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Sleep serves crucial learning and memory functions in both nervous and immune

systems. Microglia are brain immune cells that actively maintain health through their

crucial physiological roles exerted across the lifespan, including phagocytosis of cellular

debris and orchestration of neuroinflammation. The past decade has witnessed an

explosive growth of microglial research. Considering the recent developments in the

field of microglia and sleep, we examine their possible impact on various pathological

conditions associated with a gain, disruption, or loss of sleep in this focused mini-review.

While there are extensive studies of microglial implication in a variety of neuropsychiatric

and neurodegenerative diseases, less is known regarding their roles in sleep disorders.

It is timely to stimulate new research in this emergent and rapidly growing field of

investigation.
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INTRODUCTION

Humans spend approximately a third of their lives sleeping. Sleep is an involuntary process,
required to sustain goodmental and physical health. During sleep, the brain processes information,
consolidates memories, and undergoes a number of maintenance processes that help its function
upon waking (Graves et al., 2001; Abel et al., 2013; Tononi and Cirelli, 2014; Vorster and Born,
2015). Loss or restriction of sleep is associated with multiple detrimental consequences (Musiek
and Holtzman, 2016; Pires et al., 2016).

Microglia are macrophages derived from the embryonic yolk-sac that permanently reside in
the brain alongside neurons, astrocytes, and oligodendrocytes (Gomez Perdiguero et al., 2013).
These cells are uniformly distributed and their ramified processes constantly survey the brain
parenchyma during normal physiological conditions. Microglia respond to pathology in various
manners—they enlarge their cell bodies, increase their mobility, and hyper-ramify or reduce
their processes. The microglia field has recently undergone explosive growth, especially since
microglial roles in the healthy brain are becoming uncovered (Tremblay et al., 2011; Sierra et al.,
2014). These mononuclear phagocytes are now recognized as essential contributors to neuronal
survival, synaptic pruning, and dendritic spine formation during development, as well as synaptic
maintenance and plasticity, neurogenesis, learning, memory, and cognition into adulthood (Salter
and Beggs, 2014; Hong and Stevens, 2016; Tay et al., 2016). As the brain’s immune cells, microglia
help defend against pathogens, and play pivotal roles in recovery from sickness and injury
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(Kettenmann et al., 2011; Tremblay and Sierra, 2014).
Microglia phagocytose cellular debris and release pro- and
anti-inflammatory cytokines, trophic factors, and various other
molecular mediators, processes critical for adaptation of the
brain to the ever-changing environment (Delpech et al., 2015;
Shemer et al., 2015; Tian et al., 2017).

Microglia detect changes in homeostasis through their
recognition of exogenous or endogenous danger signals,
pathogen-associated molecular patterns (PAMPs; small
molecular motifs conserved within a class of microbes that are
recognized by cells of the innate immune system via pathogen
recognition receptors) and danger-associated molecular patterns
(DAMPs; host-derived motifs that also regulate the activation
of pathogen recognition receptors and can be triggered by
enhanced neuronal activity and psychological stress). Microglia
respond by orchestrating neuroinflammation through their
interactions with peripheral immune cells which invade the
brain, especially if the blood-brain-barrier is compromised
(notably occurs during chronic sleep restriction, He et al., 2014),
as well as vascular cells, glial cells, and neurons (Xanthos and
Sandkuhler, 2014). In some contexts, microglia perform adaptive
immune functions and present antigens to T cells upon binding
to MHC class II expressed on their surface (Greter et al., 2015).
Their responses can be homeostatic, leading to adaptation,
but also dysfunctional, contributing to, or causing pathology.
Anti-inflammatory mechanisms can be triggered in parallel
to terminate neuroinflammmation and reduce pathological
outcomes (Xanthos and Sandkuhler, 2014).

Considering that sleep and microglia share essential
homeostatic functions, we have focused this review to examine
the roles of microglial phagocytosis and inflammatory mediators,
among various brain regions, in the pathophysiology of sleep
disorders (see Table 1 for a summary). Although the number
of studies providing direct evidence is currently limited, we
anticipate this field of investigation to expand in the near future,
considering the exponential growth of microglial research (and
increased availability of tools to study these cells specifically) in
recent years. Since very interesting findings on the topic recently
came out, we also hoped to stimulate further the interest toward
microglia and sleep.

Infection-Induced Sleep Gain
“Sickness” is defined as the conjunction of adaptive changes that
are elicited by activation of the immune system. Among those
changes, infections induce stereotypic alterations in sleep activity.
In rodents, sleep is divided into (1) non-rapid eye-movement
(NREM) sleep [a state of deep sleep that is characterized
by slow electroencephalogram (EEG) delta (0.5–4 Hz) waves]
and (2) rapid eye-movement (REM) sleep (displaying electrical
oscillations typical of brain activation but with inhibition of
muscle tone and involuntary saccadic eye movements). During
sickness, the ratio of NREM to REM sleep is increased (i.e., time
in NREM sleep is increased while time in REM sleep is reduced,
Lancel et al., 1995; Kapas et al., 1998; Mullington et al., 2000).
A significant increase in the power of slow wave activity (SWA)
is also observed (Kapas et al., 1998; Mullington et al., 2000;
Majde and Krueger, 2005). SWA is commonly referred to as slow

oscillation (Steriade et al., 1993a,b,c; Cowan and Wilson, 1994)
and considered a physiological measure of the homeostatic drive
for sleep (Borbely, 1982, 2001; Franken et al., 2001). Numerous
clinical reports concur that both acute and chronic infections, as
well as inflammatory diseases, are associated with sleep-related
symptoms such as reduced sleep quality and increased fatigue
(for review see Rohleder et al., 2012).

Many pathogens comprising gram-positive and gram-
negative bacteria (Toth and Krueger, 1988, 1989; Krueger and
Majde, 1994), viruses (influenza virus, rhinovirus, and human
immunodeficiency virus) (Norman et al., 1988, 1990; Toth et al.,
1995; Opp et al., 1996; Gemma and Opp, 1999), fungal organisms
that include Candida albicans and the protozoan Trypanosoma
brucei brucei (Kent et al., 1988; Toth and Krueger, 1989; Toth
et al., 1994) induce a sleep response (for review, Krueger and
Opp, 2016). Infectious agents do so via PAMPs that enhance the
systemic and central production of pro-inflammatory cytokines,
such as interleukin (IL)-1 and tumor necrosis factor-alpha
(TNFα) (Imeri and Opp, 2009; Besedovsky et al., 2012; Krueger
and Opp, 2016). IL-1 and TNFα are well-established sleep-
regulatory substances that regulate NREM sleep duration and
intensity by modulating neuronal activity in the hypothalamic
preoptic area (Obal and Krueger, 2003), locus coeruleus (De
Sarro et al., 1997), dorsal raphe nucleus (Manfridi et al., 2003),
and cerebral cortex (Yoshida et al., 2004; Churchill et al., 2008).
Hence, these cytokines act both at the circuit level and locally in
the cortex and brainstem to promote sleep (Krueger, 2008). All
these findings have been extensively reviewed (Krueger, 2008;
Krueger et al., 2011; Zielinski et al., 2013; Krueger and Opp,
2016).

Microglia are the main producers of cytokines within the
nervous system during inflammatory diseases (Renno et al., 1995;
Van Dam et al., 1995; Buttini et al., 1997; Medana et al., 1997;
Gregersen et al., 2000; Kettenmann et al., 2011; Delpech et al.,
2015), indicating that these cells could play a crucial role in
infection-induced sleep alterations. The effects of cytokines on
sleep–wake behavior involve communication between neurons
andmicroglia. As microglial processes constantly survey synaptic
elements in a neuronal activity-dependent manner (Davalos
et al., 2005; Nimmerjahn et al., 2005; Wake et al., 2009;
Tremblay et al., 2010; Hristovska and Pascual, 2015), a recent
publication hypothesized that pro-inflammatory cytokines may
exert their somnogenic effects by promoting microglial attraction
to synapses (Karrer et al., 2015). In line with this assumption,
the authors found that TNFα induces neuronal production of
the chemokines (chemoattractant cytokines) CCL2, CCL7, and
CXCL10, which bind to their receptors expressed by microglia
and promote microglial process extension (Karrer et al., 2015).
TNFα additionally upregulates neuronal Homer1a (Karrer et al.,
2015), which was shown to drive the homeostatic scaling-down of
excitatory synapses during sleep (Diering et al., 2017). According
to the synaptic homeostasis hypothesis, information processing
and decision-making during wakefulness drive strengthening of
synapses, which is counterbalanced during sleep by a global
weakening (de Vivo et al., 2017).Mice with a deletion of Homer1a
also show reduced wakefulness with increased NREM sleep
during the dark period (Naidoo et al., 2012). While it has yet
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TABLE 1 | Microglial functions and relevance to sleep disorders.

Neuroinflammation Experimental findings Suggested implication

Infection-induced sleep gain

Microglia are the main producers of

cytokines in the central nervous

system during inflammatory diseases.

IL-1 and TNFα are well-known to promote sleep in humans and in

animal models (Krueger, 2008; Krueger et al., 2011; Zielinski et al.,

2013; Krueger and Opp, 2016).

Pro-inflammatory cytokines may exert somnogenic

effects by promoting microglial attraction to synapses

(Karrer et al., 2015). TNFα induces the production of

chemokines (CCL2, CCL7, and CXCL10) by neurons,

which bind to corresponding receptors expressed by

microglia and are known to promote microglial process

extension (Karrer et al., 2015).

Recreational-drug induced sleep loss

PET scans of chronic d-METH self-administrating individuals

reveals increased binding of the radiotracer [11C](R)-PK11195 that

labels “activated” microglia (McCoy et al., 2007).

In mice undergoing microglial depletion, the duration of daily

wakefulness produced by d-METH is reduced by nearly 1 h. Ex

vivo nitric oxide synthase (NOS) activity, and in vivo NOS

expression are also elevated in cortical CD11b+ microglia from

wild-type mice upon acute d-METH exposure. Additionally,

CD11b+ cells are the only ones found to exhibit changes in

sleep-regulatory IL-1β expression in response to d-METH (Wang

et al., 2014).

The effects of d-METH on sleep and wakefulness could

be mediated partly by microglia, through exacerbated

oxidative stress and pro-inflammatory cytokine release

(Wang et al., 2014).

Narcolepsy

Increased levels of IL-6 and TNFα are measured in the sera or

plasma from narcoleptic patients (Cartier et al., 2005; Eltayeb

et al., 2007; Dauvilliers et al., 2014).

Decrease in CCR expression could lead to a defect in

the recognition and phagocytosis of damaged cells by

microglia and consequently to a delayed resolution of

acute inflammation. These defects could lead to

enhanced autoimmunity resulting in the loss of

hypocretin neurons.

Reduced levels of microglia/macrophage-derived CCR1 and

CCR3 are measured in peripheral blood samples from narcolepsy

patients (Mignot et al., 1995; Tafti et al., 1996; Partinen et al.,

2014).

Antigen presentation

Microglia can present antigens to T

cells upon their binding to MHC class

II expressed on their surface.

An increased microglial expression of MHC class II is measured in

the central nervous system of narcoleptic dogs (Tafti, 2009).

Local infusion of a low-dose of the endotoxin

lipopolysaccharide in rats, as a model of chronic

inflammation, induces the loss of hypocretin neurons and

increases the number of MHC class II-positive microglia

in the lateral hypothalamus. Microglia-mediated

inflammation might be a trigger for the loss of hypocretin

neurons during narcolepsy (Maurovich-Horvat et al.,

2014).

Phagocytosis

Microglia prune synapses in a

complement-dependent manner in

contexts of health and disease.

A distinctive complotype, i.e., a combination of polymorphisms

defining complement activity: BfS, C4A3, and C4B1, was

identified in narcopleptic patients (Savill et al., 2002).

Exacerbation of complement-dependent microglial

phagocytic activity is a plausible mechanism leading to

the loss of hypocretin neurons.

Obstructive sleep apnea

Sleep fragmentation

Microglial co-localization with the marker of glutamatergic axon

terminals VGLUT1 is increased after 5 days of chronic sleep

deprivation in mouse prefrontal cortex (Bellesi et al., 2017). In

parallel, the total length of microglial process arborization, and the

proportion of the microglial population showing less ramified

morphologies, are significantly reduced (Bellesi et al., 2017).

These observations suggest an exacerbated microglial

pruning of synapes, which could be mediated by the

classical complement pathway considering that

expression of the complement protein C3 was

concomitantly increased by sleep deprivation (Bellesi

et al., 2017).

(Continued)
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TABLE 1 | Continued

Neuroinflammation Experimental findings Suggested implication

Immune surveillance Chronic intermittent hypoxia

Microglia detect changes in

homeostasis through their recognition

of exogenous or endogenous danger

signals, such as danger-associated

molecular patterns (DAMPs).

Elevated levels of DAMPs are measured in blood samples from

obstructive sleep apnea patients (Sapin et al., 2015), as well as in

the hippocampus of rodent models of chronic intermittent hypoxia

(Kiernan et al., 2016).

Microglia could respond to DAMPs induced by

enhanced neuronal activity or psychological stress. The

consequences on neuronal health and cognitive function

are still undetermined however.

to be demonstrated in vivo, these data provide a provocative
mechanism by which TNFα could regulate the sleep-wake cycle.

Interestingly, microglia were recently revealed also to follow
a circadian rhythm for protein expression that is controlled by
their intrinsic molecular clock (Hayashi et al., 2013). This notably
affects their production of cytokines (Fonken et al., 2015), and
could not only alter their response to infectious agents, but also
their influence on sleep.

Overall, the literature suggest microglia play direct (structural
interactions with synapses) as well as indirect (release of
inflammatory cytokines) roles in infection-induced sleep gain.

Narcolepsy
Narcolepsy is characterized by excessive daytime sleepiness,
sleep/wake fragmentation, hallucinations, sleep paralysis, and
disturbed nocturnal sleep. The prevalence of this chronic
sleep disorder ranges between 0.02 and 0.05% of the general
population, with first symptoms appearing around 20–30 years
of age, preferentially in males. After one or more years of
progression, the disease stabilizes (Siegel, 1999; Longstreth
et al., 2007). Narcolepsy is caused by a specific loss of
hypothalamic hypocretin-producing neurons (85–95% of cells
in humans), which coincides with low hypocretin levels
in patients’ cerebrospinal fluid (CSF) (Nishino et al., 2000;
Thannickal et al., 2000; Mignot et al., 2002). Hypocretin
knockout mice recapitulate human disease and are commonly
used as an animal model of narcolepsy (Chemelli et al.,
1999; Hara et al., 2001; Tabuchi et al., 2014). However, it
remains unclear how hypocretin neurons are lost in the human
pathophysiology.

Both genetic heritability and environmental triggers were
found to be involved in disease progression. The cause and
pathogenesis of narcolepsy are still unclear but likely involve the
immune system. Human narcolepsy is closely associated (>95%
of cases) with human leukocyte antigen (HLA) class II alleles
in the major histocompatibility (MHC) region (Langdon et al.,
1984; Matsuki et al., 1992; Mignot et al., 1994; Tafti, 2009), a
classical hallmark of autoimmune diseases. Yet, its classification
as an autoimmune disease is still a matter of debate (for review,
see Mignot et al., 1995; Partinen et al., 2014).

Accumulating evidence allows us to consider a possible
microglial implication in narcolepsy. Increased microglial
expression of MHC class II (a hallmark of chronic activation)
has been reported in the central nervous system (CNS) of
narcoleptic dogs. Reactive microglia were predominantly located
in the brainstem (including the reticular formation), basal

forebrain, and amygdala (Tafti et al., 1996). A recent publication
also reported reduced levels of the chemokine receptors CCR1
and CCR3 in peripheral blood samples of patients with
narcolepsy (Cartier et al., 2005; Eltayeb et al., 2007; Toyoda
et al., 2015). These receptors are expressed by microglia (in
the brain) and other macrophages (in the bloodstream and
other tissues) to ensure proper and coordinated inflammatory
responses. It is hypothesized that a decrease in CCR expression
leads to a defect in the recognition and phagocytosis of
damaged cells by microglia and consequently to a delayed
resolution of acute inflammation. These defects could lead to
enhanced autoimmunity resulting in the loss of hypocretin
neurons.

Clinical studies have also revealed that narcolepsy patients
have subtly dysregulated cytokine levels in their serum and
CSF consistent with markers of microglial reactivity (Okun
et al., 2004; Dauvilliers et al., 2014; Maurovich-Horvat et al.,
2014; Tanaka et al., 2014). Multiple independent studies that
include different ethnic populations showed a preponderant
increase in IL-6 and TNFα expression in sera or plasma from
patients with narcolepsy (Okun et al., 2004; Maurovich-Horvat
et al., 2014; Tanaka et al., 2014). Other studies have identified
changes in IL-4 (Dauvilliers et al., 2014) or IL-8 (Tanaka
et al., 2014) levels. To further assess the role of inflammation
in the degeneration of hypocretin neurons, Gerashchenko
et al. (Gerashchenko and Shiromani, 2004) infused a low-
dose of the endotoxin lipopolysaccharide (LPS) in the lateral
hypothalamus of rats as a model of local chronic inflammation.
This induced a decline in the number of neurons, including
hypocretin neurons, in the lateral hypothalamus. Chronic LPS
infusion also increased the number of MHC class II-positive
microglia in the lateral hypothalamus. These data suggest that
microglia-mediated inflammation might be a trigger for the loss
of hypocretin neurons during narcolepsy (Gerashchenko and
Shiromani, 2004).

In addition to their important roles in inflammation and
immune response, microglia are the main phagocytes of
the brain (Sierra et al., 2013). Microglial phagocytosis is a
pivotal mechanism for the clearance of cellular elements in
the CNS, as demonstrated by their ability to engulf brain-
specific cargo, such as axonal and myelin debris or apoptotic
neurons. Additionally, recent data has shown that microglia can
execute neuronal death by phagocytosing stressed-but-viable
neurons, a process termed “phagoptosis” (Brown and Neher,
2014). Microglia are equipped with a complementary array
of receptors enabling them to recognize their targets (the
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so-called “eat-me” signals) including proteins of the classical
complement cascade (Savill et al., 2002; Ravichandran, 2010).
Interestingly, a clinical study reported a correlation between
narcolepsy and complement receptors (Cuccia et al., 1991). The
thirty narcoleptic patients studied had a distinctive complotype,
i.e., a combination of polymorphisms defining complement
activity: BfS, C4A3, and C4B1 (Cuccia et al., 1991). One could
hypothesize that exacerbation of complement-dependent
microglial phagocytic activity is a plausible mechanism leading
to the loss of (hypocretin) neurons as also observed in other
neurodegenerative conditions such as Alzheimer’s disease (Hong
et al., 2016).

Overall, this evidence indicates that the homeostatic function
of microglia is altered in the pathogenesis of narcolepsy, leading
to an increased release of inflammatory factors, and alteration
of their phagocytic activity. Both events alter microglia-neuron
interactions and might support the degeneration of hypocretin
neurons and subsequent sleep alterations.

Obstructive Sleep Apnea: Sleep
Fragmentation and Chronic Intermittent
Hypoxia
Obstructive sleep apnea (OSA), often associated with obesity, is a
multifactorial systemic disease affecting approximately 10–25%
of the general population worldwide (Peppard et al., 2013;
Heinzer et al., 2015; Senaratna et al., 2017). In OSA the upper
airways are narrowed or collapsed during sleep causing repetitive
pauses of breathing (apneas) and concomitant reductions of
blood oxygen level. Apneas are followed by increased breathing
efforts, which in turn lead to episodic increases in blood
carbon dioxide concentration. These events cause repeated
arousals from sleep (sleep fragmentation) and/or excessive
daytime sleepiness. OSA is often accompanied by neurocognitive
dysfunction leading to impairments in attention and vigilance,
learning, and memory, as well as executive functions (Zhou et al.,
2016). If untreated, OSA associates with several comorbidities
(Vijayan, 2012) such as cardiovascular disease (Sanchez-de-la-
Torre et al., 2013) and metabolic syndrome, including obesity
(Shechter, 2016) and insulin resistance (Ip et al., 2002), as well
as mild cognitive impairment/dementia (Yaffe et al., 2011, 2014).
Recent epidemiological studies also indicated that OSA may
be associated with an increased risk of cancer (Nieto et al.,
2012; Palamaner Subash Shantha et al., 2015; Gozal et al.,
2016).

The two major acute pathophysiological consequences of
OSA are: (1) tissue oxygen shortage/hypoxia with rapid re-
oxygenation (i.e., chronic intermittent hypoxia, CIH) and (2)
sleep fragmentation (SF) (Young et al., 1993). In OSA, most
tissues, including the brain, are repeatedly exposed to reduced
oxygen levels or a total lack of oxygen followed by rapid increases
in oxygen availability. This pattern of repeated hypoxia-re-
oxygenation (HRO) increases tissue levels of reactive oxygen
species/reactive nitrogen species (ROS/RNS) and concomitantly
activates the immune response as measured by the production of
pro-inflammatory cytokines (Lavie, 2003, 2015). However, these

cellular responses are not uniform across all tissues and vary with
the severity of OSA.

In OSA patients, the poor health outcomes are a consequence
of complex interactions between CIH and SF. However, with
animal models it has been possible to begin dissecting the
individual pathophysiological contributions of SF and tissue
oxygenation. In the next sections we review each of them
separately in light of a hypothesized microglial contribution.

Chronic Intermittent Hypoxia
Because the HRO processes in OSA are similar to the ischemia-
reperfusion events in a wide range of brain pathologies, data from
these disease models provide valuable information regarding
the cellular signaling pathways which are possibly involved.
However, it should be noted that in OSA, the tissue exposures to
hypoxia are cyclic, and most importantly chronic, and therefore
the cellular responses can differ substantially from those of
acute exposures (Almendros et al., 2014). The main trigger of
the inflammatory response measured in CIH is oxidative stress
(Wang et al., 2010), defined as an imbalance between pro-oxidant
and anti-oxidant systems, resulting in an excessive production
of ROS such as superoxide, hydrogen peroxide, and various
RNS (Lavie, 2015). ROS damage critical cellular biomolecules
thus leading to cell injury or death. In OSA models of CIH,
signs of injured cells have been reported in various brain areas
but the hippocampus and cerebral cortex appear to be most
sensitive (Gozal et al., 2001; Xu et al., 2004). These lesions were
proposed to contribute to the widespread neurocognitive defects
encountered in OSA (Lim and Veasey, 2010; Harper et al., 2013).

Evidence of microglial phenotypic transformation such as
microglia-specific inflammatory gene expression as well as
morphological changes have been reported in CIH models
of OSA (Smith et al., 2013; Sapin et al., 2015). A recent
review (Kiernan et al., 2016) posits several putative mechanisms
by which microglial physiological functions, which are now
recognized to be crucial for plasticity, learning, andmemory, may
be affected by CIH pathophysiology:

(i) By ROS. Either directly (although this hypothesis was not
yet confirmed) or indirectly, by local signals generated by
ROS injured/dying neurons.

(ii) By peripheral inflammation, a condition well established in
OSA (Unnikrishnan et al., 2015). Signals of inflammation
could reach microglia via neural transmission of vagal
afferents reacting to circulating pro-inflammatory agents
or the pro-inflammatory agents themselves could cross the
blood-brain barrier to directly affect microglia.

(iii) By responding to DAMPs such as HSP60, HMGB1, and
MRP8/14. Elevated levels of DAMPs have been reported
in blood samples from OSA patients (Wu et al., 2010), as
well as in the hippocampus of rodent models of CIH (Gozal
et al., 2002).

Sleep Fragmentation
There is a growing literature indicating that short or insufficient
sleep is associated with low grade inflammation (Everson, 2005;
Mullington et al., 2010; Aho et al., 2013) as well as cellular
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stress (Naidoo, 2012; Hakim et al., 2015). Recently, findings
from longitudinal follow-up studies in patients with idiopathic
REM sleep behavior disorder also revealed that most patients
eventually develop neurodegenerative disorder, particularly
Parkinson’s disease or other synucleopathies (Stokholm et al.,
2017). Positron emission tomography (PET scan) studies using
the radiotracer [11C](R)-PK11195, which labels “translocator
protein 18 kDa (TSPO),” mainly expressed by microglia (Banati,
2002) and considered to modulate their inflammatory activity
and phagocytosis (Karlstetter et al., 2014), revealed an increased
binding of the radiotracer in the substantia nigra of patients
with idiopathic REM sleep behavior disorder, thus identifying
microglial “activation” as a potential therapeutic target for halting
or delaying the neurodegenerative process.

Two experimental studies in rodent models of chronic sleep
deprivation have also reported microglial morphological changes
that comprise the enlargement of their cell body (Hsu et al., 2003)
and increased expression of pro-inflammatory cytokines (Wisor
et al., 2011a). Very recently, Bellesi et al. revealed using confocal
microscopy analysis that microglial homeostatic surveillance
of the parenchyma is reduced after 5 days of chronic sleep
deprivation in mouse prefrontal cortex. The total length of
microglial process arborization and the proportion of microglial
cells showing ramified morphologies were significantly reduced.
These changes were accompanied by an increased microglial
co-localization with the marker of glutamatergic axon terminals
VGLUT1, suggesting exacerbated phagocytosis, which could be
mediated by the classical complement pathway considering that
expression of the complement protein C3 targeting synapses for
elimination (Schafer et al., 2012) was concomitantly increased
by sleep deprivation (Bellesi et al., 2017). Expression of the
TAM receptor MERTK, which regulates microglial surveillance
of the parenchyma and phagocytic behavior under physiological
conditions (Fourgeaud et al., 2016), was also found to be
increased by sleep deprivation (Bellesi et al., 2017). Interestingly,
astrocytes were additionally shown in Bellesi et al., using
high-resolution serial block-face scanning electron microscopy,
to phagocytose synaptic elements, mainly presynaptic axon
terminals, both after acute and chronic sleep deprivation
(Bellesi et al., 2017). Glial cells reactivity thus appears to
be implicated in the detrimental consequences of sleep loss,
through neuronal circuit remodeling or loss of their essential
physiological functions. Synaptic loss is considered the best
pathological correlate of cognitive decline across a variety of
conditions that include aging and neurodegenerative diseases
(Duman and Aghajanian, 2012; Spires-Jones and Hyman,
2014).

In the case of OSA, however, the main sleep phenotype
is SF (rather than sleep loss) coupled with an excessive
daytime sleepiness and widespread cognitive dysfunction. In
the last decade rodent models of SF have demonstrated that
SF alone (without CIH) induces sleepiness and cognitive
impairment (McCoy et al., 2007; McKenna et al., 2007;
Tansey et al., 2007; Tartar et al., 2010; Ramesh et al., 2012),
obesity (Wang et al., 2014), immune mediated metabolic
dysfunction (Zhang et al., 2014), cardiovascular alterations
(Carreras et al., 2014), and alterations of the gut microbiota

(Poroyko et al., 2016). All of these consequences have an
oxidative stress-mediated inflammatory component that could
directly or indirectly affect microglial functions as proposed
for CIH above. Gut microbiota can also directly influence
microglial maturation, leading for instance to an attenuated
production of pro-inflammatory cytokines upon immune
stimulation (Erny et al., 2015). In addition, SF mediated
increase in microglial surveillance of synaptic elements or
remodeling of neuronal circuits could underlie some of the
reported impairments in cognitive performance through synaptic
loss.

Recreational-Drug Induced Sleep Loss
Recreational drugs have deleterious consequences on sleep,
with dextro-methamphetamine (d-METH) exerting its
sustained wake-promoting effects (for up to several days)
by elevating the monoaminergic tone. It is rarely prescribed due
to concerns involving neurotoxicity, notably to dopaminergic
and serotoninergic neurons, in addition to its aphrodisiac and
euphoriant effects, among other mind-altering properties,
and strong addictiveness. PET scans of chronic d-METH
self-administrating individuals using the radiotracer [11C](R)-
PK11195 revealed exacerbated microglial reactivity across
several brain regions that receive dopaminergic or serotoninergic
innervation, including the midbrain, striatum, thalamus,
orbitofrontal, and insular cortices (Sekine et al., 2008). This
microglial transformation is likely plastic and reverts to normal
over longer periods of abstinence, since the binding levels of
[11C](R)-PK11195 correlated inversely with the duration of
withdrawal in d-METH abusers (Sekine et al., 2008).

The effects of d-METH on sleep and wakefulness could be
mediated by microglia, through exacerbated oxidative stress and
pro-inflammatory cytokine release (Wisor et al., 2011b). In mice
undergoing microglial depletion [through delivery of ganciclovir
in transgenics expressing the suicide agent herpes thymidine
kinase under control of the CD11b promoter], the duration of
daily wakefulness produced by d-METH was reduced by nearly 1
h. Ex vivo nitric oxide synthase (NOS) activity, and in vivo NOS
expression were also elevated in cortical CD11b+ microglia from
wild-type mice upon acute d-METH exposure. Additionally,
CD11b+ cells, which mainly comprise microglia in the brain,
were the only ones among the cerebral cortex found to exhibit
changes in sleep-regulatory IL-1β pro-inflammatory cytokine
expression in response to d-METH (Wisor et al., 2011b). In a
follow up study by the same group, it was further shown that IL-1
receptor(R) deficiency potentiates, although modestly, the wake-
promoting effects of d-METH (Schmidt and Wisor, 2012). The
increased time spent in NREM sleep subsequent to d-METH-
induced wakefulness was abolished in IL-1R knockout mice,
while the increased time spent asleep after 3 h of behaviorally
enforced wakefulness was similarly prevented in the knockouts.
These findings indicate that microglial IL-1β signaling through
IL-1R contributes to the hypersomnolence that ensues sleep loss,
whether it is triggered pharmacologically by recreational drugs
or through behaviorally-induced sleep deprivation (Schmidt and
Wisor, 2012).
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CONCLUSION AND PERSPECTIVES

While microglial function was not a primary focus in several
of the studies covered in this review, their overall findings
indicate that microglial dysfunction (in the form of exacerbated
phagocytic activity and neuroinflammation) may contribute to
the pathophysiology of sleep disorders. These activities would
be exerted in concert with other brain cells, vascular, glial,
or neuronal, and the peripheral immune cells transiting to
the brain. In light of these combined findings, substantial
amount of evidence point toward an emerging role for
neuroinflammatory processes in the pathophysiology of sleep
disorders. Microglial (and astrocytic) phagocytosis of synaptic
elements was also found to be exacerbated in rodent models
of sleep deprivation, indicating their possible implication in its
detrimental consequences on cognition. Microglia thus emerge
as an important subject of investigation for future sleep-related
studies, as already recognized in a variety of neuropsychiatric and
neurodegenerative contexts. In addition to the diseases discussed
in this review, it would be interesting to study the roles of
microglia in the regulation of sleep functions: their contribution
tomemory consolidation and transformation (Dudai et al., 2015),
synaptic homeostasis which downscales synapses during sleep

to ensure learning during wake (Tononi and Cirelli, 2014), and
the brain clearance from its toxic metabolites during sleep, in
cooperation with astrocytes, which form a system of perivascular
tunnels named the “glymphatics” (Xie et al., 2013).
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