	C&D (Fig. 1A and B). This transition was not seen in biofilms instead subjected to daily rinse in
366	H_2O on Days 4 to 7 (Fig. 1B; column labelled H_2O). Furthermore, in suspension, <i>P. putida</i>
367	MF6396 had a higher tolerance towards the lethal effect of the chloralkali cleaning agent than
368	A. johnsonii and the other included Pseudomonas strains. This suggests that the dominance of
369	the <i>P. putida</i> strain in biofilms subjected to daily C&D could be a consequence of the C&D
370	treatments and tolerance of the <i>P. putida</i> strain towards the cleaning agent. However, the
371	relative levels of Acinetobacter decreased over time also in the planktonic competition
372	experiments performed in the current study (Fig. 1C) and in multigenera biofilm experiments
373	performed in a previous study, in which the effect of C&D was not assessed (37). Potentially,
374	interspecies interactions such as competition for limiting nutrient sources may also have
375	contributed to the observed transition in microbial composition between the Day 4 and Day 7
376	biofilms.
377	Specific bacteria may show enhanced survival in biofilms challenged by biocides by means of

377 Specific bacteria may show enhanced survival in biofilms challenged by biocides by means of
378 interspecies interactions such as coaggregation and metabolic cross-feeding (27). Interactions

5	
e	
	logy
5	oldo
5	Aicro
Ο.	~

379	with other bacteria in biofilms may potentially explain the persistence of pathogens such as L.
380	<i>monocytogenes</i> in food production environments. In the current study, the proportion of <i>L</i> .
381	monocytogenes in the multigenera biofilms increased during the course of the experiment,
382	concomitant with the shift towards a <i>P. putida</i> -dominated biofilm. This is consistent with <i>L.</i>
383	monocytogenes specifically interacting with the P. putida strain. Interestingly, this specific strain
384	(MF6396) was isolated from a conveyor belt which was persistently contaminated with L.
385	monocytogenes, and from which the persistent ST8 strain L. monocytogenes MF5377 was
386	isolated (see Table 1) (38). It is therefore likely that MF6396 and MF5377 may have originated
387	from the same microhabitat in the meat production plant. Examination of biofilms using CLSM
388	in the current study showed that cells of <i>L. monocytogenes</i> were found intermixed with
389	background flora cells, with no spatially segregated L. monocytogenes microcolonies observed
390	within the multigenera biofilms (Fig. 6 and Fig. 7). Such spatial distribution patterns in
391	multispecies biofilms are indicative of interspecies coaggregation and cooperation (39, 40),
392	further suggesting that L. monocytogenes cells may directly interact with one or more of the
393	other species found in the biofilm. Previous studies have shown that co-culture of L.
394	monocytogenes and resident apathogenic bacteria from food production environments have
395	resulted in both positive and negative effects on the biomass of <i>L. monocytogenes</i> (29, 41).
396	Potential specific interactions between the individual strains examined in the current study are
397	subject to further examination in our laboratory.
398	The observation that certain subtypes of <i>L. monocytogenes</i> are more likely than others to
399	persist in food processing environments has prompted several investigators to examine whether

Comment citer ce document : Fagerlund, A., Møretrø, Heir, Briandet, R., Langsrud, S. (2017). Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces . Applied and Environmental Microbiology. DOI : 10.1128/AEM.01046-17

400	genetic determinants or various phenotypic traits could be associated with this ability. One of
401	the aims of the current study was to examine whether this perceived persistence may be linked
402	to strain-specific differences in the ability of <i>L. monocytogenes</i> to interact with the resident
403	microflora in biofilms. Few studies have addressed this point specifically, although in a recent
404	study, Overney et al. (42) found that two reference strains of <i>L. monocytogenes</i> (EGD-e and
405	LO28) did not differ in survival rate when they were grown in dual culture biofilms with a <i>P</i> .
406	fluorescens strain, when biofilms were subject to daily cycles of C&D and desiccation. A similar
407	result was obtained in the current study, where seven <i>L. monocytogenes</i> strains – four of which
408	belonged to subtypes linked to persistent contaminations in food production facilities – were
409	shown to be equally capable of growth and survival in biofilms exposed to C&D (Fig. 2). This
410	result was obtained both with monospecies and multigenera biofilms, and is consistent with the
411	growing consensus that individual genetic traits linked to specific subtypes do not account for
412	the existence of persistent subtypes of <i>L. monocytogenes</i> (13, 14).
413	It is widely acknowledged that the efficacy of C&D agents is lower for biofilms than for bacteria
414	growing in planktonic culture (3, 4, 27). A high level of tolerance to C&D was also observed for
415	biofilms in the current study, with less than $1 \log_{10}$ reductions in total CFUs per coupon obtained
416	across treatments, when the C&D agents were applied at the concentrations recommended by
417	the manufacturers (Fig. 5). A similar level of efficacy of C&D agents applied at recommended
418	user concentrations was seen in a study by Pan et al. (43), where <i>L. monocytogenes</i> biofilms –
419	grown on stainless steel or Teflon coupons and subjected to daily cycles of sanitation followed
	by standard and in substitution in dilute subsection and subjected to during cycles of summation followed

420 by starvation and incubation in dilute culture medium – were followed over a period of three

421	weeks. In their study, treatments of biofilms with minimum recommended user concentrations
422	of peroxide, QAC or chloride disinfection resulted in less than 0.3 \log_{10} CFU cm ⁻² after the first
423	week of their simulated food processing regimen. However, not all studies find the efficacy of
424	C&D agents against biofilms to be this low – in some studies the disinfection agents have to be
425	diluted below recommended user concentrations in order to maintain enough cells above the
426	detection threshold after disinfection of biofilm coupons (42). Also, previous observations of
427	PAA being more effective against <i>L. monocytogenes</i> biofilms than QAC (44) was not supported
428	by the results obtained in the current study. In any case, the explanation for the low efficacy of
429	C&D seen in the current study cannot be attributed to the greater tolerance towards biocides
430	commonly observed for multispecies biofilms compared with their single species counterparts
431	(4, 23, 26), because the opposite was actually observed: L. monocytogenes biofilms were shown
432	to become more tolerant to daily C&D than the multigenera biofilms (Fig. 5). Since no significant
433	difference in survival of bacteria was observed between treatments with QAC or PAA
434	disinfectants, the low efficacy of C&D was furthermore not likely to be a result of specific
435	resistance mechanisms such as the presence of efflux pumps conferring resistance towards
436	chemical agents. This is supported by the observation that no selection between different <i>L</i> .
437	monocytogenes strains was seen despite two of the strains possessing the qacH gene encoding
438	an efflux pump conferring increased tolerance to low concentrations of QAC compounds (Table
439	2) (45).
440	The explanation for the low efficacy of the C&D treatment could instead, at least partly, be

441 ascribed to features of the coupon material on which biofilms were grown. Within food

442	processing plants, conveyor belts have been shown to be favorable to contaminations with L.
443	monocytogenes that are difficult to remove (9, 46). Furthermore, cracks or scratches in the
444	surfaces of materials used in food industry been shown to support development of <i>L</i> .
445	monocytogenes biofilms deeply rooted in microscopic sutures and ridges (47). The underside of
446	the conveyor belt used as the surface for biofilm growth in the current study had a woven
447	surface with filament fiber threads. When coupons were viewed using CLSM, bacteria could be
448	seen to shelter in the clefts between these fibers (Fig. 7), and quantitative biovolume analysis
449	furthermore suggested that significantly more <i>L. monocytogenes</i> cells were attached to the
450	underside of the conveyor belt than on the smooth top coating (Table 3). Bacteria could also be
451	expected to find harborage sites on the cut edges of the conveyor belt coupons, which –
452	although likely to be sealed to prevent penetration of soiling and bacteria when conveyors are
453	initially installed in food production plants – could be said to model situations where worn or
454	frayed conveyors are employed in a production facility.
455	The observed increase in tolerance to C&D by <i>L. monocytogenes</i> biofilms over time both for the
456	QAC and PAA disinfectants (Fig. 5) concurs with results obtained in the study by Pan et al. (43),
457	in which L. monocytogenes appeared to develop similar levels of biofilm-specific resistance to
458	disinfection with peroxide, QAC and chloride during the course of the experiment. This indicates
459	that a broad-spectrum mechanism, probably related to the biofilm mode of growth, was
460	responsible for the increased tolerance seen in both studies. This increase may potentially also
461	be linked to attributes of the coupon surface on which biofilms were grown. When biofilms
462	

were always seen confined to the clefts and surface structures on the underside of the conveyor
belt material, while the multigenera biofilms were regularly observed to protrude outwards
from the crevices in which they were rooted. Conceivably, spatial growth patterns and/or a
relatively modest growth rate could account for *L. monocytogenes* biofilms not extending
beyond the shelter of the crevices the during the 24 h separating two cycles of C&D, thereby
resulting in the observed lower reduction in *L. monocytogenes* numbers upon C&D on Day 7
compared to on Day 4 (Fig. 5).

470 In summary, the results from the present study showed that L. monocytogenes can grow and 471 survive in multigenera biofilms formed from bacteria belonging to the background microbiota 472 isolated in meat industry environments, even after several rounds of C&D. Furthermore, the 473 results suggest that regular C&D agents used in food industry fail at removing biofilms from 474 heterogeneous surfaces harboring cracks or crevices. Although the underside of a conveyor belt 475 is not intended to be in direct contact with food, it may confer harborage sites from which 476 bacteria can shelter and cross-contaminate food-contact surfaces during processing. Further 477 research into more efficient methods for removal of biofilms and a greater focus on hygienic 478 design of food processing equipment is warranted.

479 MATERIALS AND METHODS

480 Isolation of bacteria from conveyor belts in meat processing plants. Two plants

481 processing RTE meats were visited. Samples from a total of nine conveyors – six from Plant A

482 and three from Plant B – were taken after C&D, before start of production. The daily sanitation

Applied and Environmental Microbiology

AEM

Applied and Environmental Microbiology

483	included a chloralkali agent for cleaning followed by disinfections using QAC in Plant A and PAA
484	in Plant B. In addition, the conveyors in Plant B were disinfected with 70% ethanol several times
485	during the production day, between processing of different products and before breaks. An area
486	of approximately 900 cm ² was sampled with neutralizing sampling cloths (Sodibox, Nevez,
487	France). The cloths were stored at 4°C and analyzed within 36 h. Ten ml peptone water (1 g l^{-1}
488	peptone [Oxoid], 0.85% NaCl, pH 7.2) was added to the plastic bag containing the cloth, and
489	after 30 seconds treatment in a Stomacher, 1 ml samples were plated to blood agar directly and
490	after dilution in order to obtain single well separated colonies for identification. The agar plates
491	were incubated at 20°C for 5 days. Up to 20 colonies were picked at random, restreaked for
492	purification and subjected to 16S rRNA sequencing (V3-V4 region) for identification using the
493	universal 16S rRNA primers tcctacgggaggcagcagt and ggactaccagggtatctaatcctgtt (48), as
494	previously described (37). The taxonomy of each strain was assigned by using the SeqMatch tool
495	of the Ribosomal Database Project (RDP), with database v.11.5 (<u>https://rdp.cme.msu.edu</u>).
496	Selection criteria for background microbiota strains included in biofilm experiments. A
497	total of 16 strains isolated from conveyor belts in meat processing Plants A and B were selected
498	for inclusion in multigenera biofilm experiments (Table 2). Of these, 14 isolates represented the
499	nine most frequently found genera after C&D. All these genera were among the dominating
500	(>20% of the colonies) in at least one sample. More than one isolate were chosen from genera
501	with diversity in the 16S rRNA amplicon sequences. In addition, Kocuria isolates were included
502	because Kocuria spp. has been reported to promote biofilm formation of L. monocytogenes in

AEM

an earlier study (29). All strains included in the experiments had unique 16S rRNA amplicon
sequences, enabling their differentiation by 16S rRNA sequencing.

505 Selection criteria for L. monocytogenes strains. Seven L. monocytogenes strains from three 506 different meat processing facilities [Plant A and B and a third plant; Plant C; corresponding to 507 plants M2, M4, and M1, respectively, from Møretrø et al. (22)] were selected for inclusion in 508 experiments in the current study (Table 2). These strains had been collected as part of two 509 research projects where nine Norwegian food processing plants were sampled, resulting in 510 isolation of a total of 680 L. monocytogenes strains subsequently typed using multiple locus 511 variable number tandem-repeats analysis (MLVA) (22). Of the seven strains used in the current 512 study, four were from MLVA profiles that were identified as persistent in the said projects using 513 the statistical approach described in Malley et al. (49) (results to be published separately), and 514 which were detected after C&D in more than one of the nine sampled Norwegian facilities. The 515 four included persistent strains were furthermore selected from individual strains isolated after 516 C&D at sampling points in which the same MLVA genotype had been found on several 517 occasions. Three L. monocytogenes strains were selected from so-called sporadic MLVA profiles. 518 These strains were selected based on the criteria that they should be isolated during 519 production, and that their MLVA profiles were not commonly found after C&D. All seven 520 selected strains had different dapE alleles, enabling their differentiation by sequencing the dapE 521 MLST allele (50). Alleles and sequence types for MLST were compared with those available in 522 the Institute Pasteur's L. monocytogenes MLST database 523 (http://bigsdb.web.pasteur.fr/listeria/listeria.html).

Comment citer ce document : Fagerlund, A., Møretrø, Heir, Briandet, R., Langsrud, S. (2017). Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces . Applied and Environmental Microbiology. DOI : 10.1128/AEM.01046-17

524	Whole genome sequencing. DNA isolation, whole genome sequencing and <i>de novo</i> genome
525	assembly was performed essentially as previously described (38), with 300 bp paired-end
526	sequencing on a MiSeq instrument (Illumina), except that genome assembly was performed
527	with v3.10.0 of SPAdes (51) and inclusion of six k-mer sizes (21,33,55,77,99,127). Contigs with
528	size <500 bp and with coverage <35 were removed from the assemblies. The sequences were
529	annotated using the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (PGAAP) server
530	(http://www.ncbi.nlm.nih.gov/genome/annotation_prok/).
531	Sequence search for known biofilm genes. The Pseudomonas and Acinetobacter genome
532	assemblies from the current study were analyzed for the presence of genes known to be
533	involved in biofilm formation in these genera (52-54) using BLAST+ v2.2.30 (55). The following
534	genes were used as queries in the analysis: <i>psIA-R</i> (PA2231-PA2246), <i>peIA-B</i> (PA3064-PA3058),
535	the alg operon (PA3540-3551), and cdrA (PA4625) from P. aeruginosa PAO1 (Accession
536	AE004091), genes wssA-J from P. fluorescens SBW25 (Accession AY074776), genes lapA-G
537	(PP018-PP0164), <i>lapF</i> (PP0806), the <i>bcs</i> operon (PP2629-PP2638), <i>peaA-I</i> (PP3133-P3141), and
538	the <i>peb</i> locus (PP1795-PP1788) from <i>P. putida</i> K4220 (Accession AE015451), the <i>csuA-E</i> genes
539	encoding the pilus usher-chaperone assembly system from A. baumannii 19606 (Accession
540	AY241696), pgaA-D (A1S_2160-2 and A1S_3792) from A. baumannii ATCC 17978 (Accession
541	CP000521), and the gene encoding Bap from A. baumannii 307-0294 (Accession EU117203).
542	Genome comparisons were performed using Mauve (56).

Accepted Manuscript Losie	543	Phylogenetic analysis. The sequences of single genes or whole genomes from reference
	544	strains used in phylogenetic analyses were downloaded from Genbank, and their accession
א כ	545	numbers are listed in Table S5 in the Supplemental Material. Acinetobacter strains were typed
b I C I	546	in silico using the MLST scheme described by Diancourt et al. (57), while Pseudomonas strains
り つつ	547	were analyzed using the MLSA scheme described by Mulet et al. (58). The concatenated
L	548	sequences of the seven MLST alleles (for Acinetobacter) or the four MLSA alleles (for
	549	Pseudomonas) were aligned using CLCMain Workbench 7 (CLCbio). Phylogenetic trees were
	550	then inferred from the alignments in MEGA7 (59) using the Neighbor-Joining method. The
	551	evolutionary distances were computed using the Jukes-Cantor method and bootstrap
	552	confidence values were generated using 1000 replicates.
Я		
biolo	553	C&D agents. C&D agents used in the current study were selected to represent products with
Microbiology	554	concentrations of active ingredients typical of industrial formulations. The industrial chlorinated

546	in silico using the MLST scheme described by Diancourt et al. (57), while Pseudomonas strains
547	were analyzed using the MLSA scheme described by Mulet et al. (58). The concatenated
548	sequences of the seven MLST alleles (for Acinetobacter) or the four MLSA alleles (for
549	Pseudomonas) were aligned using CLCMain Workbench 7 (CLCbio). Phylogenetic trees were
550	then inferred from the alignments in MEGA7 (59) using the Neighbor-Joining method. The
551	evolutionary distances were computed using the Jukes-Cantor method and bootstrap
552	confidence values were generated using 1000 replicates.
553	C&D agents. C&D agents used in the current study were selected to represent products with
554	concentrations of active ingredients typical of industrial formulations. The industrial chlorinated
555	alkaline cleaning agent ISS Alkalifoam 27 (Ecolab, Norway), referred to as «Alkalifoam»
556	throughout the text, was used at a 1% concentration, which is the minimum recommended user
557	concentration indicated by the manufacturer. At this concentration the solution contains
558	minimum 0.02% NaOH and 0.03% sodium hypochlorite. Two industrial disinfection agents were
559	used. One was Aco Hygiene Des QA (Aco Kjemi, Norway), which is a formulation based on
560	quaternary ammonium compounds, referred to as «QAC» throughout the text. The second was
561	Diverfoam active (Lilleborg, Norway), which is based on peracetic acid, and referred to as «PAA»
562	throughout the text. Both are used at the indicated minimum user concentrations, which was
563	1% for QAC and 1.5% for PAA. At these concentrations, the QAC solution contains minimum
	28

Comment citer ce document : Fagerlund, A., Møretrø, Heir, Briandet, R., Langsrud, S. (2017). Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces . Applied and Environmental Microbiology. DOI : 10.1128/AEM.01046-17

AEM

Applied and Environmental

Applied and Environmental

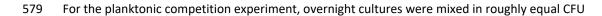
Microbioloav

564 0.05% benzalkonium chloride while the PAA solution contains minimum 0.02% peracetic acid,
565 0.05% acetic acid, and 0.15% hydrogen peroxide.

Growth conditions in planktonic culture. Bacteria were grown in brain heart infusion (BHI)
broth (Oxoid) throughout all experiments. Overnight cultures and precultures were grown in 5
ml volumes in culture tubes and 50 ml Nunc-tubes, respectively, with shaking at 30°C, except for *Sphingomonas* sp. MF4632, which was grown at 20°C. All biofilm and growth experiments were
carried out at 12°C. For plating, RAPID'L.mono (RLM) agar (Bio-Rad) and BHI agar (Oxoid) plates
were used.

572 For generation of growth curves for single strains, overnight cultures were diluted to

approximately 10^5 CFU ml⁻¹ and inoculated in volumes of 250 µl in 100-well polystyrene


574 microwell plates (Oy Growth Curves Ab Ltd). The plates were incubated for 7 days at 12°C in a

575 Bioscreen C instrument (MTX Lab Systems Inc), with continuous shaking and recording of

576 OD_{600nm} every hour. Blank wells contained BHI broth only, and values for blanks were subtracted

577 from sample values to obtain actual absorbance measurements. Triplicate wells were used for

578 each sample and each strain was tested three or four times.

- 580 numbers in an inoculum diluted to a final total concentration of 10⁵ CFU ml⁻¹. Fifty ml culture
- volumes were incubated in 500 ml baffled Erlenmeyer bottles at 12°C with shaking at 200 rpm.

582 Every 24 h, samples were withdrawn and plated to determine CFU count, and cells were

Downloaded from http://aem.asm.org/ on July 24, 2017 by INRA - France

Applied and Environmental

Comment citer ce document : Fagerlund, A., Møretrø, Heir, Briandet, R., Langsrud, S. (2017). Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces . Applied and Environmental Microbiology. DOI : 10.1128/AEM.01046-17

Applied and Environmental

Applied and Environmental Microbiology

Microbioloav

583 584 585

pelleted by centrifugation and stored at -20°C for use in amplicon sequencing analysis (see below).

Construction of GFP-labelled L. monocytogenes. L. monocytogenes strains were

- 586 transformed with plasmid pNF8, from which the green fluorescent protein (GFP) is constitutively
- 587 expressed (60). The pNF8 plasmid was a kind gift from Hanne Ingmer at the University of
- 588 Copenhagen. Transformation was performed using the procedure described by Monk et al. (61).
- 589 Erythromycin at a concentration of 10 μ g ml⁻¹ was used for selection of pNF8. The identity of all
- 590 strains after transformation was confirmed by PCR amplification and sequencing the dapE MLST
- 591 allele (50) using primers gttttcccagtcacgacgttgtacgactaatgggcatgaagaacaag and
- 592 ttgtgagcggataacaatttcatcgaactatgggcatttttacc for PCR (overhangs underlined) and primers
- 593 gttttcccagtcacgacgttgta and ttgtgagcggataacaatttc for sequencing.
- 594 **Biofilm experiments with C&D.** Precultures of each strain were inoculated from glycerol
- 595 stocks, prepared from exponential phase cultures and maintained at -80°C, grown separately to
- 596 logarithmic phase, and mixed in roughly equal CFU numbers in an inoculum diluted to a final
- total concentration of $\sim 10^{6}$ CFU ml⁻¹. The bacterial suspensions were inoculated in 24-well 597
- 598 plates containing coupons of food grade PVC conveyor belt material (Forbo-Siegling Transilon; E
- 599 8/2 U0/V5 MT white FDA) cut to 1.0 cm × 1.5 cm, autoclaved, and placed vertically in each well.
- 600 One ml inoculum was added to each well so that wells were half-filled with culture broth,
- 601 resulting in the air/liquid interface crossing the length of the coupon (see Fig. 6D). The plates

Applied and Environ<u>mental</u>

Microbiology

602

603

Day 3.

604 Control coupons not subjected to C&D were harvested after four days of biofilm development. 605 Sets of coupons subjected to C&D (see below) on Day 4 were either harvested after treatment 606 or – for coupons to be harvested on Day 7 – placed in a new 24-well tray containing 1 ml BHI in 607 each well and incubated as before for 24 h. The cycles of C&D followed by incubation in BHI was 608 repeated on Days 5 and 6. On Day 7, sets of coupons treated with either QAC or PAA on Days 4 609 to 6 were harvested prior to and after C&D treatment. Coupons sampled prior to C&D (both on 610 Days 4 and 7) were rinsed three times in ~10ml H₂O (in 15 ml Falcon tubes) to remove non-611 adherent bacteria before harvest. Control coupons subjected to rinsing in H₂O instead of 612 treatment with C&D agents on Days 4 to 7 were included in selected experiments. 613 Treatment with C&D agents was performed as follows: C&D agents were applied as foam (as 614 intended by the manufacturers), produced in foam pump bottles (Sunvita, Norway). Each 615 coupon was rinsed three times in ~10 ml H₂O (in 15 ml Falcon tubes) and placed vertically in 616 wells of a clean 24-well tray. The wells were filled with 1% Alkalifoam, coupons were incubated 617 5 minutes, rinsed as before in H_2O , and placed in a second clean 24-well plate. The wells were 618 then filled with 1% QAC or 1.5% PAA, coupons were incubated 5 minutes, and finally rinsed as 619 before in H_2O . The average weight of foam applied to each well was ~350 mg. 620 Cells attached to coupons were harvested as follows: Each coupon was transferred to a glass

tube containing 4.5 ml peptone water and 2 g glass beads of diameter ~2 mm (Assistant, No.

were incubated at 12°C with gentle orbital shaking, and the culture medium was refreshed on

Downloaded from http://aem.asm.org/ on July 24, 2017 by INRA - France

621

Comment citer ce document : Fagerlund, A., Møretrø, Heir, Briandet, R., Langsrud, S. (2017). Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces . Applied and Environmental Microbiology. DOI : 10.1128/AEM.01046-17

Applied and Environmental

Microbiology

1401/2). Tubes were then vortexed for 30 seconds and sonicated for 10 minutes (Branson 3510
ultrasonic cleaner) to dislodge attached cells and disperse cell aggregates. After withdrawing
45.5 μl or 500 μl for plating dilutions on agar plates (to determine total and *L. monocytogenes*CFU count per coupon), the remaining cells were pelleted by centrifugation (16000×g for 5 min)
and stored at -20°C. The identity of single *L. monocytogenes* colonies from dilutions plated after
harvesting coupons subjected to sanitation on Day 7 was determined by PCR amplification and
sequencing the *dapE* MLST allele (50) as described above.

629 Biofilms analyzed using CLSM were grown and subjected to rinsing or C&D as described above, 630 with the following exceptions: For L. monocytogenes, the strains labelled with GFP were used, and overnight cultures for these were grown in the presence of 10 μ g ml⁻¹ erythromycin. The 631 632 biofilm inoculum was prepared from overnight cultures diluted to an OD_{600nm} of 0.01. These 633 were mixed so that the inoculum contained 12.5% v/v of each of the four background 634 microbiota strains Acinetobacter MF4640 and Pseudomonas strains MF4836, MF6394 and 635 MF6396, and 50% of a mixture of equal amounts of the seven L. monocytogenes strains (Table 2). Biofilms were grown under static conditions. Rinsing of coupons in H₂O before and after 636 637 treatment with C&D agents was performed three times in 2.5 ml volumes of H₂O in 24-well 638 plates. After coupons were either subjected to C&D or rinsed in H₂O (to remove non-adherent 639 bacteria from control coupons), coupons were left in BHI until imaging the same day. 640 DNA isolation and amplicon sequencing. For purification of genomic DNA for amplicon

sequencing analysis, cells were lysed using Lysing Matrix B and a FastPrep-24 instrument (both
 MP Biomedicals) and DNA isolated using either the PowerSoil-htp 96 Well Soil DNA Isolation Kit 32

Applied and Environmental Microbiology

AEM

Applied and Environmental Microbiology

643 (MoBio) (biofilm experiments #1 to #3) or the DNeasy Blood and Tissue Kit (Qiagen) (biofilm	
644 experiments #4 and #5 and planktonic competition experiments). Libraries for amplicon	
645 sequencing to analyze microbial composition were prepared following the 16S Metagenomic	
646 Sequencing Library Preparation protocol from Illumina (62). Briefly, amplicon PCR was	
647 performed with primers targeting either the V3-V4 region of the 16S rRNA gene or the <i>dapE</i>	
648 gene of <i>L. monocytogenes</i> , followed by an index PCR performed using the Nextera XT index kit	
649 (Illumina). The primers used to amplify the 16S rRNA gene were	
650 <u>tcgtcggcagcgtcagatgtgtataagagacag</u> cctacgggnggcwgcag and	
651 <u>gtctcgtgggctcggagatgtgtataagagacag</u> gactachvgggtatctaatcc, and those used to amplify <i>dapE</i>	
652 were tcgtcggcagcgtcagatgtgtataagagacagcgactaatgggcatgaagaacaag and	
653 <u>gtctcgtgggctcggagatgtgtataagagacag</u> catcgaactatgggcatttttacc (overhangs underlined). PCR	
654 products were purified using the AMPure XP system (Agencourt) after each PCR and after	
655 pooling. Purified indexed PCR products and the pooled sample were quantified using the Quant-	
656 iT Picogreen dsDNA kit (Invitrogen). The library was spiked with 10% PhiX control and	
657 sequenced using MiSeq v3 reagents using paired 300 bp reads on a MiSeq instrument (Illumina).	
658 Metagenomic Analysis using Qiime software. Demultiplexed raw reads from the MiSeq run	
1058 Wetagenomic Analysis using Quine software. Demultiplexed haw reads noth the Miseq run	
659 were processed with the Qiime software package (Quantitative Insights Into Microbial Ecology)	
660 v1.9.1 (63): After paired end reads were joined, they were quality filtered on q20. Then, samples	
661 amplified with <i>dapE</i> primers were assigned to their respective <i>dapE</i> allele using a closed	
reference OTU picking protocol against a custom reference file containing the <i>dapE</i> allele	
663 sequences of the seven <i>L. monocytogenes</i> strains (<i>dapE</i> -alleles numbers 4, 6, 7, 8, 9, 18, 20, and	
22	,

664 21 as listed at the Institute Pasteur's *L. monocytogenes* MLST database at

665	http://bigsdb.web.pasteur.fr/listeria/listeria.html). The OTU picking script was run with default
666	parameters except that the sequence similarity threshold was set to 1. For samples amplified
667	with 16S rRNA primers, samples were analyzed using an open reference OTU picking protocol, in
668	which reads were first matched against a custom reference file containing the 16S rRNA allele
669	sequences of L. monocytogenes plus the 16 background flora strains included in the
670	experiments. The 16S rRNA reference file is included as Table S6 in the Supplemental Material.
671	Bactericidal suspension test. Overnight cultures were diluted to approximately 10 ⁸ CFU ml ⁻¹
672	in peptone water and 1 ml of the diluted culture was added directly to 9 ml of $\mathrm{H_{2}O}$ (control) or
673	user concentrations of Alkalifoam (1%), QAC (1%) or PAA (1.5%) resulting in a final cell
674	concentration of approximately 10 ⁷ CFU ml ⁻¹ . After 5 min, 0.5 ml of the solution was transferred
675	to Dey Engley (D/E) neutralizing broth (Difco) and dilutions were plated on BHI agar plates. The
676	tests were performed with all solutions at 12°C. The experiment was performed three to four
677	times for each strain.

678 **Confocal laser scanning microscopy (CLSM).** Surface-associated bacteria on conveyor belt

- 679 coupons were stained with the cell-permeant Syto 61 red fluorescent nucleic acid strain (Life
- 680 Technologies), diluted to 5 mM in DMSO and used at a 1:2000 dilution. L. monocytogenes were
- 681 pinpointed in the complex biofilm through specific emission of their green GFP expression.
- 682 Images were acquired using a Leica SP8 confocal laser scanning microscope (Leica
- 683 Microsystems) at the MIMA2 microscopy platform (www6.jouy.inra.fr/mima2). Images were

AEM

684 obtained using a HC PL APO 63× long distance water objective with a numerical aperture of 685 NA=1.2. The GFP green emitted fluorescence signal from *L. monocytogenes* cells was collected 686 on a hybrid detector in the range 500-550 nm after excitation at 488 nm with an Argon laser set at 20% of its maximal intensity. The red fluorescence emitted by the bacteria labeled with Syto 687 688 61 was collected on a photomultiplier in the range 645-675 nm after excitation with a 633 nm 689 HeNe laser. In order to contrast the surface topography, reflected signal from the 633 nm HeNe 690 laser was collected. Samples were scanned at 600 Hz every micron with 246×246 µm images in 691 order to acquire multi-color 3D stacks.

692 Representative CLSM images from each coupon were acquired by scanning Z-stacks on different 693 locations of the sample with a fixed pattern on the coupon surface. In most cases, three or five 694 stacks were taken from both the top face and underside of the conveyor belt coupon, at even 695 intervals following a line from the bottom to the top of the coupon, as marked with crosses in 696 the photograph of the coupon in Fig. 6D. The number of obtained Z-stack CLSM scans for the 697 different samples and treatments is summarized in Table S4 in the Supplemental Material. On a 698 few coupons, a larger view of the coupon was obtained thanks to a mosaic 3D meta-image, 699 obtained using a motorized stage that automatically moves the sample between scans and tiles 700 the adjacent fields. All CLSM stacks were processed using IMARIS (Bitplane) to projection images 701 of the biofilms. Quantitative analysis of each Z-stack to quantify the green biovolume 702 corresponding to L. monocytogenes subpopulation of the biofilm was performed using the ICY 703 image analysis software (64) using a homemade script previously described, with some 704 adaptations (65). The biomass software algorithm did not reliably score low cell numbers

35

Downloaded from http://aem.asm.org/ on July 24, 2017 by INRA - France

705 correctly, therefore the biovolume of scans where ≤ 5 cells were observed in the green channel 706 of the image projection was set to 0, when the scored biovolume was above a threshold of 800 707 μ m³. The biovolume of the red channel was not extracted since red fluorescent background

- 708 interfered with the Syto 61 specific signal.
- 709 Accession numbers. This Whole Genome Shotgun projects have been deposited at
- 710 DDBJ/ENA/GenBank under the accession numbers MVOJ00000000, MVOK00000000,
- 711 MVOL0000000, MVOM00000000, and MVON00000000. The versions described in this paper
- 712 are versions XXXX01000000. The raw reads are available from the National Center for
- 713 Biotechnology Information (NCBI) Sequence Read Archive (SRA) under accession numbers
- 714 SRR5273317, SRR5273318, SRR5273319, SRR5273320, and SRR5273321.

SUPPLEMENTAL MATERIAL 715

- 716 Supplemental material for this article may be found in the file:
- 717 «Supplemental Material», PDF file, 1.2 MB

ACKNOWLEDGEMENTS 718

- 719 We are grateful to Bjørn C. T. Schirmer for isolation of microbiota strains from meat processing
- 720 plants, and to Merete Rusås Jensen, Anette Wold Åsli, Tove Maugesten, Signe M. Drømtorp,
- 721 and Julien Deschamps for excellent technical assistance. This work was supported by Norwegian
- 722 Research Funding for Agriculture and Food Industry (grant no. 234355). Collection of strains

vised in this work was funded by the Norwegian Research Funding for Agriculture and Food

724 Industry (grant no. 207765) and The Norwegian Seafood Research Fund (grant no. FHF-900521).

725 **REFERENCES**

- Maillard JY. 2002. Bacterial target sites for biocide action. J Appl Microbiol 92 Suppl:16S 27S.
- Coughlan LM, Cotter PD, Hill C, Alvarez-Ordóñez A. 2016. New weapons to fight old
 enemies: Novel strategies for the (bio)control of bacterial biofilms in the food industry.
- 730 Front Microbiol 7:1641.
- 731 3. El-Azizi M, Farag N, Khardori N. 2016. Efficacy of selected biocides in the decontamination
- of common nosocomial bacterial pathogens in biofilm and planktonic forms. Comp
- 733 Immunol Microbiol Infect Dis 47:60-71.
- Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. 2011. Resistance of bacterial
 biofilms to disinfectants: a review. Biofouling 27:1017-1032.
- 736 5. Brightwell G, Boerema J, Mills J, Mowat E, Pulford D. 2006. Identifying the bacterial
- 737 community on the surface of $Intralox^{TM}$ belting in a meat boning room by culture-
- 738 dependent and culture-independent 16S rDNA sequence analysis. Int J Food Microbiol
- 739 109:47-53.
- 740 6. Møretrø T, Langsrud S, Heir E. 2013. Bacteria on meat abattoir meat production process
- 741 surfaces after sanitation: Characterisation of survival properties of *Listeria*
- 742 *monocytogenes* and the commensal bacterial flora. Adv Microbiol 3:255-264.
- 743 7. Mettler E, Carpentier B. 1998. Variations over time of microbial load and physicochemical
 744 properties of floor materials after cleaning in food industry premises. J Food Prot 61:57-
 - 65.

745

38

Applied and Environmental Microbiology

746	8.	Stephan R, Althaus D, Kiefer S, Lehner A, Hatz C, Schmutz C, Jost M, Gerber N,
747		Baumgartner A, Hächler H, Mäusezahl-Feuz M. 2015. Foodborne transmission of Listeria
748		monocytogenes via ready-to-eat salad: A nationwide outbreak in Switzerland, 2013-2014.
749		Food Control 57:14-17.
750	9.	Miettinen MK, Björkroth KJ, Korkeala HJ. 1999. Characterization of Listeria
751		monocytogenes from an ice cream plant by serotyping and pulsed-field gel
752		electrophoresis. Int J Food Microbiol 46:187-192.
753	10.	Ferreira V, Wiedmann M, Teixeira P, Stasiewicz MJ. 2014. Listeria monocytogenes
754		persistence in food-associated environments: epidemiology, strain characteristics, and
755		implications for public health. J Food Prot 77:150-170.
756	11.	Larsen MH, Dalmasso M, Ingmer H, Langsrud S, Malakauskas M, Mader A, Møretrø T,
757		Mozina SS, Rychli K, Wagner M, Wallace RJ, Zentek J, Jordan K. 2014. Persistence of
758		foodborne pathogens and their control in primary and secondary food production chains.
759		Food Control 44:92-109.
760	12.	Morganti M, Scaltriti E, Cozzolino P, Bolzoni L, Casadei G, Pierantoni M, Foni E, Pongolini
761		S. 2016. Processing-dependent and clonal contamination patterns of Listeria
762		monocytogenes in the cured ham food chain revealed by genetic analysis. Appl Environ
763		Microbiol 82:822-831.
764	13.	Stasiewicz MJ, Oliver HF, Wiedmann M, den Bakker HC. 2015. Whole-genome sequencing
765		allows for improved identification of persistent Listeria monocytogenes in food-associated
766		environments. Appl Environ Microbiol 81:6024-6037.

Accepted Manuscript Posted Online

Comment citer ce document : Fagerlund, A., Møretrø, Heir, Briandet, R., Langsrud, S. (2017). Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces . Applied and Environmental Microbiology. DOI : 10.1128/AEM.01046-17 39

Downloaded from http://aem.asm.org/ on July 24, 2017 by INRA - France

768		industry equipment and premises. Int J Food Microbiol 145:1-8.
769	15.	Lundén JM, Miettinen MK, Autio TJ, Korkeala HJ. 2000. Persistent Listeria monocytogenes
770		strains show enhanced adherence to food contact surface after short contact times. J
771		Food Prot 63:1204-1207.
772	16.	Martínez-Suárez JV, Ortiz S, López-Alonso V. 2016. Potential impact of the resistance to
773		quaternary ammonium disinfectants on the persistence of Listeria monocytogenes in food
774		processing environments. Front Microbiol 7:638.
775	17.	Bridier A, Sanchez-Vizuete P, Guilbaud M, Piard JC, Naitali M, Briandet R. 2015. Biofilm-
776		associated persistence of food-borne pathogens. Food Microbiol 45:167-178.
777	18.	Ortiz S, López-Alonso V, Rodríguez P, Martínez-Suárez JV. 2016. The connection between
778		persistent, disinfectant-resistant Listeria monocytogenes strains from two geographically
779		separate Iberian pork processing plants: Evidence from comparative genome analysis.
780		Appl Environ Microbiol 82:308-317.
781	19.	Borucki MK, Peppin JD, White D, Loge F, Call DR. 2003. Variation in biofilm formation
782		among strains of Listeria monocytogenes. Appl Environ Microbiol 69:7336-7342.
783	20.	Kadam SR, den Besten HM, van der Veen S, Zwietering MH, Moezelaar R, Abee T. 2013.
784		Diversity assessment of Listeria monocytogenes biofilm formation: impact of growth
785		condition, serotype and strain origin. Int J Food Microbiol 165:259-264.
786	21.	Poimenidou SV, Chrysadakou M, Tzakoniati A, Bikouli VC, Nychas GJ, Skandamis PN. 2016.
787		Variability of Listeria monocytogenes strains in biofilm formation on stainless steel and

Carpentier B, Cerf O. 2011. Review - Persistence of Listeria monocytogenes in food

767

14.

Comment citer ce document : Fagerlund, A., Møretrø, Heir, Briandet, R., Langsrud, S. (2017). Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces . Applied and Environmental Microbiology. DOI : 10.1128/AEM.01046-17

788		polystyrene materials and resistance to peracetic acid and quaternary ammonium
789		compounds. Int J Food Microbiol 237:164-171.
790	22.	Møretrø T, Schirmer BCT, Heir E, Fagerlund A, Hjemli P, Langsrud S. 2017. Tolerance to
791		quaternary ammonium compound disinfectants may enhance growth of Listeria
792		monocytogenes in the food industry. Int J Food Microbiol 241:215-224.
793	23.	Sanchez-Vizuete P, Orgaz B, Aymerich S, Le Coq D, Briandet R. 2015. Pathogens protection
794		against the action of disinfectants in multispecies biofilms. Front Microbiol 6:705.
795	24.	Giaouris E, Heir E, Hébraud M, Chorianopoulos N, Langsrud S, Møretrø T, Habimana O,
796		Desvaux M, Renier S, Nychas GJ. 2013. Attachment and biofilm formation by foodborne
797		bacteria in meat processing environments: Causes, implications, role of bacterial
798		interactions and control by alternative novel methods. Meat Sci 97:298-309.
799	25.	Røder HL, Raghupathi PK, Herschend J, Brejnrod A, Knøchel S, Sørensen SJ, Burmølle M.
800		2015. Interspecies interactions result in enhanced biofilm formation by co-cultures of
801		bacteria isolated from a food processing environment. Food Microbiol 51:18-24.
802	26.	Burmølle M, Webb JS, Rao D, Hansen LH, Sørensen SJ, Kjelleberg S. 2006. Enhanced
803		biofilm formation and increased resistance to antimicrobial agents and bacterial invasion
804		are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol
805		72:3916-3923.
806	27.	Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW. 2002. The physiology and
807		collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 46:202-256.

Comment citer ce document : Fagerlund, A., Møretrø, Heir, Briandet, R., Langsrud, S. (2017). Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces . Applied and Environmental Microbiology. DOI : 10.1128/AEM.01046-17

808	28.	van der Veen S, Abee T. 2011. Mixed species biofilms of Listeria monocytogenes and
809		Lactobacillus plantarum show enhanced resistance to benzalkonium chloride and
810		peracetic acid. Int J Food Microbiol 144:421-431.
811	29.	Carpentier B, Chassaing D. 2004. Interactions in biofilms between Listeria monocytogenes
812		and resident microorganisms from food industry premises. Int J Food Microbiol 97:111-
813		122.
814	30.	Møretrø T, Sonerud T, Mangelrød E, Langsrud S. 2006. Evaluation of the antimicrobial
815		effect of a triclosan-containing industrial floor used in the food industry. J Food Prot
816		69:627-633.
817	31.	Hood S, Zottola E. 1997. Isolation and identification of adherent gram-negative
818		microorganisms from four meat-processing facilities. J Food Prot 60:1135-1138.
819	32.	Stellato G, La Storia A, De Filippis F, Borriello G, Villani F, Ercolini D. 2016. Overlap of
820		spoilage-associated microbiota between meat and the meat processing environment in
821		small-scale and large-scale retail distributions. Appl Environ Microbiol 82:4045-4054.
822	33.	Marouani-Gadri N, Augier G, Carpentier B. 2009. Characterization of bacterial strains
823		isolated from a beef-processing plant following cleaning and disinfection - Influence of
824		isolated strains on biofilm formation by Sakai and EDL 933 E. coli O157:H7. Int J Food
825		Microbiol 133:62-67.
826	34.	Hultman J, Rahkila R, Ali J, Rousu J, Björkroth KJ. 2015. Meat processing plant microbiome
827		and contamination patterns of cold-tolerant bacteria causing food safety and spoilage

Comment citer ce document : Fagerlund, A., Møretrø, Heir, Briandet, R., Langsrud, S. (2017). Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces . Applied and Environmental Microbiology. DOI : 10.1128/AEM.01046-17

830	35.	Bhargava N, Sharma P, Capalash N. 2014. Pyocyanin stimulates quorum sensing-mediated
831		tolerance to oxidative stress and increases persister cell populations in Acinetobacter
832		baumannii. Infect Immun 82:3417-3425.
833	36.	Hansen SK, Haagensen JA, Gjermansen M, Jørgensen TM, Tolker-Nielsen T, Molin S. 2007.
834		Characterization of a Pseudomonas putida rough variant evolved in a mixed-species
835		biofilm with Acinetobacter sp. strain C6. J Bacteriol 189:4932-4943.
836	37.	Langsrud S, Moen B, Møretrø T, Løype M, Heir E. 2016. Microbial dynamics in mixed
837		culture biofilms of bacteria surviving sanitation of conveyor belts in salmon-processing
838		plants. J Appl Microbiol 120:366-378.
839	38.	Fagerlund A, Langsrud S, Schirmer BC, Møretrø T, Heir E. 2016. Genome analysis of
840		Listeria monocytogenes Sequence Type 8 strains persisting in salmon and poultry
841		processing environments and comparison with related strains. PLoS One 11:e0151117.
842	39.	Elias S, Banin E. 2012. Multi-species biofilms: living with friendly neighbors. FEMS
843		Microbiol Rev 36:990-1004.
844	40.	Liu W, Røder HL, Madsen JS, Bjarnsholt T, Sørensen SJ, Burmølle M. 2016. Interspecific
845		bacterial interactions are reflected in multispecies biofilm spatial organization. Front
846		Microbiol 7:1366.

risks in the manufacture of vacuum-packaged cooked sausages. Appl Environ Microbiol

847 41. Rodríguez-López P, Saá-Ibusquiza P, Mosquera-Fernández M, López-Cabo M. 2015.

848 Listeria monocytogenes-carrying consortia in food industry. Composition, subtyping and

828

829

81:7088-7097.

AEM

Applied and Environmental Microbiology

Downloaded from http://aem.asm.org/ on July 24, 2017 by INRA - France

AEM

Applied and Environmental Microbiology

849		numerical characterisation of mono-species biofilm dynamics on stainless steel. Int J Food
850		Microbiol 206:84-95.
851	42.	Overney A, Jacques-André-Coquin J, Ng P, Carpentier B, Guillier L, Firmesse O. 2017.
852		Impact of environmental factors on the culturability and viability of Listeria
853		monocytogenes under conditions encountered in food processing plants. Int J Food
854		Microbiol 244:74-81.
855	43.	Pan Y, Breidt F, Jr., Kathariou S. 2006. Resistance of Listeria monocytogenes biofilms to
856		sanitizing agents in a simulated food processing environment. Appl Environ Microbiol
857		72:7711-7717.
858	44.	Saá Ibusquiza P, Herrera JJ, Cabo ML. 2011. Resistance to benzalkonium chloride,
859		peracetic acid and nisin during formation of mature biofilms by Listeria monocytogenes.
860		Food Microbiol 28:418-425.
861	45.	Müller A, Rychli K, Zaiser A, Wieser C, Wagner M, Schmitz-Esser S. 2014. The Listeria
862		monocytogenes transposon Tn6188 provides increased tolerance to various quaternary
863		ammonium compounds and ethidium bromide. FEMS Microbiol Lett 361:166-173.
864	46.	Tolvanen R, Lunden J, Korkeala H, Wirtanen G. 2007. Ultrasonic cleaning of conveyor belt
865		materials using Listeria monocytogenes as a model organism. J Food Prot 70:758-761.
866	47.	Doijad SP, Barbuddhe SB, Garg S, Poharkar KV, Kalorey DR, Kurkure NV, Rawool DB,
867		Chakraborty T. 2015. Biofilm-forming abilities of Listeria monocytogenes serotypes
868		isolated from different sources. PLoS One 10:e0137046.

AEM

Applied and Environmental Microbiology

869	48.	Nadkarni MA, Martin FE, Jacques NA, Hunter N. 2002. Determination of bacterial load by
870		real-time PCR using a broad-range (universal) probe and primers set. Microbiology
871		148:257-266.
872	49.	Malley TJ, Stasiewicz MJ, Gröhn YT, Roof S, Warchocki S, Nightingale K, Wiedmann M.
873		2013. Implementation of statistical tools to support identification and management of
874		persistent Listeria monocytogenes contamination in smoked fish processing plants. J Food
875		Prot 76:796-811.
876	50.	Ragon M, Wirth T, Hollandt F, Lavenir R, Lecuit M, Le Monnier A, Brisse S. 2008. A new
877		perspective on Listeria monocytogenes evolution. PLoS Path 4:e1000146.
878	51.	Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko
879		SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA,
880		Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to
881		single-cell sequencing. J Comput Biol 19:455-477.
882	52.	Mann EE, Wozniak DJ. 2012. Pseudomonas biofilm matrix composition and niche biology.
883		FEMS Microbiol Rev 36:893-916.
884	53.	Nilsson M, Chiang WC, Fazli M, Gjermansen M, Givskov M, Tolker-Nielsen T. 2011.
885		Influence of putative exopolysaccharide genes on Pseudomonas putida KT2440 biofilm
886		stability. Environ Microbiol 13:1357-1369.
887	54.	Longo F, Vuotto C, Donelli G. 2014. Biofilm formation in Acinetobacter baumannii. New
888		Microbiol 37:119-127.

889

55.

890 BLAST+ : architecture and applications. BMC Bioinformatics 10:421. 891 56. Darling AC, Mau B, Blattner FR, Perna NT. 2004. Mauve: multiple alignment of conserved 892 genomic sequence with rearrangements. Genome Res 14:1394-1403. 893 57. Diancourt L, Passet V, Nemec A, Dijkshoorn L, Brisse S. 2010. The population structure of 894 Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible 895 genetic pool. PLoS One 5:e10034. 896 58. Mulet M, Lalucat J, García-Valdés E. 2010. DNA sequence-based analysis of the 897 Pseudomonas species. Environ Microbiol 12:1513-1530. 898 59. Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis 899 version 7.0 for bigger datasets. Mol Biol Evol 33:1870-1874. 900 Fortineau N, Trieu-Cuot P, Gaillot O, Pellegrini E, Berche P, Gaillard JL. 2000. Optimization 60. 901 of green fluorescent protein expression vectors for in vitro and in vivo detection of 902 Listeria monocytogenes. Res Microbiol 151:353-360. 903 Monk IR, Gahan CG, Hill C. 2008. Tools for functional postgenomic analysis of Listeria 61. 904 monocytogenes. Appl Environ Microbiol 74:3921-3934. 905 62. Illumina. 2013. 16S metagenomic sequencing library preparation guide. 906 http://support.illumina.com/documents/documentation/chemistry documentation/16s/ 907 16s-metagenomic-library-prep-guide-15044223-b.pdf. 908 Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, 63. 909 Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE,

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009.

910		Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ,
911		Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis
912		of high-throughput community sequencing data. Nat Methods 7:335-336.
913	64.	de Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S, Provoost T, Meas-Yedid V,
914		Pankajakshan P, Lecomte T, Le Montagner Y, Lagache T, Dufour A, Olivo-Marin JC. 2012.
915		Icy: an open bioimage informatics platform for extended reproducible research. Nat
916		Methods 9:690-696.
917	65.	Sanchez-Vizuete P, Le Coq D, Bridier A, Herry JM, Aymerich S, Briandet R. 2015.
918		Identification of ypqP as a new Bacillus subtilis biofilm determinant that mediates the
919		protection of Staphylococcus aureus against antimicrobial agents in mixed-species
920		communities. Appl Environ Microbiol 81:109-118.
921	66.	Lindstedt BA, Tham W, Danielsson-Tham ML, Vardund T, Helmersson S, Kapperud G.
922		2008. Multiple-locus variable-number tandem-repeats analysis of Listeria monocytogenes
923		using multicolour capillary electrophoresis and comparison with pulsed-field gel

924 electrophoresis typing. J Microbiol Methods 72:141-148.

AEM

926 Table 1: Microbiota found on conveyor belts in meat processing plants

	1									
						s of eac	-			Total
					i each	conve	í –			number of
				nt A	-	ch		Plant E		colonies of
	1	2	3	4	5	6 ^b	1	2	3	each genus:
Pseudomonas	7 ^a	5	24 ^{<i>a</i>}			1 ^{<i>a</i>}				37
Acinetobacter	1	6						6 ^a		13
Microbacterium						10 ^a	1			11
Sphingomonas						1	10 <i>ª</i>			11
Epilithonimonas						8 ^a				8
Micrococcus				4		1 ^{<i>a</i>}			1	6
Psychrobacter	4							2 ^a		6
Rhodococcus						1	4 ^{<i>a</i>}			5
Corynebacterium								2 ^{<i>a</i>}	2	4
Brevundomonas						1	2		1	4
Vagococcus	3									3
Erysipelothrix	2									2
Kocuria						1 ^{<i>a</i>}		1 ^{<i>a</i>}		2
Chryseobacterium							1			1
Exigubacterium					1					1
Leucobacter							1			1
Lysinibacillus	1									1
Moraxella					1		İ			1
Paenibacillus		1					İ			1
Rhothia									1	1
Roseomonas						1				1
Variovorax							1			1
Total number of										
colonies isolated from	18	12	24	4	2	25	20	11	5	SUM: 121
each conveyor belt:										

^a Sample with isolates used in biofilm experiments in the current study.

^bL. monocytogenes was isolated from this conveyor belt on several other occasions (MF5377).

928 Table 2: Bacterial strains used in biofilm experiments

Background m	icrobiota	from conveyor belts
Strain	Plant ^a	Bacterial species or genera
MF4640	В	Acinetobacter johnsonii
MF4642	В	Acinetobacter johnsonii
MF4643	В	Corynebacterium sputi
MF4645	В	Corynebacterium sp.
MF6392	Α	Epilithonimonas sp.
MF4644	В	Kocuria sp.
MF6395	Α	Kocuria rhizophila
MF4634	В	Microbacterium sp.
MF6393	Α	Micrococcus sp.
MF6396	Α	Pseudomonas sp. (P. putida group)
MF6394	Α	Pseudomonas sp. (P. fluorescens subgroup)
MF4836	А	Pseudomonas sp. (P. mandelii subgroup)
MF4641	В	Psychrobacter sp.
MF4633	В	Rhodococcus erythropolis
MF4637	В	Rhodococcus fascians
MF4632	В	Sphingomonas sp.
L. monocytoge	enes strai	ns from meat processing environments ^b
Strain	Plant ^a	MLST sequence type, MLVA profile ^{c}
MF4536	С	ST9, MLVA 6-11-15-18-6 (persistent, <i>qacH</i> positive)
MF5376	Α	ST7, MLVA 7-7-10-10-6 (persistent)
MF5634	В	ST121, MLVA 6-7-14-10-6 (persistent, <i>qacH</i> positive)
MF5377	Α	ST8, MLVA 6-9-18-16-6 (persistent)
MF4565	С	ST18, MLVA 8-8-17-21-6 (sporadic)
MF5630	С	ST19, MLVA 6-9-18-10-6 (sporadic)
MF5378	Α	ST394, MLVA 6-9-19-10-6 (sporadic)
MF5378	A	

^{*a*} Plants A, B, and C correspond to plants M2, M4, and M1, respectively, described in Møretrø et al. (22).

b L. monocytogenes strains were isolated in Møretrø et al. (22).

^c Listed MLVA profiles correspond to variable number tandem repeat (VNTR) loci LMV6-LMV1-LMV2-LMV7-LMV9 described in Lindstedt et al. (66). Persistent or sporadic MLVA profiles are determined using the criteria described in the Materials and Methods section.

929

49

Downloaded from http://aem.asm.org/ on July 24, 2017 by INRA - France

		Before	C&D	Afte	r C&D
Front of coupon		H ₂ O	QAC	QAC	PAA
Multigenera biofilms	Day 4	149 (±32)	NA	39 (±23)	0.06 (±0.03)
	Day 7	35 (±22)	1.3 (±1.2)	0.67 (±0.61)	NT
L. monocytogenes biofilms	Day 4	3.4 (±1.1)	NA	0.18 (±0.11)	0.1 (±0.08)
	Day 7	14 (±11)	NT	NT	NT
Back of coupon					
Multigenera biofilms	Day 4	331 (±141)	NA	11 (±5)	0 (±0)
	Day 7	62 (±14)	68 (±66)	0.1 (±0.06)	NT
L. monocytogenes biofilms	Day 4	172 (±73)	NA	0.61 (±0.61)	NT
	Day 7	2841 (±1439)	11 (±3,6)	6.3 (±3.9)	NT

930 Table 3: Biovolume of *L. monocytogenes* on conveyor belt coupons^a

NA: not applicable

NT: not tested

^a Values are obtained from CLSM Z-scans using the ICY image analysis software (64) and are given as averages of the total volume (μm^3) per scan +/- the standard error of the mean for each tested combination. The number of coupons tested for each condition is given in Table S4 in the Supplemental Material.

931

Applied and Environmental

Accepted Manuscript Posted Online

Comment citer ce document : Fagerlund, A., Møretrø, Heir, Briandet, R., Langsrud, S. (2017). Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces . Applied and Environmental Microbiology. DOI : 10.1128/AEM.01046-17 Downloaded from http://aem.asm.org/ on July 24, 2017 by INRA - France

932 FIGURE LEGENDS

933	FIG 1 Development of the microbiota in multigenera biofilms on conveyor belt coupons (A, B)
934	and planktonic cultures (C) at 12°C. Inocula were composed of <i>L. monocytogenes</i> plus either 16
935	(A, C) or four (B) background microbiota strains. The frequencies of different bacterial strains
936	were determined by 16S rRNA amplicon sequencing. (A, B) Biofilms were allowed to develop for
937	four days before being subjected to daily cleaning with Alkalifoam and treatment with either a
938	QAC or PAA disinfection agent or (B) a daily rinse in H_2O . Coupons were harvested either before
939	or after C&D on the day of harvest, as indicated. (C) Development of microbiota in planktonic
940	cultures, grown with shaking in Erlenmeyer flasks for a total of 72 h. Presented results are
941	averages from three (A, C) or two (B) independent experiments. Results for individual
942	experiments are shown in Fig. S3 in the Supplemental Material.
943	FIG 2 Competition between <i>L. monocytogenes</i> strains during biofilm (A) and planktonic growth
943 944	FIG 2 Competition between <i>L. monocytogenes</i> strains during biofilm (A) and planktonic growth (B) in BHI at 12°C. Inoculated suspensions were composed of equal amounts of seven different
944	(B) in BHI at 12°C. Inoculated suspensions were composed of equal amounts of seven different
944 945	(B) in BHI at 12°C. Inoculated suspensions were composed of equal amounts of seven different <i>L. monocytogenes</i> strains, grown either together with 16 background microbiota strains
944 945 946	(B) in BHI at 12°C. Inoculated suspensions were composed of equal amounts of seven different <i>L. monocytogenes</i> strains, grown either together with 16 background microbiota strains (multigenera biofilm/culture) or alone (<i>L. monocytogenes</i> biofilm/culture). (A) Frequencies of <i>L.</i>
944 945 946 947	 (B) in BHI at 12°C. Inoculated suspensions were composed of equal amounts of seven different <i>L. monocytogenes</i> strains, grown either together with 16 background microbiota strains (multigenera biofilm/culture) or alone (<i>L. monocytogenes</i> biofilm/culture). (A) Frequencies of <i>L. monocytogenes</i> strains surviving in biofilms on conveyor belt coupons. Biofilms were allowed to
944 945 946 947 948	 (B) in BHI at 12°C. Inoculated suspensions were composed of equal amounts of seven different <i>L. monocytogenes</i> strains, grown either together with 16 background microbiota strains (multigenera biofilm/culture) or alone (<i>L. monocytogenes</i> biofilm/culture). (A) Frequencies of <i>L. monocytogenes</i> strains surviving in biofilms on conveyor belt coupons. Biofilms were allowed to develop for four days and then subjected to daily cleaning with Alkalifoam and disinfection with

952 colonies were identified from each of the four conditions analyzed; 120 colonies in total. (B)

Downloaded from http://aem.asm.org/ on July 24, 2017 by INRA - France

Time-course experiment showing the relative abundance of *L. monocytogenes* strains in
planktonic cultures, grown with shaking in Erlenmeyer flasks for a total of 72 h. The frequencies
of different *L. monocytogenes* strains was determined by *dapE* amplicon sequencing. Presented
results are averages from three independent experiments. Results for individual experiments
are shown in Fig. S4 in the Supplemental Material.

958 FIG 3 Growth of the 16 background microbiota strains and the seven L. monocytogenes strains 959 in BHI medium at 12°C. The experiment was performed in a Bioscreen C instrument, with 960 measurement of the absorbance at 600nm once every hour. Results shown are averages of 961 triplicate wells in one representative experiment out of three experiments performed. Strains 962 included in the biofilm experiments with four background microbiota strains (Fig. 1B) are 963 represented by solid colored lines. Dashed lines represent selected strains that also show good 964 growth properties. Grey lines represent the remaining eight strains. 965 FIG 4 Total bacterial numbers in biofilms on conveyor belt coupons prior to C&D. Biofilms were 966 allowed to develop undisturbed until Day 4 before being subjected to rinsing in H₂O or to 967 cleaning with Alkalifoam and disinfection with either a QAC- or a PAA-based disinfection agent 968 on three consecutive days. The microbiota on coupons harvested on Day 7 had been allowed to 969 regrow for 24 h after the last disinfection step. The L. monocytogenes count in multigenera 970 biofilms was determined by plating on selective agar. Mean values of five replicates are shown, 971 except for the sample labelled H₂O, where the mean of two replicates is shown. Error bars show 972 standard error of the mean. Asterisks represent differences in L. monocytogenes CFU per

973 coupon relative to in multigenera biofilms harvested on Day 4 (*, P = 0.08; **, P < 0.05; two-974 tailed paired Student *t* tests).

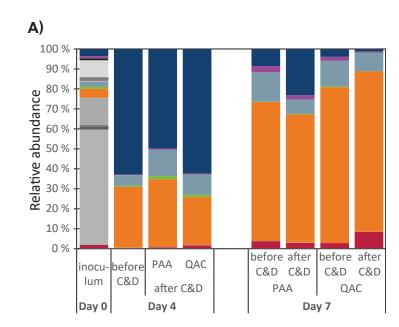
975 FIG 5 Tolerance of biofilms to C&D regimes relevant in the food industry. The log₁₀ reduction 976 upon C&D for multigenera biofilms and biofilms inoculated with seven L. monocytogenes strains 977 grown on conveyor belt coupons is shown. Biofilms were allowed to develop undisturbed until 978 Day 4 before being subjected to cleaning with Alkalifoam and disinfection with either a QAC- or 979 a PAA-based disinfection agent on four consecutive days. Calculated reductions are relative to 980 control coupons rinsed in H₂O only. The L. monocytogenes count in multigenera biofilms was 981 determined by plating on selective agar. Mean values of five experiments and standard error of 982 the mean are shown. Asterisks represent comparison of samples using the two-tailed paired 983 Student *t* tests (*, *P* = 0.06; **, *P* < 0.05).

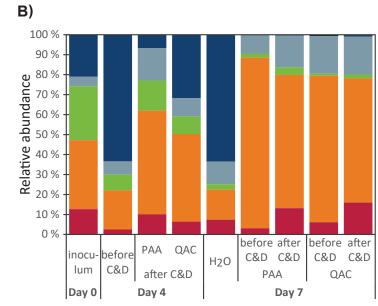
984	FIG 6 Biofilms on the top coating of conveyor belt material examined using CLSM. Green	
985	represents GFP-expressing L. monocytogenes cells, while Acinetobacter and Pseudomonas	
986	background flora strains are shown in red. CLSM images shown are Easy3D shadow projection	۱
987	reconstructions obtained from the confocal Z-stack series using the IMARIS software. Coupon	S
988	with biofilm were imaged either on Day 4 (B) or on Day 7 (A, C, E) after initiation of biofilm	
989	growth, and harvested after rinsing in H_2O (C, E) or after C&D with QAC (A, B). Panel (D) shows	s a
990	photograph of the front side of a conveyor belt coupon. The arrow indicates the approximate	
991	location of the air-liquid interface during biofilm development, and crosses show the	
992	approximate locations on each coupon where the CLMS image acquisitions were acquired	
993	(when only three images were acquired, the locations indicated by the large crosses were use	ed). 53

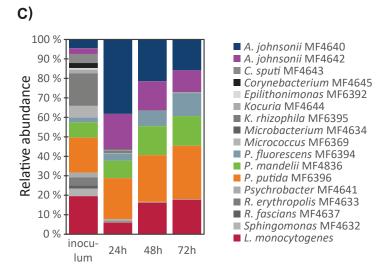
Applied and Environmental

Applied and Environmental Microbiology

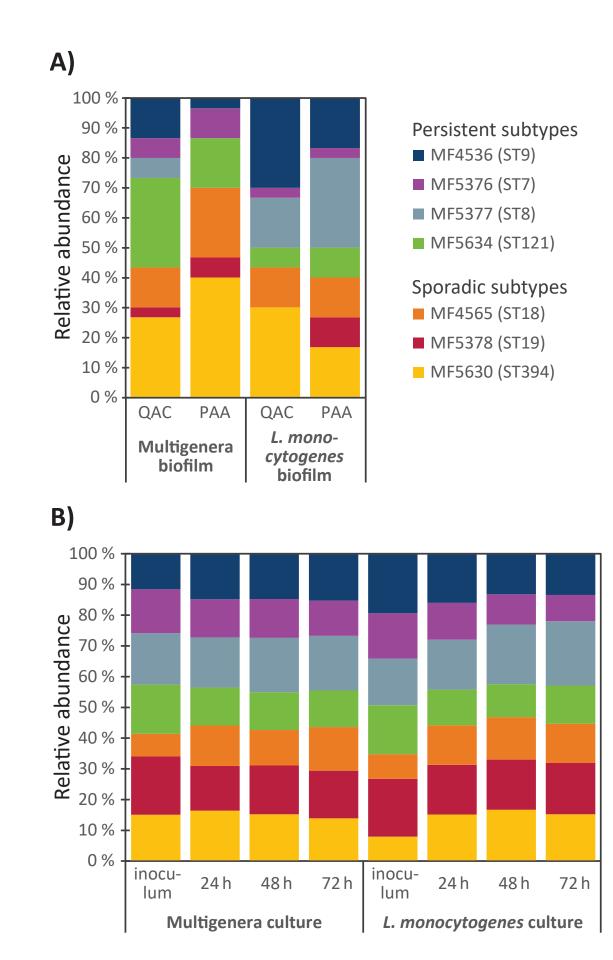
Microbioloav

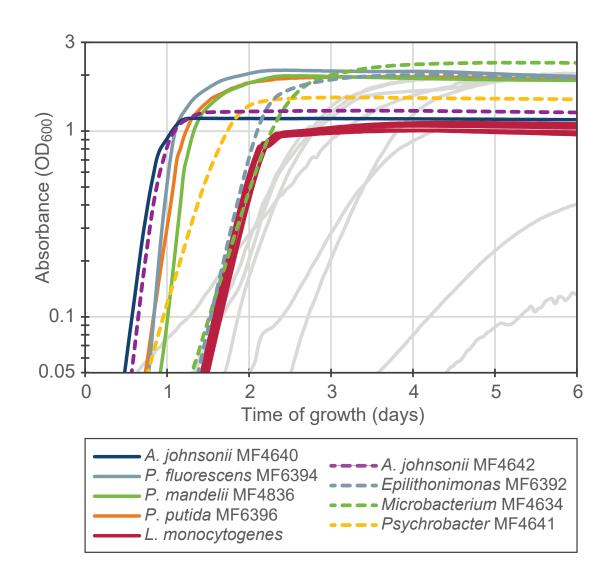

Panel (E) shows a to a mosaic 3D meta-image, obtained using a motorized stage that
automatically moves the sample between scans and tiles the adjacent fields. The box drawn
with dashed line in (D) approximately corresponds to the area of the coupon covered by the
CSLM image in (E).


998 **FIG 7** Biofilms formed on the underside of the conveyor belt examined using CLSM.

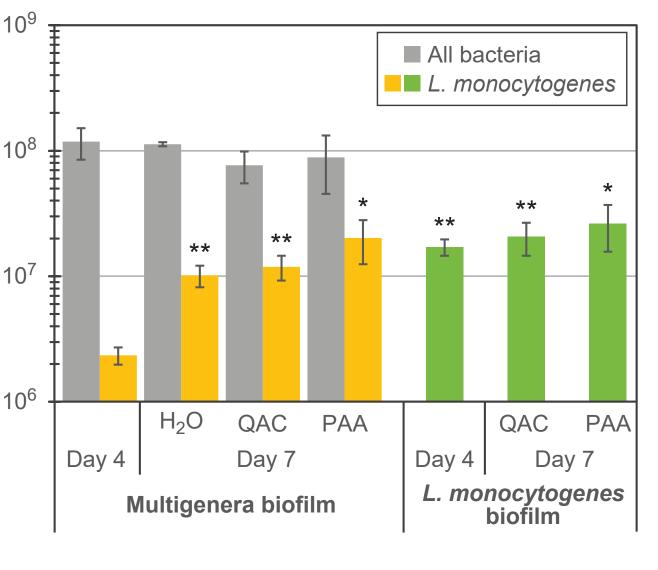

999 Pseudomonas and Acinetobacter background flora strains (shown in red) and GFP-expressing L. 1000 monocytogenes strains (in green) were used as inoculum, except in panel (F), where biofilms 1001 were inoculated with L. monocytogenes strains only. (A, B) Photographs showing the underside 1002 of a clean conveyor belt coupon. The image in panel (B), photographed using an USB 1003 microscope lens, shows the weave pattern of the fabric with the smooth warp thread indicated 1004 by an arrow. Panels (C) to (H) show biofilms formed on the weft thread of the woven fabric, on 1005 coupons rinsed in H_2O on Days 4 to 7 (C, D, F), on a coupon rinsed in H_2O on Day 7 after 1006 treatment with QAC on Days 4 to 6 (E), and on coupons harvested on Day 4 for after treatment 1007 with PAA (G) or QAC (H). In panels (C, E, F), the smaller fibers constituting the weft thread is 1008 represented by the reflection signal (in grey). (C, D) Mosaic 3D meta-image, shown in section 1009 view mode (C) and Easy3D blend representation (D), with warp treads indicated by arrows. The 1010 boxes drawn with dashed lines in (A) and (B) show the size and location of the area of a coupon 1011 depicted by the CSLM images shown in panels (D) and (C), respectively. Panels (I) to (K) are 1012 different representations of the same scan, showing biofilm harvested on Day 4 after rinsing in 1013 H₂O, formed on the warp thread of the woven fabric. Images are shown as three-dimensional

1014 (E, F, K) and Easy 3D (G, H, I, J) IMARIS representations. The scale is the same in the Easy3D

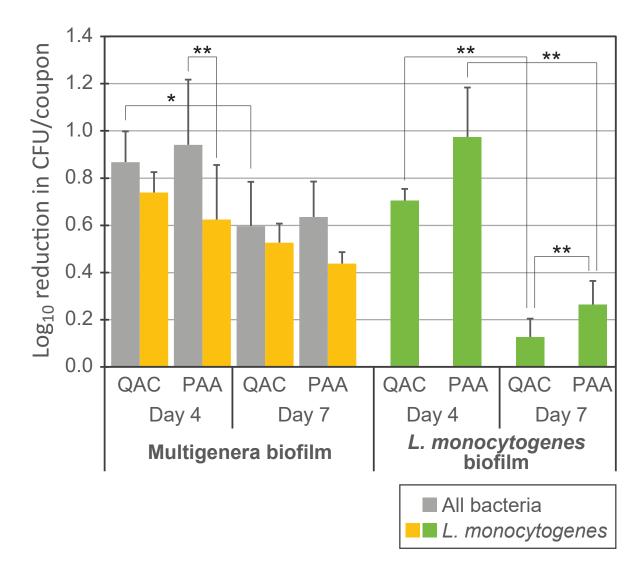

1015 blend images in panels (G) to (J). The red channel is not shown in panels (F) and (J).



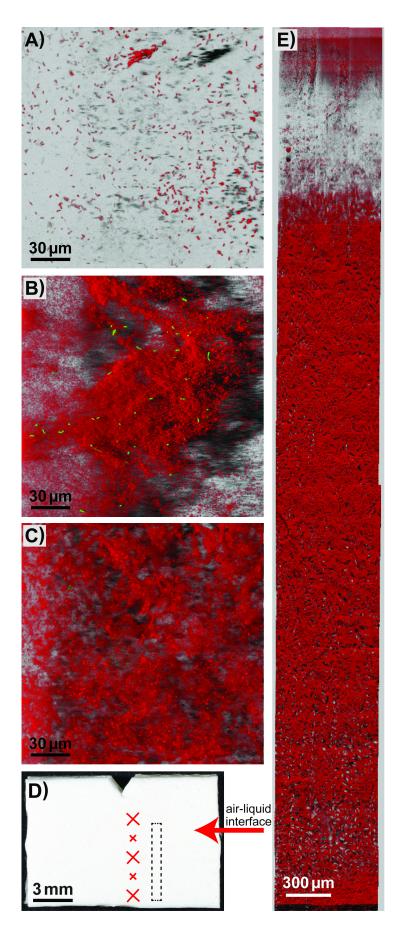
Comment citer ce document :


AEM

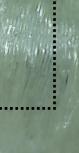
Downloaded from http://aem.asm.org/ on July 24, 2017 by INRA - France

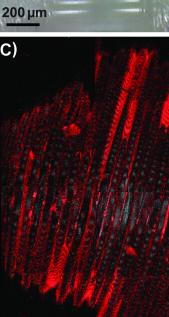


AEM


CFU/coupon

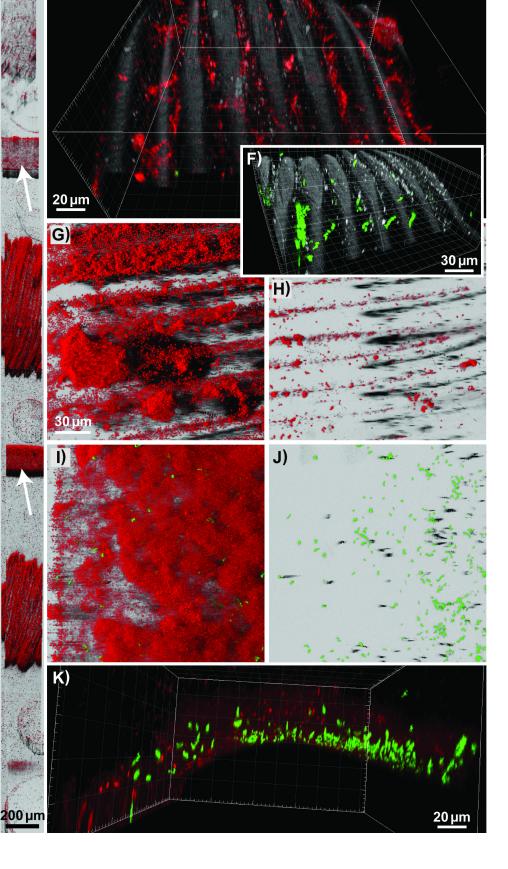
AEM


AEM



A)

<u>3 mm</u>


B)

100 µm

C)

AEM

Comment citer ce document : Fagerlund, A., Møretrø, Heir, Briandet, R., Langsrud, S. (2017). Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces . Applied and Environmental Microbiology. DOI : 10.1128/AEM.01046-17

E)

D)