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Optimal location of resources maximizing the total

population size in logistic models∗

Idriss Mazari† Grégoire Nadin‡ Yannick Privat§

Abstract

In this article, we consider a species whose population density solves the steady diffusive
logistic equation in a heterogeneous environment modeled with the help of a spatially non
constant coefficient standing for a resources distribution. We address the issue of maximizing
the total population size with respect to the resources distribution, considering some uniform
pointwise bounds as well as prescribing the total amount of resources. By assuming the
diffusion rate of the species large enough, we prove that any optimal configuration is bang-
bang (in other words an extremal of the admissible set) meaning that this problem can be recast
as a shape optimization problem, the unknown domain standing for the resources location.
In the one-dimensional case, this problem is deeply analyzed, and for large diffusion rates, all
optimal configurations are exhibited. This study is completed by several numerical simulations
in the one dimensional case.

Keywords: diffusive logistic equation, rearrangement inequalities, symmetrization, optimal con-
trol, shape optimization, optimality conditions.

AMS classification: 49K20, 35Q92, 49J30, 34B15.

1 Introduction

1.1 Motivations and state of the art

In this article, we investigate an optimal control problem arising in population dynamics. Let
us consider the population density θm,µ of a given species evolving in a bounded and connected

domain Ω in IRd with a C2 boundary. In what follows, we will assume that θm,µ is the positive
solution of the so-called steady logistic-diffusive equation (LDEE) writing{

µ∆θm,µ(x) + θm,µ(x)(m(x)− θm,µ(x)) = 0 x ∈ Ω,
∂θm,µ
∂ν = 0 x ∈ ∂Ω,

(LDE)

where m ∈ L∞(Ω) stands for the resources distribution and µ > 0 stands for the species velocity
also called diffusion rate. From a biological point of view, the real number m(x) is the local intrinsic
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growth rate of species at location x of the habitat Ω and can be seen as a measure of the resources
available at x.

The optimal control problem we will investigate consists of maximizing the functional

Fµ : m 7→
ˆ

Ω

θm,µ,

standing for the total population size.
In the framework of population dynamics, the density θm,µ solving Equation (LDE) can be

interpreted as a steady state associated to the following evolution equation
∂u
∂t (t, x) = µ∆u(t, x) + u(t, x)(m(x)− u(t, x)) t > 0, x ∈ Ω
∂u
∂ν (t, x) = 0 t > 0, x ∈ ∂Ω
u(0, x) = u0(x) x ∈ Ω

(LDEE)

modeling the spatiotemporal behavior of a population density u in a domain Ω with the spatially
heterogeneous resource term m.

The pioneering works by Fisher [10], Kolmogorov-Petrovski-Piskounov [22] and Skellam [32]
sparked a new interest to the study of the heterogeneity influence of the environment on the growth
of a population densities. Investigating the existence, uniqueness of solutions for the two previous
equations as well as their regularity properties boils down to the study of spectral properties for
the linearized operator

L : D(L) 3 f 7→ µ∆f +mf,

where D(L) = {f ∈ L2(Ω) | ∆f ∈ L2(Ω)} and of its first eigenvalue λ1(m,µ), characterized by the
Courant-Fischer formula

λ1(m,µ) := sup
f∈W 1,2(Ω),

´
Ω
f2=1

{
−µ

ˆ
Ω

|∇f |2 +

ˆ
Ω

mf2

}
. (1)

Indeed, the positiveness of λ(m,µ) is a sufficient condition ensuring the well-posedness of Equations
(LDEE) and (LDE) ([2]). More precisely, assuming that m and µ are such that λ1(m,µ) > 0,
then, Equation (LDE) has unique positive solution θm,µ ∈ W 1,2(Ω). Furthermore, for any p > 1,
θm,µ ∈W 2,p(Ω), and there holds

0 < inf
Ω
θm,µ 6 θm,µ 6 ‖m‖L∞(Ω). (2)

Moreover, the steady state θm,µ is globally asymptotically stable. Namely, for any u0 ∈ W 1,2(Ω)
such that u0 > 0 , u0 6= 0 a.e. in Ω, one has

‖u(t, ·)− θm,µ‖L∞(Ω) −→
t→+∞

0.

where u denotes the unique solution of (LDEE) with initial state u0 (belonging to L2(0, T ;W 1,2(Ω))
for every T > 0).

The importance of λ1(m,µ) for stability issues related to population dynamics models was first
noted in simple cases by Ludwig, Aronson and Weinberger [28]. Let us mention [8] where the case
of diffusive Lotka-Volterra equations is investigated.

To guarantee that λ1(m,µ) > 0, it is enough to work with distributions of resources m satisfying
the assumption

m ∈ L∞+ (Ω) where L∞+ (Ω) =

{
m ∈ L∞(Ω),

ˆ
Ω

m > 0

}
. (H1)
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Under such a condition on the weight function m(·), many relevant quantities from the biological
point of view are well defined, including the eigenvalue λ1(m,µ). Note that the issue of maximizing
this principal eigenvalue was addressed for instance in [17, 18, 23, 27, 31].

In the survey article [26], Lou suggests the following problem: the parameter µ > 0 being fixed,
which weight m maximizes the total population size among all uniformly bounded elements of
L∞(Ω)?

In this article, we aim at providing partial answers to this issue, and more generally new results
about the understanding of the influence of the weight m(·) on the total population size.

For that purpose, let us introduce the total population size functional, defined for a given µ > 0
by

Fµ : L∞+ (Ω) 3 m 7−→
ˆ

Ω

θm,µ, (3)

where θm,µ denotes the solution of equation (LDE).

Let us mention several previous works dealing with the maximization of the total population
size functional. It is shown in [25] that, among all weights m such that

ffl
Ω
m = m0, there holds

Fµ(m) > Fµ(m0) = m0; the inequality is strict whenever m is nonconstant1. Moreover, it is also
shown that the problem of maximizing Fµ over L∞+ (Ω) has no solution.

In the recent article [1], it is shown that, when Ω = (0, `), one has

∀µ > 0, ∀m ∈ L∞+ (Ω) | m > 0 a.e.,

 
Ω

θm,µ 6 3

 
Ω

m.

Moreover, this inequality is sharp, although the right-hand side is never reached, and the authors
exhibit a sequence (mk, µk)k∈IN such that

ffl
Ω
θmk,µk/

ffl
Ω
mk → 3 as k → +∞. Moreover, there

holds ‖mk‖L∞(Ω) → +∞ and µk → 0 as k → +∞.
It is notable that in [7], the more general functional JB defined by

JB(m) =

ˆ
Ω

(u−Bm2) for B > 0

is introduced. In the case B = 0, the authors apply the so-called Pontryagin principle, show the
Gâteaux-differentiability of JB and carry out numerical simulations backing up the conjecture that
maximizers are of bang-bang type.

In the present work, we aim at dealing with a more realistic modeling, by taking into consid-
eration uniform pointwise constraints on the weight m(·). This way, the analysis of optimality
conditions is made rather intricate. Indeed, the sensitivity of the total population size functional
with respect to the variations of m(·) is directly related to the solution of an adjoint state, solving
a linearized version of (LDE). Deriving and exploiting properties of optimal configurations needs
hence a deep understanding of the behavior θm,µ as well as the adjoint state.

The main issue that will be addressed in what follows is the bang-bang character of optimal
weights m∗(·), in other words, we wonder whether m∗ is an extremal point of the set Mκ,m0

(Ω)
(roughly speaking, an admissible function equal a.e. to its extremal L∞-bounds in Ω). It is notable
that the asymptotic analysis performed in [7] cannot be reproduced anymore in our case since the

1This result relies on the following observation: multiplying (LDE) by 1
θm,µ

and integrating by parts yields

µ

ˆ
Ω

|∇θm,µ|2

θm,µ
2

+

ˆ
Ω

(m− θm,µ) = 0. (4)

and therefore, Fµ(m) = m0 + µ
´
Ω
|∇θm,µ|2

θm,µ2 > m0 = Fµ(m0) for all m ∈ Mκ,m0 (Ω). It follows that the constant

function equal to m0 is a global minimizer of Fµ over Mκ,m0 (Ω).
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set of admissible weights will be strengthened into a bounded set of L∞, whereas the L∞ norm of
maximizing sequences for the problem investigated in [7] diverges at the limit.

Our approach allows to deal with a population dynamics model with a large diffusion rate,
and rests upon a well-adapted expansion of the solution θm,µ of (LDE), as a series involving the
solutions of a sequence of cascade systems.

1.2 Main results

In the whole article, the notation χI will be used to denote the characteristic function of a mea-
surable subset I of IRn, in other words, the function equal to 1 in I and 0 elsewhere.

For the reasons mentioned in Section 1.1, it is biologically relevant to consider the class of
admissible weights

Mκ,m0
(Ω) =

{
m ∈ L∞(Ω) ,m ∈ [0;κ] a.e and

 
Ω

m = m0

}
,

where κ > 0 and m0 > 0 denote two given parameters such that m0 < κ (so that this set is
nontrivial).

We will henceforth consider the following optimal design problem.

Optimal design problem. Fix n ∈ IN∗, µ > 0, κ > 0, m0 ∈ (0, κ) and let Ω be a
bounded connected domain of IRn having a C2 boundary. We consider the optimization
problem

sup
m∈Mκ,m0

(Ω)

Fµ(m). (Pnµ )

As will be highlighted in the sequel, the existence of a maximizer follows from a direct argument.
We will thus be interested in investigating qualitative properties of maximizers such as: do they
enjoy symmetry properties? Are they bang-bang, i.e does m satisfy m ∈ {0;κ} a.e. in Ω? Quid of
the uniqueness?

For the sake of readability, almost all the proofs are postponed to Section 2.

Let us stress that the bang-bang character of maximizer is of practical interest in view of
spreading resources in an optimal way. Indeed, in the case where a maximizer m∗ writes m∗ = κχE ,
the total size of population is maximized by locating all the resources on E.

We start with a preliminary result related to the saturation of pointwise constraints for Problem
(Pnµ ), valid for all diffusivities µ.

Proposition 1. Let n ∈ IN∗, µ > 0, κ > 0, m0 ∈ (0, κ). Let m∗ be a solution of Problem (Pnµ ).
Then, either {m = κ} or {m = 0} has a positive measure

For large values of µ, we will prove that the variational problem can be recast in terms of a
shape optimization problem, as underlined in the next results.

Theorem 1. Let n ∈ IN∗, µ > 0, κ > 0, m0 ∈ (0, κ). There exists a positive number µ∗ =
µ∗(Ω, κ,m0) such that, for every µ > µ∗, the functional Fµ is strictly convex. As a consequence,
for µ > µ∗, there exists a maximizer of Fµ over Mκ,m0(Ω) which is moreover bang-bang.

This theorem justifies that Problem (Pnµ ) can be recast as a shape optimization problem.
Indeed, every maximizer m∗ is of the form m∗ = κχE where E is a measurable subset such
that |E| = m0|Ω|/κ. This way, the following corollary reformulates this result in terms of shape
optimization, by considering as main unknown the subset E of Ω where resources are located.
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Corollary 1. Under the assumptions of Theorem 1, there exists a positive number µ∗ = µ∗(Ω, κ,m0)
such that, for every µ > µ∗, the shape optimization problem

sup
E⊂Ω, |E|=m0|Ω|/κ

Fµ(κχE), (5)

where the supremum is taken over all measurable subset E ⊂ Ω such that |E| = m0|Ω|/κ, has a
unique solution.

In the one-dimensional case, one can refine this result by showing that, for µ large enough, the
maximizer is a step function.

Theorem 2. Let us assume that n = 1 and Ω = (0, 1). Let µ > 0, κ > 0, m0 ∈ (0, κ). There
exists µ̂ > 0 such that, for any µ > µ̂, any solution m∗ of Problem (Pnµ ) is equal a.e. to either m̃
or m̃(1− ·), where m̃ = κχ(1−`,1) and ` = m0/κ.

Let us conclude by underlining that this result cannot be true for all µ > 0. Indeed, we provide
an example in Section 3.1 where a “double-crenel” growth rate gives a larger total population size
than the “simple-crenel” m∗ of Theorem 2.

1.3 Tools and notations

In this section, we gather some useful tools we will use to prove the main results.

Rearrangements of functions and principal eigenvalue. Let us first recall several mono-
tonicity and regularity related to the principal eigenvalue of the operator L.

Proposition 2. [8] Let m ∈ L∞+ (Ω) and µ > 0.

(i) The mapping IR∗+ 3 µ 7→ λ1(m,µ) is continuous and non-increasing.

(ii) If m 6 m1, then λ1(m,µ) 6 λ1(m1, µ), and the equality is true if, and only if m = m1 a.e.
in Ω.

In the proof of Theorem 2, we will use rearrangement inequalities at length. Let us briefly
recall the notion of decreasing rearrangement.

Definition 1. For a given function b ∈ L1(0, 1), one defines its monotone decreasing (resp. mono-
tone increasing) rearrangement bdr (resp. bbr) on (0, 1) by bdr(x) = sup{c ∈ IR | x ∈ Ω∗c}, where
Ω∗c = (1− |Ωc|, 1) with Ωc = {b > c} (resp. bbr(·) = bdr(1− ·)).

The functions bdr and bbr enjoy nice properties. In particular, the Polyà-Szego and Hardy-
Littlewood inequalities allow to compare integral quantities depending on b, bdr, bbr and their
derivative.

Theorem ([20, 24]). Let u be a non-negative and measurable function.

(i) If ψ is any measurable function from IR+ to IR, then

ˆ 1

0

ψ(u) =

ˆ 1

0

ψ(udr) =

ˆ 1

0

ψ(ubr) (equimeasurability);

(ii) If u belongs to W 1,p(0, 1) with 1 6 p, then

ˆ 1

0

u′2 >
ˆ 1

0

u′2br =

ˆ 1

0

u′2dr (Pòlya inequality);
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(iii) If u, v belong to L2(0, 1), then

ˆ 1

0

uv 6
ˆ 1

0

ubrvbr =

ˆ 1

0

udrvdr (Hardy-Littlewood inequality);

The equality case in the Polyà-Szego inequality is the object of the Brothers-Ziemer theorem
(see e.g. [9]).

Poincaré constants and elliptic regularity results. we will denote by c
(p)
ell the optimal pos-

itive constant such that: for every p ∈ [1,+∞), f ∈ Lp(O) and u ∈W 1,p(Ω) satisfying

∆u = f,

there holds
‖u‖W 2,p(Ω) 6 c

(p)
`

(
‖f‖Lp(Ω) + ‖u‖Lp(Ω)

)
.

The optimal constant in the Poincaré-Wirtinger inequality will be denoted by C
(p)
PW (Ω). This

inequality reads: for every u ∈W 1,p(Ω),∥∥∥∥u−  
Ω

u

∥∥∥∥
Lp(Ω)

6 C
(p)
PW (Ω)‖∇u‖Lp(Ω).

2 Proofs of the main results

2.1 First order optimality conditions for Problem (Pnµ )

To prove the main results, we first need to state the first order optimality conditions for Problem
(Pnµ ). We will show that, for any m ∈M and any admissible perturbation h ∈ Tm,Mκ,m0

(Ω), where

Tm,Mκ,m0 (Ω) denotes the tangent cone2 to the set Mκ,m0(Ω) at m, the functional Fµ is twice
Gâteaux-differentiable at m in direction h. To do that, we will show that the solution mapping

S : m ∈Mκ,m0(Ω) 7→ θm,µ ∈ L2(Ω),

where θm,µ denotes the solution of (LDE), is twice Gâteaux-differentiable. In this view, we provide
several L2(Ω) estimates of the solution θm,µ.

Lemma 1. The mappping S is twice Gâteaux-differentiable.

The proof of this result is postponed to Appendix A.
For the sake of simplicity, we will denote by θ̇m,µ = dS(m)[h] the Gâteaux-differential of θm,µ

at m in direction h and by θ̈m,µ = d2S(m)[h, h] its second order derivative at m in direction h.
It follows that, for all µ > 0, the application Fµ is Gâteaux-differentiable with respect to m in

direction h and its Gâteaux derivative writes

dFµ(m)[h] =

ˆ
Ω

θ̇m,µ.

2For every m ∈M , the tangent cone to the setMκ,m0 (Ω) at m, denoted by Tm,Mκ,m0
(Ω) is the set of functions

h ∈ L∞(Ω) such that, for any sequence of positive real numbers εn decreasing to 0, there exists a sequence of
functions hn ∈ L∞(Ω) converging to h as n→ +∞, and m+ εnhn ∈ Mκ,m0 (Ω) for every n ∈ IN (see for instance
[13, chapter 7]).
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Since the expression of dFµ(m)[h] above is not workable, we need to introduce an adjoint state
pm,µ as the solution of the equation{

µ∆pm,µ + pm,µ(m− 2θm,µ) = 1 in Ω,
∂pm,µ
∂ν = 0 on ∂Ω.

(6)

Note that pm,µ belongs to W 1,2(Ω) and is unique, according to the Fredholm alternative.
Now, multiplying the main equation of (6) by θm,µ and integrating two times by parts leads to

the expression

dFµ(m)[h] = −
ˆ

Ω

hθm,µpm,µ.

Now consider a maximizer m. For every perturbation h in the cone Tm,Mκ,m0
(Ω), there holds

〈dFµ(m)[h]〉 > 0. The analysis of such optimality condition is standard in optimal control theory
(see for example [34]) and leads to the following result.

Proposition 3. Let us define ϕm,µ = θm,µpm,µ, where θm,µ and pm,µ solve respectively equations
(LDE) and (6). There exists c ∈ IR such that

{ϕm,µ < c} = {m = κ}, {ϕm,µ = c} = {0 < m < κ}, {ϕm,µ > c} = {m = 0}.

2.2 Proof of Proposition 1

An easy but tedious computation shows that the function ϕm,µ introduced in Proposition 3 satisfies
the PDE{

µ∆ϕm,µ + 2µ
〈
∇ϕm,µ, ∇θm,µθm,µ

〉
+ ϕm,µ

(
2µ
|∇θm,µ|2
θm,µ2 + 2m− 3θm,µ

)
= θm,µ in Ω,

∂ϕm,µ
∂ν = 0 on ∂Ω,

(7)

To prove that |{m = 0}| + |{m = κ}| > 0, we argue by contradiction, by assuming that |{m =
κ}| = |{m = 0}| = 0. Therefore, ϕm,µ = c a.e. in Ω and, according to (7), there holds

c

(
2µ
|∇θm,µ|2

θm,µ
2 + 2m− 3θm,µ

)
= θm,µ

Integrating this identity and using that θm,µ > 0 in Ω and c 6= 0, we get

2c

(
µ

ˆ
Ω

|∇θm,µ|2

θm,µ
2 +

ˆ
Ω

(m− θm,µ)

)
= (c+ 1)

ˆ
Ω

θm,µ.

Combining this identity with (4), It follows that one has necessarily c = −1. Coming back to the
equation satisfied by ϕm,µ leads to

m = θm,µ − µ
|∇θm,µ|2

θm,µ
2 .

The logistic diffusive equation (LDE) is then transformed into

µθm,µ∆θm,µ − µ|∇θm,µ|2 = 0.

Integrating this equation by part yields
´

Ω
|∇θm,µ|2 = 0. Thus, θm,µ is constant, and so is m. In

other words, m = m0, which, according to Remark 4 is impossible. The expected result follows.
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2.3 Proof of Theorem 1

The proof of Theorem 1 is split into several steps, based on a careful asymptotic analysis with
respect to the diffusivity variable µ. Let us first explain the outlines of the proof.

According to Proposition 1, Fµ is twice Gâteaux-differentiable and its second order Gâteaux-
derivative is given by

d2Fµ(m)[h, h] =

ˆ
Ω

θ̈m,µ,

where θ̈m,µ is the second Gâteaux derivative of S. An elementary computation shows that it
satisfies {

µ∆θ̈m,µ + θ̈m,µ(m− 2θm,µ) = −2
(
hθ̇m,µ − θ̇2

m,µ

)
in Ω,

∂θ̈m,µ
∂ν = 0 on ∂Ω,

(8)

Let m1 and m2 be two elements of Mκ,m0
(Ω) and define

φµ : [0; 1] 3 t 7→ Fµ

(
tm2 + (1− t)m1

)
− tFµ(m1)− (1− t)Fµ(m2).

One has
d2φµ
dt2

(t) =

ˆ
Ω

θ̈(1−t)m1+tm2,µ, and φµ(0) = φµ(1) = 0,

where θ̈(1−t)m1+tm2,µ must be interpreted as a bilinear form from L∞(Ω) to W 1,2(Ω), evaluated
two times at the same direction m2 −m1. Hence, to get the strict convexity of Fµ, it suffices to
show that, whenever µ is large enough,

ˆ
Ω

θ̈tm2+(1−t)m1,µ > 0

as soon as m1 6= m2 (in L∞(Ω)) and t ∈ (0, 1), or equivalently that d2Fµ(m)[h, h] > 0 as soon as
m ∈ Mκ,m0

(Ω) and h ∈ L∞(Ω). Note that since h = m2 −m1, it is possible to assume without
loss of generality that ‖h‖L∞(Ω) 6 2κ.

Let us fix m ∈ Mκ,m0(Ω) and h ∈ L∞(Ω). In the sequel, the dot or double dot notation ḟ or

f̈ will respectively denote first and second order Gâteaux-differential of f at m in direction h.
The proof is based on the following asymptotic expansions of θm,µ in powers of 1/µn:

θm,µ = m0 +
η1,m

µ
+
Rm,µ
µ2

, (9)

with η1,m = η̂1,m + β1,m, where η̂1,m is the unique solution of the equation{
∆η̂1,m +m0(m−m0) = 0 in Ω
∂η̂1,m

∂ν = 0, on ∂Ω
, with

ˆ
Ω

η̂1,m = 0 (10)

and

β1,m =
1

m0

 
Ω

η̂1,mm, (11)

and Rm,µ is a reminder term.
To avoid technicalities, justifications of the validity of this expansion are postponed to Ap-

pendix B.
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Remark 1. Note that the function η1,m solve in particular the PDE{
∆η1,m +m0(m−m0) = 0 in Ω
∂η1,m

∂ν = 0, on ∂Ω
(12)

As will be highlighted in the sequel, the expansion (9) has been introduced in such a way that

lim
µ→+∞

(
µ(θm,µ −m0)− η1,m

)
= 0 a.e. in Ω.

Indeed, this is a consequence from the fact that limµ→+∞ θm,µ = m0 a.e. in Ω [25].

Remark 2. One could also notice that the quantity β1,m arose in the recent paper [12], where the
authors determine the large time behavior of a diffusive Lotka-Volterra competitive system between
two populations with growth rates m1 and m2. If β1,m1

> β1,m2
, then when µ is large enough, the

solution converges as t→ +∞ to the steady state solution of a scalar equation associated with the
growth rate m1. In other words, the species with growth rate m1 chases the other one.

In the present article, as a byproduct of our results, we maximize the function m 7→ β1,m. This
remark implies that this intermediate result might find other applications of its own.

Now, according to (9), one has for all m ∈Mκ,m0
(Ω),

d2Fµ(m)[h, h] =
1

µ

ˆ
Ω

η̈1,m +
1

µ2

ˆ
Ω

R̈m,µ

We will show that there holds

d2Fµ(m)[h, h] >
C(h)

µ

(
1− Λ

µ

)
(13)

for all µ > 0, where C(h) and Λ denote some positive constants.
The strict convexity of Fµ will then follow. Concerning the bang-bang character of maximizers,

notice that the admissible set Mκ,m0
(Ω) is convex, and that its extremal points are exactly the

bang-bang functions ofMκ,m0
(Ω). Once the strict convexity of Fµ showed, we will then easily infer

that Fµ reaches its maxima at extremal points, in other words that any maximizer is bang-bang.
The rest of the proof is devoted to the proof of the inequality (13). It is divided into the

following steps:

Step 1. Uniform estimate of
´

Ω
η̈1,m with respect to µ.

Step 2. Definition and expansion of the reminder term Rm,µ.

Step 3. Uniform estimate of Rm,µ with respect to µ.

Step 1: minoration of
´

Ω
η̈1,m. One computes successively

β̇1,m =
1

m0

 
Ω

(
˙̂η1,mm+ η̂1,mh

)
, β̈1,m =

1

m0

 
Ω

(
2 ˙̂η1,mh+ ¨̂η1,mh

)
(14)

where ˙̂η1,m solves the equation{
∆ ˙̂η1,m +m0h = 0 in Ω
∂ ˙̂η1,m

∂ν = 0, on ∂Ω
with

ˆ
Ω

˙̂η1,m = 0. (15)
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Notice moreover that ¨̂η1,m = 0, since ˙̂η1,m is linear with respect to h. Moreover, multiplying the

equation above by ˙̂η1,m and integrating by parts yields

β̈1,m =
2

m2
0

 
Ω

|∇ ˙̂ηm,1|2. (16)

Finally, we obtain ˆ
Ω

η̈1,m = |Ω|β̈1,m +

ˆ
Ω

¨̂η1,m = |Ω|β̈1,m =
2

m2
0

ˆ
Ω

|∇ ˙̂ηm,1|2.

It is then notable that
´

Ω
η̈1,m > 0 and that this quantity does not depend on µ.

Step 2: expansion of the reminder term Rm,µ. Instead of studying directly the equation

(8), our strategy consists in providing a well-chosen expansion of θ̈m,µ of the form

θ̈m,µ =

+∞∑
k=0

ζk
µk
,where the ζk are such that

+∞∑
k=2

ffl
Ω
ζk

µk−1
6M

 
Ω

η̈1,m.

For that purpose, we will expand formally θm,µ as

θm,µ =

+∞∑
k=0

ηk,m
µk

. (17)

Note that, as underlined previously, since θm,µ −→
µ→+∞

m0 in L∞(Ω), we already know that η0,m =

m0.
Provided that this expansion makes sense and is (two times) differentiable term by term (what

will be checked in the sequel) in the sense of Gâteaux, we will get the following expansions

θ̇m,µ =

+∞∑
k=0

η̇k,m
µk

and θ̈m,µ =

+∞∑
k=0

η̈k,m
µk

.

Plugging the expression (17) of θm,µ into the logistic diffusive equation (LDE), a formal computa-
tion yields that for all k ∈ IN, ηk,m satisfies the induction relation

∆ηk+1,m + (m− 2m0)ηk,m −
k−1∑
`=1

η`,mηk−`,m = 0 in Ω,

as well as homogeneous Neumann boundary conditions. These relations do not allow to define
ηk,m in a unique way (it is determined up to a constant), which leads to introducing η̂k+1,m as the
solution of the PDE{

∆η̂k+1,m + (m− 2m0)ηk,m −
∑k−1
`=1 η`,mηk−`,m = 0 in Ω

∂η̂k+1,m

∂ν = 0 on ∂Ω
with

ˆ
Ω

η̂k+1,m = 0, (18)

and to define the real number βk,m in such a way that

∀k ∈ IN∗, ηk,m = η̂k,m + βk,m.

Integrating the main equation of (LDE) yields
ˆ

Ω

θm,µ(m− θm,µ) = 0.
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Plugging the expansion (17) and identifying the terms of order k indicates that we must define
βk,m by the induction relation

βk+1,m =
1

m0

 
Ω

mη̂k+1,m −
1

m0

k∑
`=1

 
Ω

η`,mηk+1−`,m.

This leads to the following cascade equation on the coefficients {ηk,m}k∈IN:

η0,m = m0, , and for all k ∈ IN,
∆η1,m +m0(m−m0) = 0 in Ω,

∆ηk+1,m + (m− 2m0)ηk,m −
∑k−1
`=1 η`,mηk−`,m = 0 in Ω,

∂ηk,m
∂ν = 0 over ∂Ω,ffl

Ω
ηk+1,m := βk+1,m = 1

m0

ffl
Ω
mη̂k+1,m − 1

m0

∑k
`=1

ffl
Ω
η`,mηk+1−`,m.

(19)

Now, the Gâteaux-differentiability of both η̂k,m and βk,m with respect to m follows from similar
arguments as those used to prove Proposition 1. We thus infer that {η̇k,m}k∈IN satisfies

η̇0,m = 0, and for all k ∈ IN,

∆η̇k+1,m + (m− 2m0)η̇k,m − 2
∑k−1
`=1 η̇`,mηk−`,m = −hηk,m in Ω,

∂η̇k,m
∂ν = 0 over ∂Ω,ffl

Ω
η̇k+1,m = β̇k+1,n = 1

m0

ffl
Ω

(hη̂k+1,m +m ˙̂ηk+1,m)− 2
m0

∑k
`=1

ffl
Ω
η̇`,mηk+1−`,m,

(20)

while {η̈k,m}k∈IN satisfies
η̈0,m = 0, and for all k ∈ IN,

∆η̈k+1,m + (m− 2m0)η̈k,m − 2
∑k−1
`=1 η̈`,mηk−`,m = 2

(∑k−1
`=1 η̇`,mη̇k−`,m − hη̇k,m

)
in Ω,

∂η̈k,m
∂ν = 0 on ∂Ω,ffl

Ω
η̈k+1,m = β̈k+1,m = 1

m0

ffl
Ω

(h ˙̂ηk+1,m +m¨̂ηk+1,m)− 2
m0

∑k
`=1

ffl
Ω

(η̇`,mη̇k+1−`,m + η̈`,mηk+1−`,m).

(21)

Step 3: uniform estimates of Rm,µ. In this section, we will prove the existence of a sequence
{Λ(k)}k∈IN such that{

∀k ∈ IN∗ ,
∣∣∣β̈k,m∣∣∣ 6 Λ(k)β̈1,m,

The power series
∑+∞
k=1 Λ(k)xk has a positive convergence radius.

(22)

From the explicit expression of β̈k,m in (21), one claims that (22) immediately follows from the
five following estimates 

‖ηk,m‖L∞(Ω) , ‖∇ηk,m‖L∞(Ω) 6 α(k),

‖∇η̇k,m‖L2(Ω) 6 β(k)‖∇η̇1,m‖L2(Ω),

‖η̇k,m‖L2(Ω) 6 γ(k)‖∇η̇1,m‖L2(Ω),

‖∇η̈k,m‖L2(Ω) 6 δ(k)‖∇η̇1,m‖2L2(Ω),

‖η̈k,m‖L2(Ω) 6 ε(k)‖∇η̇1,m‖2L2(Ω).

(Ikα)

(Ikβ )

(Ikγ )

(Ikδ )

(Ikε )

where for all k ∈ IN, the numbers α(k), β(k), γ(k), γ(k), δ(k) and ε(k) are positive et such that
Property (22) holds true.

In what follows, we will write f . g when there exists a constant C (independent of k) such
that f 6 Cg.

The end of the proof is devoted to proving the aforementioned estimates .
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Estimate (Ikα) This estimate follows from standard elliptic regularity and an iteration procedure.
We will define α(k) by induction. We first choose p ∈ (1,+∞) such that the Sobolev embedding

W 2,p(Ω) ↪→ C1, 12 (Ω) holds. Let us fix α(0) = m0 and assume that, for some k ∈ IN∗, the estimate
(Ikα) holds true.

By W 2,p(Ω) elliptic regularity theorem, there holds

‖ηk+1,m‖Lp(Ω).‖ηk+1,m‖Lp(Ω) +

∥∥∥∥(m− 2m0)ηk,m −
k−1∑
`=1

η`,mηk−`,m

∥∥∥∥
Lp(Ω)

.

Using the Hölder inequality, one gets∥∥∥∥(m− 2m0)ηk,m −
k−1∑
`=1

η`,mηk−`,m

∥∥∥∥
Lp(Ω)

.κα(k) +

k∑
`=0

α(`)α(k − `).

Moreover, using that ‖ηk+1,m‖Lp(Ω) 6 ‖η̂k+1,m‖Lp(Ω) + |βk+1,m| and the Lp-Poincaré-Wirtinger
inequality (see Section 1.3), we get

‖η̂k+1,m‖Lp(Ω).‖∇η̂k+1,m‖Lp(Ω).

Now, using standard elliptic estimates3, we obtain

‖∇ηk+1,m‖Lp(Ω). ||ηk,m||Lp(Ω) +

∥∥∥∥ k∑
`=0

η`,mηk−`,m

∥∥∥∥
Lp(Ω)

.
k∑
`=0

α(`)α(k − `).

The term βk+1,m is controlled similarly, so that

|βk+1,m|.
k∑
`=0

α(`)α(k − `) +

k∑
`=1

α(`)α(k + 1− `).

Since it is clear that the sequence {α(k)}k∈IN can be assumed to be increasing, we write

k∑
`=0

α(`)α(k − `) +

k∑
`=1

α(`)α(k + 1− `) =

k−1∑
`=0

α(k − `)
(
α(`) + α(`+ 1)

)
+ α(0)α(k)

.
k−1∑
`=0

α(`+ 1)α(k − `).

Under this assumption, one has

‖ηk+1,m‖Lp(Ω) 6 |βk+1,m|+ ‖η̂k+1,m‖Lp(Ω).
k∑
`=0

α(`+ 1)α(k − `).

Standard Sobolev embeddings results enable us to conclude the proof.
This reasoning guarantees the existence of a constant C1, depending only on Ω, κ and m0, such

that the sequence defined by recursively by α(0) = m0 and

α(k + 1) = C1

k−1∑
`=0

α(`+ 1)α(k − `)

satisfies the estimate (Ikα).
Setting ak = α(k)/Ck1 for all k ∈ IN, we know that {ak}k∈IN is a shifted Catalan sequence (see

[30]), and therefore, the power series
∑
α(k)xk has a positive convergence radius.

3More precisely: if ∆f = g, then ‖∇f‖Lp(Ω).‖g‖Lp(Ω), see Agmon-Douglis-Nirenberg
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Estimates (Ikβ ) and (Ikγ ). Obviously, one can assume that β(0) = γ(0) = 0. One again, we

work by induction, by assuming these two estimates known at a given k ∈ IN. Since (Ikβ ) is an

estimate on the L2(Ω)-norm of the gradient of η̇k,m, it suffices to deal with ˙̂ηk+1,m. According

to the Poincaré-Wirtinger inequality, one has
ffl

Ω
˙̂ηk+1,m

2
.
ffl

Ω
|∇ ˙̂ηk+1,m|2. Now, using the weak

formulation of the equations on η̂k+1,m and η1,m, as well as the uniform boundedness of ‖h‖L∞(Ω),
we get

 
Ω

|∇ ˙̂ηk+1,m|2 =

 
Ω

(m− 2m0)η̇k,m ˙̂ηk+1,m − 2

k−1∑
`=1

 
Ω

ηk−`,mη̇`,m ˙̂ηk+1,m +

 
Ω

hηk,m ˙̂ηk+1,m

. ‖η̇k,m‖L2(Ω)‖ ˙̂ηk+1,m‖L2(Ω) +

k∑
`=1

α(k − `)‖ ˙̂ηk+1,m‖L2(Ω)‖η̇`,m‖L2(Ω) +

 
Ω

ηk,m〈∇η̇1,m,∇ ˙̂ηk+1,m〉+

 
Ω

η̇k+1,m〈∇η̇1,m,∇ηk,m〉

. ‖∇ ˙̂ηk+1,m‖L2(Ω)‖∇η̇1,m‖L2(Ω)

(
γ(k) +

k∑
`=1

α(k − `)γ(`) + α(k) + α(k)
)

. ‖∇ ˙̂ηk+1,m‖L2(Ω)‖∇η̇1,m‖L2(Ω)

(
γ(k) +

k∑
`=0

α(k − `)α(`)

)
,

where the constants appearing in these inequalities only depend on Ω, κ and m0. It follows that
there exists a constant C2 such that, by setting for all k ∈ IN,

β(k + 1) = C2

(
γ(k) +

k∑
`=0

α(k − `)α(`)

)
,

the inequality (Ikβ ) is satisfied at rank k + 1.

Let us now state the estimate (Ikγ ). By using the Poincaré-Wirtinger inequality, there holds∣∣∣β̇k+1,n

∣∣∣ =

∣∣∣∣∣ 1

m0

 
Ω

(hη̂k+1,m +m ˙̂ηk+1,m)− 2

m0

k∑
`=1

 
Ω

η̇`,mηk+1−`,m

∣∣∣∣∣
.

 
Ω

〈∇η̇1,m,∇η̂k+1,m〉+ ‖∇ ˙̂ηk+1,m‖L2(Ω) + ‖∇η1,m‖L2(Ω)

k∑
`=1

γ(`)α(k + 1− `)

. α(k + 1)‖∇η1,m‖L2(Ω) + β(k + 1)‖∇η1,m‖L2(Ω) + ‖∇η1,m‖L2(Ω)

k∑
`=1

γ(`)α(k + 1− `).

Once again, since all the constants appearing in the inequalities depend only on Ω, κ and m0, we
infer that one can choose C3 such that, by setting

γ(k + 1) = C3

(
β(k + 1) + α(k + 1) +

k∑
`=1

γ(`)α(k + 1− `)

)
,

the estimate (Ikγ ) is satisfied. Notice that, by bounding each term α(`), ` 6 k by α(k) and by using
the explicit formula for β(k + 1), there exists a constant C4 depending only on Ω, κ and m0 such
that

γ(k + 1) 6 C4

k∑
`=1

α(k + 1− `)
(
γ(`) + α(`)

)
.
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Under this form, the same arguments as previously guarantee that the associated power series has
a positive convergence radius.

Estimates (Ikδ ) and (Ikε ). As previously, we first set δ(0) = ε(0) = 0 and argue by induction.
The previous arguments can be mimicked except for the term∑

`

η̇`,mηk−`,m.

Using the weak equation satisfied by ηk+1,m, it is enough to show an estimate of the form∥∥∥∥∥
k−1∑
`=1

η̇`,mη̇k−`,m

∥∥∥∥∥
L2(Ω)

6 ω(k)‖∇η̇1,m‖2L2(Ω). (23)

for some ω(k) such that the associated power series has a positive radius of convergence.
To prove such an estimate, we work by induction, defining the sequence {ζk,m}k∈IN by

ζk,m =

k−1∑
`=1

η̇`,mη̇k−`,m.

Noting that

ζk+1,m − ζk,m =

k−1∑
`=1

η̇`,m (η̇k+1−`,m − η̇k−`,m) + η̇1,m ˙ηk,m,

and using the previous estimates, we are led to show an estimate of the form

‖fk‖L2(Ω) 6 ω̃(k)‖∇η̇1,m‖L2(Ω) where fk = η̇k+1−`,m − η̇k−`,m.

Since fk solves the equation

∆fk + (m− 2m0)fk − 2

k−1∑
`=1

ηk+1−m (η̇`,m − ˙ηk,m)− ˙ηk,mη1,m = h(ηk+1,m − ηk,m),

it is possible to mimic the previous strategies (using the Poincaré-Wirtinger inequality) and to
conclude similarly as before.

2.4 Proof of Theorem 2

We will prove that, if µ large enough, any maximizer of Fµ is equal to either m̃ = κχ(1−`,1)] or
m̃(1− ·) = κχ(0,`) with ` = m0/κ.

As a preliminary remark, we claim that the function θm̃,µ solving (LDE) with m = m̃ is
positive increasing. Indeed, notice that standard variational analysis arguments yield that θm̃,µ is
the unique minimizer of the energy functional

E : H1(Ω, IR+) 3 u 7→ 1

2

ˆ 1

0

u′2 − 1

2

ˆ 1

0

m∗u2 +
1

3

ˆ 1

0

u3.

By using the rearrangement inequalities recalled in Section 1.3, using the relation (m∗)br = m∗,
one easily shows that

E(θm̃,µ) > E((θm̃,µ)br),

and therefore, one has necessarily θm̃,µ = (θm̃,µ)br by uniqueness of the steady-state (see Section
1.1). Hence, θm̃,µ is non-decreasing. Moreover, according to (LDE), θm̃,µ is convex on (0, 1 − `)
and concave on (1 − `, 1) which, combined with the boundary conditions on θm̃,µ, justifies the
positiveness of its derivative. The expected result follows.
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Step 1: convergence of sequences of maximizers. Let µ > 0 and mµ be a solutions of
Problem

(
P1
µ

)
. This step is devoted to proving the following result.

Lemma 2. The functions m̃ = κχ(1−`,1) or m̃(1 − ·) = κχ(0,`) are the only closure points of the
family (mµ)µ>0 for the L1(0, 1) topology.

Let us prove this result. According to Theorem 1, there exists µ∗ > 0 such that mµ = κχEµ
for all µ > µ∗, where Eµ ⊂ Ω is such that |Eµ| = m0|Ω|/µ. Since the family (mµ)µ>0 is uniformly
bounded in L∞(0, 1), it converges weakly star in L∞(0, 1) up to a subsequence to some element
m∞ in Mκ,m0(0, 1).

Now, using standard variational formulation for equation (LDE) as well as elliptic estimates,
we infer that the family {θmµ,µ}µ>µ∗ converges up to a subsequence in W 1,2((0, 1)) to θ∞, the
solution of (LDE) with m = m∞. Therefore, (Fµ(mµ)µ>0 converges up to a subsequence to

´
Ω
θ∞.

Observe that the maximizers of Fµ overMκ,m0
(0, 1) are the same as the maximizers of µ(Fµ−

m0). Recall that, according to the proof of Theorem 1, there holds µ(Fµ(m) −m0) =
´ 1

0
η1,m +

O(1/µ) for a fixed m in Mκ,m0
(0, 1), where the notation O(1/µ) stands for a function uniformly

bounded in L∞(0, 1), where η1,m is defined by (9)-(10)-(11). Let m ∈ Mκ,m0
(0, 1) be arbitrary.

According to the previous arguments and the estimates proved in the proof , one can pass to
the limit in the inequality µ(Fµ(mµ) −m0) > µ(Fµ(m) −m0) yielding that m∞ is necessarily a
maximizer of the functional

f1 :Mκ,m0(0, 1) 3 m 7→
ˆ 1

0

η1,m.

We have then shown that any closure point of (mµ)µ>0 is a maximizer of f1.
Let us show that m̃ and m̃(1 − ·) are the only maximizers of f1. We have already seen in the

proof of Theorem 1 that η1,m = η̂1,m + 1
m0

´ 1

0
mη̂1,m, where η̂1,m solves the ODE{

η̂′′1,m +m0(m−m0) = 0 in (0, 1)
η̂′1,m(0) = η̂′1,m(1) = 0,

, with

ˆ
Ω

η̂1,m = 0.

Therefore, by multiplying the main equation of this ODE by η̂1,m and integrating by parts, we get
that for every m ∈Mκ,m0(0, 1), there holds

f1(m) =
1

m0

ˆ 1

0

mη̂1,m =
1

m2
0

ˆ 1

0

(η̂′1,m)2 =
1

m2
0

ˆ 1

0

(η1,m
′)2.

Introduce the set H0 =
{
u ∈ H1(0, 1),

´ 1

0
u = 0

}
. A standard variational analysis yields that

f1(m) = − 2

m2
0

min
u∈H0

Tm1 (u), where Tm1 : H0 3 u 7→
1

2

ˆ 1

0

(u′)2 −
ˆ 1

0

um0(m−m0).

Noting that the function δ = η̂1,m −min(0,1) η̂1,m is non-negative and using the Polyà-Szego and
the Hardy-Littlewood inequalities (see Section 1.3) yields successivelyˆ 1

0

δ′2 >
ˆ 1

0

δ′2dr,

ˆ 1

0

mδ 6
ˆ 1

0

mdrδdr,

ˆ 1

0

mdr =

ˆ 1

0

m and

ˆ 1

0

δ =

ˆ 1

0

δdr

and therefore, we infer that

Tm1 (η̂1,m) > Tmdr1 ((η̂1,m)dr) > Tmdr1 (η̂1,mdr ) = min
u∈H0

Tmdr1 (u).

It follows that mdr and m̃ = mdr(1 − ·) are the only maximizers of f1 over Mκ,m0
(0, 1) (the

necessary character comes from the investigation of the equality case in the Polyà-Szego inequality).
To sum-up, we have proved that the only closure points of {mµ}µ>0 for the L∞ weak star

topology are m̃ or m̃(1− ·). Finally, since m̃ is a characteristic function, the convergence is in fact
strong in L1(0, 1) [13, Proposition 2.2.2].
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Step 2. Conclusion: mµ = m̃ or m̃(1 − ·) whenever µ is large enough. According to
Theorem 1 and Proposition 3, we know at this step that for µ large enough, there exists cµ ∈ IR
such that

{ϕmµ,µ > cµ} = {mµ = 0}, {ϕmµ,µ < cµ} = {mµ = κ}.

Introduce the function zµ = µ(ϕmµ,µ+1). Using the convergence results established in the previous
steps, in particular that (mµ)µ>0 converges to m̃ in L1(Ω) and that ϕmµ,µ = −1+O(1/µ) uniformly
in C1,α(Ω) as µ → +∞, one infers that (zµ)µ>0 is uniformly bounded in C1,α(Ω) and converges,
up to a subsequence to z∞ in C1([0, 1]), where z∞ satisfies in particular

z′′∞ + 2(m0 − m̃) = 0,

with Neumann Boundary conditions.
We will show that, provided that µ be large enough, one has necessarily mµ = m̃ or mµ =

m̃(1 − ·). Since m̃ = κ in (0, `), it follows that z∞ is strictly convex on this interval and since
z′∞(0) = 0, one has necessarily z′∞ > 0 in (0, `). Similarly, by concavity of z∞ in (`, 1), one has
z′∞ > 0 in this interval.

Furthermore, let us introduce dµ = µ(cµ + 1). Since (zµ)µ>0 is bounded in C0([0, 1]), (dµ)µ>0

converges up to a subsequence to some d∞. By monotonicity of z∞ and a compactness argument,
there exists a unique x∞ ∈ [0, `] such that z∞(x∞) = d∞. The dominated convergence theorem
hence yields

|{z∞ 6 d∞}| = κ`, |{z∞ > d∞}| = κ(1− `),

and the the aforementioned local convergence results yield

{z∞ > d∞} ⊂ {m̃ = 0} , {z∞ < d∞} ⊂ {m̃ = κ}.

Hence, the inclusions are equalities (the equality of sets must be understood up to a zero Lebesgue
measure set) by using that z∞ is increasing.

Moreover, since z∞ is increasing, one has z∞(0) < d∞ and z∞(1) > d∞. Since the family
(zµ)µ>0 is uniformly Lipschitz-continuous, there exists ε > 0 such that for µ large enough, there
holds

zµ < dµ in (0, ε), zµ > dµ in (1− ε, 1), z′µ > 0 in (ε, 1− ε).

This implies the existence of xµ ∈ (0, 1) such that

{zµ < dµ} = [0, xµ) and {zµ > dµ} = (xµ, 1],

whence the result.

3 Conclusion and further comments

3.1 About the 1D case

Let us assume in this section that n = 1 and Ω = (0, 1). We provide hereafter several numerical
simulations based on the primal formulation of the optimal design problem (Pnµ ): on Fig. 1, the
objective function is plotted with respect to x0 for several values of µ, where we assumed the
control function m having the particular form m = κχI with I = (x0−m0/2, x0 +m0/2). On Fig.
2, we come back to the general problem (Pnµ ) and we plot the optimal m determined numerically
for several values of µ.

These simulations were obtained with an interior point method applied to the optimal control
problem (Pnµ ). We used a Runge-Kutta method of order 4 to discretize the underlying differential
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equations. The control m has been also discretized, which has allowed to reduce the optimal
control problem to some finite dimensional minimization problem with constraints. We used the
code IPOPT (see [33]) combined with AMPL (see [11]) on a standard desktop machine. We considered
a regular subdivision of (0, 1) with 1000 points. The resulting code works out the solution quickly
(around 5 to 10 seconds depending on the choice of the parameter µ).
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Figure 1: m0 = 0.4, κ = 1. Graph of
´ 1

0
θm,µ with respect to x0 where m = κχ(x0−m0/2,x0+m0/2).

From left to right: µ = 0.5, 1, 5.
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Figure 2: m0 = 0.4, κ = 1. Plot of the optimal solution of Problem (Pnµ ) computed with the help
of an interior point method. From left to right: µ = 0.5, 1, 5.

These simulations highlighted that, in the 1D case, assuming that m = κχI , where I is an
interval, the best locations of I are the extremal one (so that m is either decreasing or increasing
on Ω).

Nevertheless, one encounters a problem when dealing with too small values of µ (for instance
µ = 0.01). Indeed, in that case, the stiffness of the discretized system seems to become huge as µ
takes small positive values and makes the numerical computations hard to converge. Improvements
of the numerical method should be found for further numerical investigations.

In addition, it is notable that a theoretical argument can be used to prove that m̃ = κχ(1−`,1)

or m̃ = κχ(0,`) is not a maximizer anymore for small values of µ. Indeed, we claim that

∃µ > 0 s.t. Fµ
(
m̃(2 ·)

)
> Fµ(m̃),

where m̃ has been extended outside of (0, 1) by periodicity.
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In order to prove this result, as the function µ > 0 7→ Fµ (m̃(2 ·)) has a finite number of
maximizers ([25]), we could define µ1 as its first local maximizer. One gets from a simple change
of variables that θm̃,µ1

(2x) = θm̃(2·),µ1/4(x) for all x ∈ Ω and thus one has

Fµ1(m̃) = Fµ1
4

(m̃(2·))

But our choice of µ1 yields that µ 7→ Fµ (m̃(2·)) is increasing on (0, µ1) and thus:

Fµ1(m̃) = Fµ1
4

(m̃(2·)) < Fµ1 (m̃(2·)) . (24)

3.2 Is the maximizer bang-bang for all µ?

We proved in this paper that any maximizer m∗ of the total population size is bang-bang when
µ is large enough. This question remains open for intermediate µ > 0. We state here a partial
result giving an explicit µ∗ over which any maximizer is bang-bang in the particular case where
4κ 6 5m0. Of course this result is not optimal since we know from Theorem 1 that maximizers
are always bang-bang for µ large (but implicit), without any such condition needed on κ and m0.

Proposition 4. If N = 1 and 4κ 6 5m0e
√
κ/µ, then any maximizer is of bang-bang type.

Proof. Consider a maximizer m and assume that {0 < m < κ} has a positive measure. According
to (7), as ϕ = ϕm,µ = c a.e. on {0 < m < κ}, one has

2µ
|θm,µ′|2

θm,µ
2 + 2m− 3θm,µ = θm,µ/c in {0 < m < κ}. (25)

Let z = θm,µ
′/θm,µ. By (LDE), one has

µz′ + µz2 = m− θm,µ 6 κ− inf
Ω
θm,µ in Ω.

Considering each point where z reaches an extremum, one gets

sup
Ω
|z| 6

√
κ− infΩ θm,µ

µ
.

This yields

µ
|θm,µ′|2

θm,µ
2 6 κ− inf

Ω
θm,µ in Ω.

Coming back to (25), as c < 0 since θm,µ > 0 and pm,µ < 0, we infer that

m > −κ+
5

2
inf
Ω
θm,µ.

Consider now the unique positive eigenfunction φ of{
µφ′′(x) +m(x)φ(x) = λ1(m,µ)φ(x) x ∈ Ω,
∂nφ(x) = 0 x ∈ ∂Ω,

normalized by supΩ φ = 1. With the same arguments as above, one could show that

sup
Ω
|φ′/φ| 6

√
λ1(m,µ)

µ
.
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It follows that

1 = sup
Ω
φ 6 inf

Ω
φe

√
λ1(m,µ)

µ .

On the other hand, one could notice that λ1(m,µ)φ is a subsolution of (LDE), and thus, as θm,µ
is the unique solution of this equation, one gets θm,µ > λ1(m,µ)φ and thus

inf
Ω
θm,µ > λ1(m,µ) inf

Ω
φ > λ1(m,µ)e−

√
λ1(m,µ)

µ .

Coming back to our inequality on m, one gets:

κ > m > −κ+
5

2
inf
Ω
θm,µ > −κ+

5

2
λ1(m,µ)e−

√
λ1(m,µ)

µ .

We conclude by noticing that according to (1), there holds

λ1(m,µ) > m0 and λ1(m,µ) 6 κ.

3.3 Comments on the Dirichlet case

When dealing with Dirichlet boundary conditions instead of Neumann ones, all the results of this
article can be directly extended to that case, by noting that the assumption λ1(m,µ) > 0 needs to
be replaced by the condition

λ1(m,µ) > λ1(0, µ) +m0,

that is, we need to replace (H1) with (H1’):

m0 + λ1(0, µ) > 0. (H1’)

Once this condition is satisfied, all of the previous proofs can be written along the same lines and
are even sometimes simplified. Indeed, one of the main difficulties when dealing with Neumann
boundary conditions was to control the integral quantities ηk,m by using a Poincaré-Wirtinger
inequality. Working with Dirichlet boundary conditions enables to work with the standard Poincaré
inequality in H1

0 and to overcome this technical point.
It is also interesting to note that, in dimension N > 2 with Dirichlet boundary conditions and

Ω = B(0;R), the approach developed within this article can be adapted to prove the existence of
µ∗ such that, for any µ > µ∗, any sequence of maximizers of Fµ converges in L1(Ω) to m∗, where
m∗ = κχB(0,r) and r is chosen so that

´
Ω
m∗ = m0|Ω|. Note that the symmetrizations used in the

proof of Theorem 2 have to be replaced by the so-called (radial) Schwarz symmetrization (see e.g.
[20, 13]).

3.4 Comments and open issues

It is also interesting, from a biological point of view, to investigate a more general version of
Problem (Pnµ ) for changing-sign weights. In that case, the admissible class of weights is then
transformed (for instance) into

M̃κ,m0
(Ω) =

{
m ∈ L∞(Ω) ,m ∈ [−1;κ] a.e and

 
Ω

m = m0

}
,

with m0 ∈ (0, 1) (so that λ1(m,µ) > 0 and Equation (LDE) is well-posed). We claim that the
main results of this article can be extended without effort to this new framework and that we will
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still obtain the bang-bang character of maximizers provided that µ be large enough. Such a class
has also been considered in the context of principal eigenvalue minimization (see [16, 23]).

Finally, we end this section by providing some open problems for which we did not manage to
bring complete answer and that deserve and remain, to our opinion, to be investigated. They are
in order:

• (for general domains Ω) obtain a sharp estimate of µ∗;

• (for general domains Ω) use the main results of the present article to determine numerically
the maximizer m∗ with the help of an adapted shape optimization algorithm;

• (if Ω = (0, 1)) obtain a sharp estimate of µ̂;

• (for general domains Ω) investigate the asymptotic behavior of maximizer as the parameter
µ tends to 0? Such a issue appears intricate since it requires a refine study of singular limits
for Problem (LDE).

A Proof of Lemma 1

Once the first order differentiability property shown, one gets easily the second order differentiabil-
ity by reproducing the reasoning. For this reason, we will only prove the Gâteaux-differentiability
of S. A proof was already provided in [7] but we provide our own proof here for the sake of
completeness.

Our proof rests upon the following estimate: there exists a positive constant Λ0 = Λ0(m0, κ, µ)
such that, for every m,m′ ∈Mκ,m0

(Ω), there holds

‖θm,µ − θm′,µ‖L2(Ω) 6 Λ0‖m−m′‖L2(Ω). (26)

Indeed, assuming this inequality proved, let us fix m ∈ Mκ,m0(Ω) and h ∈ Tm,Mκ,m0
(Ω). From

(26) we infer that, whenever t is small enough, there holds∥∥∥∥θm+th,µ − θm,µ
t

∥∥∥∥
L2(Ω)

6 Λ0‖h‖L2(Ω).

Defining for every t > 0 the function z : t 7→ θm+th,µ−θm,µ
t , one shows with an easy computation

that z satisfies

for all t > 0, µ∆z(t) + z(t)
(
m− (θm+th,µ − θm,µ)

)
= −hθm,µ in Ω, (27)

with homogeneous Neumann boundary conditions on ∂Ω.
Hence, W 1,2(Ω)- regularity estimates yields

‖z(t)‖W 1,2(Ω) .
(
‖z(t)‖L2(Ω) + ‖z(t)(m− (θm+th,µ + θm,µ))‖L2(Ω)

)
+ ‖hθm,µ‖L2(Ω)

. Λ0‖h‖L2(Ω)

(
1 + 2κ+ ‖θm+th,µ‖L∞(Ω)

)
+ κ‖h‖L2(Ω).

As a consequence, the family (z(t))t>0 is uniformly bounded in W 1,2(Ω). Sobolev embeddings
combined with the Rellich-Kondrachov theorem yields the existence of a closure point z∞. To
prove the differentiability property, it remains to show the uniqueness of z∞. Passing to the limit
in the weak formulation of (27) shows that every closure point z∞ necessarily satisfies (in the sense
of distributions)

µ∆z∞ + z∞(m− 2θm,µ) = −hθm,µ in Ω,
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with homogeneous Neumann boundary conditions on ∂Ω. Since θm,µ > 0 and λ1(m− θm,µ, µ) = 0
(according to Section 1.3 and the condition satisfied by θm,µ), we infer that λ1(m− 2θm,µ, µ) < 0.
We conclude by applying the Fredholm alternative which provides the uniqueness of the closure
point z∞.

It now remains to prove the inequality (26). To this aim, let us introduce ẑ = θm,µ − θm′,µ.
Following the computations done in [25], ẑ satisfies

µ∆ẑ + (m− 2θm,µ)ẑ + ẑ2 + (m−m′)θm′,µ = 0.

Using as a test function ψ+ = (ẑ)+ (the positive part of ẑ), an integration by part combined with
the Cauchy-Schwarz inequality and (2) yields

−µ
ˆ

Ω

|∇(ẑ)+|2 +

ˆ
Ω

(m− 2θm,µ)(ẑ)2
+ = −

ˆ
Ω

(m−m′)(ẑ)+θm,µ −
ˆ

Ω

(ẑ)3
+

6
ˆ

Ω

κ|m−m′|(ẑ)+

6 κ‖m−m′‖L2(Ω)‖(ẑ)+‖L2(Ω).

Combining this inequality with the Courant-Fischer formula (1) yields

−λ1(m− 2θm,µ, µ)

ˆ
Ω

(ẑ)2
+ 6 −µ

ˆ
Ω

|∇(ẑ)+|2 +

ˆ
Ω

(m− 2θm,µ)(ẑ)2
+.

Replacing the test function ψ+ by the function ψ− = (ẑ)− (the negative part of ẑ) and applying
the same reasoning yields

−λ1(m− 2θm,µ, µ)

ˆ
Ω

(ẑ)2
− 6 −µ

ˆ
Ω

|∇(ẑ)−|2 +

ˆ
Ω

(m− 2θm,µ)(ẑ)2
−.

The desired estimate follows by combining the two last inequalities.

B Convergence of the series

Let 1
µ∗1

be the minimum of the convergence radii associated to the power series
∑
α(k)xk,

∑
β(k)xk,∑

γ(k)xk,
∑
δ(k)xk and

∑
ε(k)xk introduced in the proof of Theorem 1.

We will show that, whenever µ > µ∗1, the following expansions

+∞∑
`=0

ηk,m
µk

= θm,µ,

+∞∑
k=1

η̇k,m
µk

= θ̇m,µ,

+∞∑
k=1

η̈k,m
µk

= θ̈m,µ

make sense in L2(Ω). Since the proofs for the series defining θ̇m,µ and θ̈m,µ are exactly similar
to the one for θm,µ, we only concentrate on the expansion of θm,µ. By construction, the series

g∞,µ :=
∑+∞
`=0

ηk,m
µk

converges in L2(Ω). In order to do so, set, for any N ∈ IN∗,

gN,µ :=

N∑
k=0

ηk,m
µk

.

Then, it is readily checked that gN,µ solves the following equation:

µ∆gN,µ + gN−1,µ(m− gN−1,µ) = 0,
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along with Neumann boundary conditions. Thus the function g∞,µ solves the steady logistic
equation. Finally, we know that g∞,µ →

µ→+∞
m0 > 0 so that, for µ large enough, g∞,µ is positive.

The uniqueness of positive solutions of equation (LDE) entails that, for µ large enough, g∞,µ =
θm,µ.
This concludes the proof of the convergence of the expansions, and furthermore concludes the proof
of theorem 1.
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