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Ticks and the pathogens they transmit constitute a growing burden for human and animal

health worldwide. Vector competence is a component of vectorial capacity and depends

on genetic determinants affecting the ability of a vector to transmit a pathogen. These

determinants affect traits such as tick-host-pathogen and susceptibility to pathogen

infection. Therefore, the elucidation of the mechanisms involved in tick-pathogen

interactions that affect vector competence is essential for the identification of molecular

drivers for tick-borne diseases. In this review, we provide a comprehensive overview of

tick-pathogen molecular interactions for bacteria, viruses, and protozoa affecting human

and animal health. Additionally, the impact of tick microbiome on these interactions was

considered. Results show that different pathogens evolved similar strategies such as

manipulation of the immune response to infect vectors and facilitate multiplication and

transmission. Furthermore, some of these strategies may be used by pathogens to

infect both tick and mammalian hosts. Identification of interactions that promote tick

survival, spread, and pathogen transmission provides the opportunity to disrupt these

interactions and lead to a reduction in tick burden and the prevalence of tick-borne

diseases. Targeting some of the similar mechanisms used by the pathogens for infection

and transmission by ticks may assist in development of preventative strategies against

multiple tick-borne diseases.
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INTRODUCTION

Ectoparasites that derive nutrition through blood feeding
(haematophagy) are efficient vectors of disease. Ticks are
haematophagous ectoparasites of vertebrates. Approximately
10% of the 900 currently known tick species are of significant
medical or veterinary importance. Besides causing direct damage
associated with blood feeding and in some cases through the
excretion of toxins within their saliva, the main relevance
of ticks lies in the wide variety of pathogens they can
transmit, including bacteria, viruses, protozoa, and helminths
(Jongejan and Uilenberg, 2004). The continuous exploitation of
environmental resources and the increase in human outdoor
activities, which have allowed for the contact with tick vectors
normally present in the field, has promoted the emergence and
resurgence of tick-borne pathogens (Jongejan and Uilenberg,
2004).

As previously discussed (Beerntsen et al., 2000), the terms
“vectorial capacity” and “vector competence” are often used to
describe the ability of an arthropod to serve as a disease vector.
However, while vectorial capacity is influenced by behavioral
and environmental determinants affecting variables such as
vector density, longevity, and competence, vector competence
is a component of vectorial capacity that depends on genetic
factors affecting the ability of a vector to transmit a pathogen
(Beerntsen et al., 2000, Box 1). These genetic determinants affect
traits such as tick host preferences, duration of tick attachment,
tick-host-pathogen and microbiome-pathogen interactions, and
susceptibility to pathogen infection (Ramamoorthi et al., 2005;
Hajdušek et al., 2013; Narasimhan et al., 2014; Nuttall, 2014;
Rynkiewicz et al., 2015; Vayssier-Taussat et al., 2015). Therefore,
the elucidation of the mechanisms involved in tick-pathogen

BOX 1 | Important determinants influencing the acquisition, maintenance and transmission of pathogens by ticks.

Host range Ticks with a wide host range such as I. ricinus, are naturally exposed to a greater variety of pathogens compared to ticks with a narrow host

range such as R. microplus (Estrada-Peña et al., 2015).

Number of hosts The potential transmission of pathogens could be limited when considering the host contact rate of 1- and 2- host ticks vs. 3-host ticks. This

effect may however be partially annulled by the phenomenon of transovarial passage, when pathogens are passaged from the female to her

eggs and offspring, which can subsequently infect new hosts. Argasid ticks of which the nymphs and adults take several blood meals, have

a high host contact rate and could theoretically acquire or transmit pathogens from and to multiple hosts.

Midgut infection

and escape barrier

The pathogen needs to pass through the midgut to reach the salivary glands and be transmitted with tick saliva, and for migration of some

pathogens to the ovaries to allow transovarial pathogen passage. Mechanisms to pass the midgut infection barrier may depend on the

presence and structure of specific surface receptors, such as TROSPA, to which OspA from B. burgdorferi adheres, allowing the spirochete

to colonize the midgut (Pal et al., 2004).

Innate immune

response

Pathogens need to overcome tick defense mechanisms, such as the phagocytosis of microbes by hemocytes, antimicrobial peptides and

RNA interference, in order to be transmitted with tick saliva (Hajdušek et al., 2013).

Salivary gland

infection and

escape barrier

Pathogens must cross into the salivary glands for transmission with saliva during feeding, but little is known about the molecular mechanisms

behind this entry. Once inside the salivary glands, the pathogen has to be released into the saliva stream to be transmitted. For example,

B. burgdorferi uses tick salivary gland proteins to facilitate infection of the mammalian host (Ramamoorthi et al., 2005).

Pathogen strains Differences between pathogen strains to infect and be transmitted by ticks have been widely reported (e.g., Kleiboeker et al., 1999; de la

Fuente et al., 2001).

Tick microbiome-

pathogen

interactions

Microbiome play an essential role in various aspects of the arthropods life cycle and there is an increasing interest to elucidate

arthropod-microbiome interactions. Perturbation of the microbiome caused changes in the integrity of the peritrophic membrane and may

affect pathogen infection (Narasimhan et al., 2014).

Cross-Immunity

interference

Competition between microorganisms within the tick may affect vector competence. Ticks infected with one Rickettsia species were for

instance refractory to transovarial passage of a second Rickettsia species (Macaluso et al., 2002).

Abiotic factors Abiotic factors such as temperature and relative humidity not only have a direct effect on tick development, questing activity and longevity,

but temperature may also modulate pathogen development and survival in ticks (Shih et al., 1995; Estrada-Peña et al., 2011).

interactions that affect vector competence is essential for the
identification of molecular drivers for tick-borne diseases,
and exposes paradigms for controlling and preventing these
diseases.

Although our understanding of tick-pathogen interactions is
still limited, advances in this field are facilitated by the increasing
number of available genomic resources, including metabolomics,
transcriptomics, and proteomics datasets of various ticks and
tick-borne pathogens (TBPs) (Nene et al., 2004; Ayllón et al.,
2015a; Cramaro et al., 2015; Kotsyfakis et al., 2015; Villar
et al., 2015a; Gulia-Nuss et al., 2016; de Castro et al., 2016),
and the recently published genome from Ixodes scapularis, a
vector of Borrelia burgdorferi and Anaplasma phagocytophilum
in North America (Gulia-Nuss et al., 2016). Together with
tools such as tick cell lines and the widespread adaptation of
RNA interference (RNAi) to study tick gene function (Bell-
Sakyi et al., 2007; de la Fuente et al., 2007), this has opened
exciting possibilities to identify determinants affecting tick vector
competence.

Most studies of tick-pathogen interactions focus on certain
pathogens (e.g., de la Fuente et al., 2016) or on certain aspects
of these interactions (e.g., Hajdušek et al., 2013). However, for
a better understanding of tick-pathogen molecular interactions
and their role in vector competence, a comprehensive analysis
involving major pathogens is crucial. In this review, we provide
an overview of tick-pathogen molecular interactions for TBPs
that constitute a growing burden for human and animal health
(Figure 1). Additionally, the impact of tick microbiome on
these interactions was considered to further contribute to the
identification of molecular drivers affecting vector competence
and the development of novel control and prevention strategies
for tick-borne diseases.
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FIGURE 1 | Model organisms: tick-borne pathogens that constitute a growing burden for human and animal health. The pathogens covered in this review

include bacteria (A. phagocytophilum and B. burgdorferi), viruses (Crimean-Congo hemorrhagic fever virus, tick-borne encephalitis virus), and protozoa (Babesia spp.)

transmitted by hard ticks (Ixodidae). The most prevalent diseases caused by these pathogens, main tick vectors, and disease distribution worldwide is shown in the

figure.

MODEL MICROORGANISMS

In this review, we used different tick-borne microorganisms
including bacteria (A. phagocytophilum and B. burgdorferi),
viruses (Crimean-Congo hemorrhagic fever virus, tick-borne
encephalitis virus, and louping ill virus), and protozoa (Babesia
spp.) to illustrate their impact on vector competence, behavior
and transmission (Figure 1).

Bacteria
Anaplasma phagocytophilum is an obligate intracellular
rickettsial pathogen vectored primarily by Ixodes spp. and causes
human granulocytic anaplasmosis (HGA), equine, and canine
granulocytic anaplasmosis, and tick-borne fever (TBF) (de la
Fuente et al., 2008). In the vertebrate host, A. phagocytophilum
infects neutrophils where the pathogen multiplies within a
parasitophorous vacuole or morula (Ayllón et al., 2015a; Severo
et al., 2015). In the absence of transovarial passage, ticks must
acquire infection in each generation during a bloodmeal.
A. phagocytophilum initially infects tick midgut cells and then
subsequently develops in the salivary glands for transmission
to susceptible hosts during tick feeding. Bacteria from the
B. burgdorferi sensu lato complex are transmitted by Ixodid
ticks and cause various symptoms associated with Lyme disease
(Radolf et al., 2012). B. burgdorferi s.l. are acquired by larvae
or nymphs from an infected host as they are not transovarially
transmitted (Rollend et al., 2013). In the tick, spirochetes
colonize the midgut and then traverse into the hemocoel and
migrate to salivary glands for transmission during tick feeding
(Pal et al., 2004; Ramamoorthi et al., 2005; Zhang L. et al., 2011;
Coumou et al., 2016).

Viruses
Ticks transmit a range of viruses that are of significant public
and veterinary health concern (Table 1). It is estimated that
these viruses spend over 95% of their life cycle within the tick
vector. Tick-borne encephalitis virus (TBEV) causes neurological
disease in humans, whereas louping ill virus (LIV) causes
neurological disease in sheep (Labuda and Nuttall, 2003). Ixodid
ticks transmit these viruses to particular host species through a
bite (Doherty and Reid, 1971; Mansfield et al., 2016). Crimean-
Congo hemorrhagic fever virus (CCHFV) is transmitted to
humans by the bite of infected ticks (Hyalomma spp. are the most
competent vectors) or by direct contact with blood or tissues
of viremic patients or animals, causing a disease characterized
by fever, headache, myalgia, and hemorrhagic manifestations
(Papa, 2010). If the appropriate receptors are present in the tick,
following a blood meal TBEV and CCHFV enter vector host cells
by endocytosis (Labuda and Nuttall, 2003; Simon et al., 2009;
Garrison et al., 2013; Shtanko et al., 2014; Suda et al., 2016).
These viruses replicate in the lining of the tick midgut where they
disseminate to the hemolymph and subsequently infect different
tissues reaching the highest titers in the salivary glands and
reproductive organs to exit the cell via exocytosis (Dickson and
Turell, 1992).

Protozoa
Babesia spp. are tick-borne Apicomplexan protozoans which
invade vertebrate host erythrocytes, where all hemoparasite
phases occur (Yokoyama et al., 2006; Chauvin et al., 2009; Florin-
Christensen and Schnittger, 2009). Babesia bovis and Babesia
bigemina, transmitted mainly by Rhipicephalus microplus and
Rhipicephalus annulatus, are considered the most important
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TABLE 1 | Viruses transmitted by ticks of medical or veterinary importance.

Virus (abbreviation) Family/Genus Principal vector Species affected Endemic presence

Alkhurma hemorrhagic fever virus (AHFV) Flaviviridae/Flavivirus Ornithidoros savigny Humans Saudi Arabia

African swine fever virus (ASFV) Asfarviridae/Asfivirus Ornithodoros moubata Pigs Africa

Colorado tick fever virus (CTFV) Reoviridae/Coltivirus Dermacentor andersoni Humans North America

Crimean-Congo haemorrhagic fever virus (CCHFV) Bunyaviridae/Nairovirus Hyalomma spp. Humans Africa/Asia/Southern Europe

Kyasanur Forrest virus (KFV) Flaviviridae/Flavivirus Haemaphysalis spingera Humans India

Louping ill virus (LIV) Flaviviridae/Flavivirus Ixodes ricinus Sheep/Grouse British Isles

Nairobi sheep disease virus (NSDV) Bunyaviridae/Nairovirus Rhipicephalus appendiculatus Sheep Africa

Omsk Hemorrhagic fever virus (OHFV) Flaviviridae/Flavivirus Dermacentor reticulatus Humans Asia

Powassan virus (POWV) Flaviviridae/Flavivirus Ixodes cookei Humans North America/Russia

Tick-borne encephalitis virus (TBEV) Flaviviridae/Flavivirus I. ricinus/Ixodes persulcatus Humans Europe/Asia

Table adapted from Labuda and Nuttall (2003) and Johnson et al. (2012).

species for their great economic impact on the cattle industry.
Humans are accidental hosts, but human babesiosis caused
by Babesia microti is now considered an emerging zoonosis
as cases are increasing yearly (Schnittger et al., 2012). Ticks
become infected with Babesia parasites when ingesting blood
cells containing piroplasms, which develop into male and female
gametes in the tick midgut (Uilenberg, 2006). The zygotes then
multiply and invade numerous tick organs including the ovaries,
which results in transovarial passage for some species such as
B. bovis and B. bigemina but not B. microti (Uilenberg, 2006).
When ticks attach to a new host, the sporozoites mature and the
parasites are transmitted with tick saliva and infect red blood cells
(Uilenberg, 2006).

BIOLOGICAL PROCESSES INVOLVED IN
TICK-PATHOGEN INTERACTIONS

The objective of this paper is to review the information
available on tick-pathogen molecular interactions and their role
in vector competence. To address this objective, we discussed the
main biological processes involved in tick-pathogen interactions.
Additionally, the impact of tickmicrobiome on these interactions
was considered. Although host-tick and host-pathogenmolecular
interactions also affect vector competence, this review focuses
on tick-pathogen interactions for the identification of molecular
drivers affecting vector competence that may result in the
identification of tick-derived and pathogen-derived antigens for
the development of novel control and prevention strategies for
tick-borne diseases.

Role of Bacterial Proteins in Tick-Pathogen
Interactions
Tick-pathogen protein-protein interactions play a crucial role
during pathogen infection, persistence and transmission. The
analysis ofA. phagocytophilum proteins differentially represented
during infection in ticks demonstrated that heat shock protein 70
(HSP70) and major surface protein 4 (MSP4) interact and bind
to tick cells, thus playing a role in tick-pathogen interactions
(Villar et al., 2015b). The type IV secretion system (T4SS) was
proposed to be involved in the secretion of HSP70 and the

MSP4 interaction with tick cells may induce the secretion of
vesicles at the phagocytic cup to aid in adhesin secretion for
rickettsial infection of tick cells (Villar et al., 2015b). Recent
results have advanced our understanding of the molecular factors
that are involved in the acquisition, persistence and transmission
of B. burgdorferi in ticks (Rosa et al., 2005; Kung et al., 2013).
An important protein involved in spirochete colonization of
the tick midgut is the outer surface protein A (OspA), which
binds to the tick receptor for OspA (TROSPA) (Pal et al.,
2004). An I. scapularis dystroglycan like protein (ISDLP) as
well as a tick receptor for the B. burgdorferi protein BBE31
(TRE31) help spirochetes traverse from the tick midgut into
the hemocoel (Zhang L. et al., 2011; Coumou et al., 2016).
B. burgdorferi outer surface protein C (OspC), produced when
bacteria leave the tick midgut, binds to tick salivary protein 15
(Salp15) (Ramamoorthi et al., 2005), providing protection against
mammalian antibody/complement-mediated immune response
during bacterial transmission (Garg et al., 2006; Schuijt et al.,
2011a). The TROSPA homolog in the B. bigemina vectors,
R. microplus, and R. annulatus was proposed to be a putative
receptor for Babesia ligands based on the decrease in infection
after RNAi and vaccination experiments targeting this protein
(Antunes et al., 2012; Merino et al., 2013). Flaviviruses and
CCHFV enter vertebrate and vector host cells by attachment
of viral envelope proteins to host receptors, which activates the
actin-dependent clathrin-mediated endocytic pathway (Labuda
and Nuttall, 2003; Simon et al., 2009; Garrison et al., 2013).

Tick Cytoskeleton
Intracellular bacteria induce cytoskeletal rearrangement
to establish infection (Ireton, 2013). In I. scapularis,
A. phagocytophilum remodels tick cytoskeleton by altering
the ratio between monomeric globular G actin and filamentous
F actin to facilitate infection through selective regulation of gene
transcription in association with the RNA polymerase II and
the TATA-binding protein (Sultana et al., 2010). In I. scapularis
midgut cells, the up-regulation of Spectrin alpha chain or Alpha-
fodrin in response to infection results in cytoskeleton remodeling
that is used by A. phagocytophilum to facilitate infection (Ayllón
et al., 2013, Figure 2A). Although not functionally characterized,
a proteomics analysis in I. ricinus tick salivary glands showed
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FIGURE 2 | Tick-pathogen molecular interactions. (A) A. phagocytophilum (B) B. burgdorferi s.l., (C) TBEV, and (D) B. bovis/B. bigemina activate mechanisms

(panel 1) and manipulate tick protective responses and other biological processes in order to facilitate infection (panel 2), while ticks respond to limit pathogen infection

and preserve feeding fitness and vector competence for survival of both ticks and pathogens (panel 3). MG, midgut; HE, hemocyte; SG, salivary gland; MSPs, major

surface proteins; HSPs, heat shock proteins; ER, endoplasmic reticulum.

the under-representation of cytoskeleton proteins in response
to Borrelia infection, suggesting that some Borrelia strains
promote a cytoskeleton rearrangement in ticks (Cotté et al.,
2014, Figure 2B).

Tick Cell Apoptosis
Apoptosis is an intrinsic immune defense mechanism in
response to microbial infection that results in reduction of
infected cells, but several pathogens have developed different
strategies to inhibit cell apoptosis in order to enhance their
infection, replication and survival (Ashida et al., 2011). Infection
of tick salivary glands with A. phagocytophilum results in
inhibition of the intrinsic apoptosis pathway through porin
down-regulation, favoring bacterial infection (Ayllón et al.,
2015a). Tick cells respond to infection via activation of the
extrinsic apoptosis pathway, which limits A. phagocytophilum
infection and promotes tick survival (Ayllón et al., 2015a). In tick
midguts, A. phagocytophilum infection results in activation of the
Janus kinase/signal transducers and activators of transcription
(JAK/STAT) pathway, which inhibits apoptosis and promotes
pathogen infection (Ayllón et al., 2015a). The ISE6 cultured cells,
derived from embryonic I. scapularis, have provided a model
for tick hemocyte responses to pathogen infection. In this cell
line, A. phagocytophilum infection promotes protein misfolding
in the endoplasmic reticulum (ER), counteracting the tick cell
response to infection. However, tick cells respond by activating
protein targeting and degradation, which reduces ER stress and

apoptosis, thus favoring A. phagocytophilum infection (Villar
et al., 2015a). Additionally, A. phagocytophilum may benefit
from the tick cells ability to limit pathogen infection through
phosphoenolpyruvate carboxykinase (PEPCK) inhibition that
results in lower glucose metabolism and the reduction in the
availability of essential metabolites for bacterial growth, which
leads to the inhibition of cell apoptosis that increases infection
in tick cells (Villar et al., 2015a). These results show that the
inhibition of tick cell apoptosis is a physiologically relevant
mechanism used by A. phagocytophilum to facilitate infection
and multiplication in both tick and vertebrate host cells (de la
Fuente et al., 2016, Figure 4). Infection of I. ricinus cells with
flaviviruses leads to the differential expression of a large number
of genes involved in a variety of cellular functions, including
up-regulation of genes such as cytochrome c associated with
cellular stress and apoptosis (Mansfield et al., 2017). However,
the lack of detection of caspase genes, and the up-regulation
of genes that inhibit apoptosis (including hsp70) suggest that
flavivirus infection inhibits tick cell apoptosis in order to
promote cell survival during infection as previously shown for
A. phagocytophilum (Ayllón et al., 2015a; Alberdi et al., 2016).

Tick Innate Immune Response
Tick vector competence is influenced by the ability of transmitted
pathogens to evade tick innate immune response (Hajdušek et al.,
2013). Several humoral and cell-mediated immune response
pathways are involved in tick innate immunity, and play a
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role in defense to Anaplasma, Borrelia, flavivirus, and Babesia
infection or are manipulated by pathogens to facilitate infection
(Turell, 2007; Hajdušek et al., 2013; Mansfield et al., 2017,
Figure 2). With respect to the tick innate immune response,
A. phagocytophilum subverts tick RNAi by mechanisms other
than reduction of Tudor staphylococcal nuclease (Tudor-SN)
levels to preserve a protein that is important for tick feeding
(Ayllón et al., 2015b). In contrast, Subolesin (SUB), also involved
in tick innate immune response for limiting pathogen infection
(Naranjo et al., 2013; de la Fuente and Contreras, 2015), is not
manipulated by A. phagocytophilum. SUB has been shown to
be required for tick feeding and reproduction and for pathogen
infection, and therefore the preservation of this protein is
important for both tick and pathogen survival (de la Fuente
and Contreras, 2015). In I. scapularis, the x-linked inhibitor
of apoptosis protein (XIAP) interacts with the E2 conjugating
enzyme Bendless affecting positive and negative regulators of
the immune deficiency (IMD) pathway resulting in protection
against infection by A. phagocytophilum (Severo et al., 2013).

After molting, tick nymphs attach and start feeding,
displaying an altered midgut transcriptome when infected with
B. burgdorferi (Rudenko et al., 2005). Some of the genes affected
by infection include innate immune factors (defensin and
thioredoxin peroxidase) that possibly limit tick Borrelia infection.
Tick salivary protein 20 (Salp20) belongs to a protein family with
complement-inhibitory activity that blocks the host alternative
complement pathway and assists in Borrelia transmission
(Hourcade et al., 2016). Tick salivary lectin pathway inhibitor
(TSLPI) inhibits the human lectin complement pathway by
interfering with the mannose binding lectin activity and enables
transmission of Borrelia by protecting it from complement-
mediated killing (Schuijt et al., 2011b; Wagemakers et al., 2016).
Recently, Smith et al. (2016) showed that I. scapularis respond to
interferon gamma acquired in the blood meal when parasitizing
on B. burgdorferi-infected mice, leading to the up-regulation of
the Rho-like GTPase and induction of antimicrobial peptides to
inhibit pathogen infection.

Preliminary studies focusing on transcriptomic changes
induced by TBEV infection of I. scapularis and I. ricinus cells
have revealed the role of particular proteins within tick innate
immune pathways that act to control infection (Weisheit et al.,
2015). A similar approach has identified this response in tick
cells infected with LIV and TBEV, with a range of transcripts
being up and down-regulated (Weisheit et al., 2015; Mansfield
et al., 2017). Flavivirus infection also induced transcripts
associated with activation of innate immune pathways in tick
cells, including JAK/STAT and Mitogen-activated protein kinase
(MAPK) pathways (Mansfield et al., 2017), with additional up-
regulation of genes with host resistance functions, including
FK506 binding protein (FKBP) and the antiviral helicase Slh1
(Mansfield et al., 2017, Figure 2C). CCHFV is capable of evading
the tick innate immune response. Following intracoelomic
CCHFV inoculation, virus titers in male and female ticks are the
same and infection rates and titers in salivary glands, ovaries, and
testes increase upon blood feeding (Dickson and Turell, 1992).
Therefore, viral replication in tissues associated with possible
CCHFV transmission in infected ticks may be stimulated by

attachment and feeding on susceptible hosts. This might reduce
the stress induced by viral replication while ticks are waiting
to find a vertebrate host, but increase the potential for viral
transmission once the host is infested (Turell, 2007).

Using different methodologies, some molecules have been
identified as being implicated in tick-Babesia interactions
(Hajdušek et al., 2013). Genes involved in immunity, stress,
and defense responses showed up-regulation in response to
B. bovis infection (Heekin et al., 2012), while genes encoding
for calreticulin, kunitz-type serine protease inhibitors and
microplusin which exhibits antimicrobial activity, were
differentially expressed in B. bovis/B. bigemina infected
Rhipicephalus ticks (Rachinsky et al., 2007; Antunes et al., 2012;
Heekin et al., 2013; Lu et al., 2016). Tick SUB (Almazán et al.,
2005) was shown to be up-regulated in B. microti inoculated
intrahemocoelically into Rhipicephalus haemaphysaloides (Lu
et al., 2016) and B. bigemina-infected R. microplus (Merino et al.,
2013) (Figure 2D). The putative role of SUB in B. bigemina
infection in ticks was supported by showing a decrease
in pathogen levels in ticks fed on cattle immunized with
recombinant SUB (Merino et al., 2013).

Tick Cell Epigenetics
Intracellular pathogens manipulate the transcriptional programs
of their host cells via epigenetic mechanisms, leading to
stress, and inflammatory responses (Gómez-Díaz et al., 2012).
Recently, A. phagocytophilum was shown to manipulate tick
cell epigenetics to increase the levels of the histone modifying
enzymes (HMEs), histone acetyltransferases (HATs; 300/CBP),
and histone deacetylases (HDACs and Sirtuins) resulting in
the inhibition of cell apoptosis to facilitate pathogen infection
and multiplication (Cabezas-Cruz et al., 2016). The results of
this study suggested that a compensatory mechanism might
exist by which A. phagocytophilum differentially manipulates
tick HMEs to regulate transcription and apoptosis in a tissue-
specific manner to facilitate infection but preserving tick fitness
to guarantee survival of both pathogens and ticks (Cabezas-
Cruz et al., 2016). As previously discussed (Cabezas-Cruz et al.,
2016), the mechanisms by which A. phagocytophilum affects
tick cell epigenetics is unknown but effector proteins such as
AnkA, secreted through T4SS or other secretion mechanisms
probably control it (Garcia-Garcia et al., 2009a,b; Rennoll-
Bankert et al., 2015). It has been previously demonstrated that
A. phagocytophilum AnkA recruits host histone deacetylase 1
(HDAC1) and modifies neutrophils gene expression (Garcia-
Garcia et al., 2009a,b; Rennoll-Bankert et al., 2015). Interestingly,
the homolog of HDAC1 in I. scapularis was overrepresented
upon A. phagocytophilum infection in tick salivary glands
(Cabezas-Cruz et al., 2016). It remains to be tested whether
A. phagocytophilum AnkA plays the same role in ticks as in
vertebrate neutrophils.

Effect of Pathogen Infection on Tick
Fitness
The characterization of I. scapularis-A. phagocytophilum
molecular interactions revealed complex responses by both ticks
and pathogens that were necessary for maintenance of tick health
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while ensuring robust vector capacity (Ayllón et al., 2015a; Villar
et al., 2015a; Gulia-Nuss et al., 2016; de la Fuente et al., 2016).
Several lines of evidence suggest that tick-pathogen associations
evolved to form “intimate epigenetic relationships” that have the
potential to increase tick fitness (Cabezas-Cruz et al., 2017).
At the tick-pathogen interface, A. phagocytophilum induces an
antifreeze glycoprotein (IAFGP) and heat shock proteins (HSPs)
to increase tick survival and feeding fitness (Neelakanta et al.,
2010; Busby et al., 2012). Neelakanta et al. (2010) demonstrated
that I. scapularis ticks infected with A. phagocytophilum show
enhanced fitness against freezing injury due to the induced
expression of IAFGP. They further showed that improved
survival of infected ticks correlated with higher bacterial
infection, therefore providing a direct link between pathogen
infection and tick fitness in unfavorable ecological conditions.
The fact that Borrelia and TBEV-infected ticks choose a higher
questing height suggests that these pathogens help ticks to
survive under dry conditions. In agreement with this hypothesis,
I. ricinus infected by B. burgdorferi move less toward a humid
environment and their survival is higher in highly desiccating
conditions (Hermann and Gern, 2010; Herrmann and Gern,
2012). The tick histamine release factor (tHRF), up-regulated
in B. burgdorferi-infected I. scapularis during feeding, facilitates
tick engorgement and B. burgdorferi infection by increasing
the blood flow to the tick-bite site and modulating vascular
permeability (Dai et al., 2010).

TICK-MICROBIOME INTERACTIONS

The recent development of high-throughput next generation
sequencing technologies has highlighted the complexity of the
tick microbiome that includes both pathogens and potential
symbionts (Vayssier-Taussat et al., 2015). It is readily apparent
that interactions frequently occur among tick microbial
communities, as relationships between microorganisms existing
in one environment can be competitive, exclusive, facilitating,

or absent, with many potential implications for human
and animal health that remain to be elucidated (Ahantarig
et al., 2013; Vayssier-Taussat et al., 2015). Both positive
and negative associations have been reported for pathogens
(Mather et al., 1987; de la Fuente et al., 2003). However,
the role of tick endosymbionts in pathogen transmission
has only been studied in a few selected bacterial and tick
species.

Symbionts may confer crucial and diverse benefits to
their hosts, playing nutritional roles, or affecting fitness,
development, reproduction, defense against environmental
stress, and immunity (Ahantarig et al., 2013). Coxiella-like
endosymbionts are believed to be the most common vertically
transmitted agents in hard ticks (Bernasconi et al., 2002; Lee
et al., 2004; Clay et al., 2008; Bonnet et al., 2013; Cooper et al.,
2013). In Amblyomma americanum, the removal of Coxiella
symbionts following antibiotic treatment reduced tick offspring
production and increased time to oviposition (Zhong et al.,
2007). In I. ricinus (Lo et al., 2006; Sassera et al., 2006; Montagna
et al., 2013), Candidatus Midichloria mitochondrii is an intra-
mitochondrial bacterium that has also been detected in other
tick genera (Harrus et al., 2011; Williams-Newkirk et al., 2012).
It has been ascribed a possible helper role in tick molting
processes (Zchori-Fein and Bourtzis, 2011, Figure 3). Rickettsia-
like symbionts have also been reported to infect hard ticks from
several genera (Baldridge et al., 2004; Clay et al., 2008; Liu et al.,
2013). One study reported that Rickettsia-infected Dermacentor
variabilis have slightly greater motility than uninfected ticks,
indirectly influencing disease risk (Kagemann and Clay, 2013).
Francisella-like symbionts have been reported in several hard
tick genera (Venzal et al., 2008; Ivanov et al., 2011; Michelet
et al., 2013), but their effect on tick fitness and biology remains
unknown. Being able to manipulate host reproduction and then
to affect vector populations, Wolbachia spp. have also been
identified in several hard tick genera (Engelstadter and Hurst,
2007; Andreotti et al., 2011; Reis et al., 2011; Zhang X. et al.,

FIGURE 3 | Possible impact of tick microbiome on pathogen transmission. Tick microbiome may affect pathogen transmission either directly via nutrient

competition or induced/reduced immunity, or indirectly by affecting tick populations (viability, reproduction) or fitness (affecting host-seeking success). MG, midgut;

SG, salivary gland; OV, ovaries.
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2011). Their role in pathogen transmission requires further
attention, as reports suggest that this bacterium can protect
some arthropods against microbial infections (Martinez et al.,
2014). In I. ricinus,Wolbachia pipientis is known to be associated
with the hymenoptera tick endoparasitoid Ixodiphagus hookeri
(Plantard et al., 2012; Bohacsova et al., 2016), and Arsenophonus
spp. symbionts (Dergousoff and Chilton, 2010). The latter,
detected in several tick species (Clay et al., 2008; Dergousoff
and Chilton, 2010; Reis et al., 2011), are responsible for sex-
ratio distortion in arthropods, and some studies suggest that
they can affect host-seeking success by decreasing tick motility
in A. americanum and D. variabilis (Kagemann and Clay, 2013).
Lastly, some Spiroplasma spp. detected in Ixodes spp. such as
Spiroplasma ixodetis (Tully et al., 1995) may cause sex-ratio
distortion in some insect species via male killing (Tabata et al.,
2011).

Recently, Abraham et al. (2017) showed how
A. phagocytophilum manipulates I. scapularis tick microbiota
to promote infection. Firstly, they showed that IAFGP,
apart from protecting ticks against cold injury (see above),
has antimicrobial activity against biofilm-forming bacteria,
particularly Staphylococcus aureus and Enterococcus faecalis.
They further showed that by targeting biofilm-forming bacteria,
A. phagocytophilum modifies the composition of gut microbiota
and alters tick midguts permeability, which results in higher
A. phagocytophilum infection in the vector (Abraham et al.,
2017). Regarding the relationship between symbionts and
pathogens, exclusion has been reported in Rickettsiales,
which may be due to intra-family bacterial cross-immunity.
Exclusion has been documented in Dermacentor ticks infected
with Rickettsia peacockii or Rickettsia montana that limits
Rickettsia rickettsii and Rickettsia rhipicephali distribution,
respectively (Burgdorfer et al., 1981; Macaluso et al., 2002,
Figure 3). It has also been reported that I. scapularis male
ticks infected by a rickettsial endosymbiont had significantly
lower rates of infection by B. burgdorferi than symbiont-
free males, thus evidencing interactions among microbial
species (Steiner et al., 2008). Further research showed that
perturbation of the midgut microbiome in I. scapularis
influences B. burgdorferi colonization of ticks through a
transcriptional mechanism resulting in lower expression of
peritrophin, which perturbs the integrity of the peritrophic
matrix (Narasimhan et al., 2014). In A. americanum, the
presence of Coxiella-related symbionts seems to influence
Ehrlichia chaffeensis transmission (Klyachko et al., 2007), and
infection with Arsenophonus appears to be negatively correlated
with the frequency of Rickettsia sp. infection (Clay et al., 2008,
Figure 3).

CONCLUSIONS AND FUTURE
DIRECTIONS FOR THE CONTROL OF
TICK-BORNE DISEASES

Over millions of years, arthropod vectors have co-evolved with
a variety of microorganisms including bacteria, viruses, and

protozoa to the point where they appear to co-exist with little
impact on the vector (Beerntsen et al., 2000; Estrada-Peña et al.,
2015; de la Fuente et al., 2015). These arthropods have become
efficient vectors of pathogens to humans and other vertebrate
hosts that are susceptible to infection and disease.

Present results show that different pathogens have developed
similar strategies such as manipulation of the immune response
to infect ticks and facilitate multiplication and transmission.
Some of these strategies may be used by pathogens to infect
both ticks and mammalian hosts (de la Fuente et al., 2016).
Additionally, recent evidence demonstrates that the microbiome
has an effect on tick fitness and pathogen infection and
transmission, highlighting the importance of tick-microbiome
interactions for vector competence. Overall, these results
illustrate how pathogens activate mechanisms and manipulate
tick protective responses and other biological processes in order
to facilitate infection, while ticks respond to limit pathogen
infection and preserve feeding fitness and vector competence for
survival of both ticks and pathogens. However, how different
molecular mechanisms make certain tick species suitable vectors
for certain pathogens is still not fully characterized. The
presence of tick receptors that are pathogen-specific affects
vector competence for these pathogens, but other mechanisms
are probably also involved in this process. Furthermore, the
biological processes involved in tick-pathogen interactions are
also affected in other arthropod vectors (Box 2).
The identification of the molecular drivers that promote
tick survival, spread, and pathogen transmission provides the
opportunity to disrupt these processes and lead to a reduction
in tick burden and prevalence of tick-borne diseases. Targeting
some of the similar mechanisms used by the pathogens for
infection and transmission by ticks may be used to develop
strategies against multiple tick-borne diseases. As shown for
B. burgdorferi OspA (Gomes-Solecki, 2014), pathogen-derived
proteins involved in interactions with tick cells and playing a role
during infection provide targets for development of novel control
strategies for pathogen infection and transmission. Similarly,
tick-derived antigens such as SUB involved in different biological
processes may be used to reduce vector infestations and pathogen
infection in ticks feeding on immunized animals (de la Fuente
and Contreras, 2015). One novel approach to control populations
might be to target specific endosymbionts, which requires
detailed knowledge of microbial communities and their impact
on tick biology (Taylor et al., 2012). Finally, the surveillance of
microbial populations in tick salivary glands may enable the early
identification of pathogens likely to be transmitted to vertebrate
host (Qiu et al., 2014). Overall, the combination of effective
and early diagnostics along with tick vaccines and strategies
such as harnessing genetics to improve livestock breeds, and the
rational application of acaricides, antivirals and other therapeutic
interventions will result in a more effective and environmentally
friendly control of tick populations. In addition, transgenic or
paratransgenic ticks and vertebrate host genetically modified to
confer resistance to pathogen infection may be produced and
combined with vaccine applications and other interventions (de
la Fuente and Kocan, 2014).
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BOX 2 | Are the biological processes involved in tick-pathogen interactions unique for ticks?

The answer to this question is that several of the processes involved in tick-pathogen interactions have also been identified in other vector-pathogen interactions

(see for example, Beerntsen et al., 2000; Vlachou et al., 2005; Wang et al., 2010; Gómez-Díaz et al., 2012; Sabin et al., 2013; Ramphul et al., 2015; Eng et al.,

2016; Shaw et al., 2017). For example, as described in ticks, receptor-ligand-like interactions mediate pathogen recognition and infection in mosquitoes (Beerntsen

et al., 2000). Remodeling of the cytoskeleton seems to be a general mechanism for tick pathogen infection (Cotté et al., 2014; de la Fuente et al., 2016). Pathogens

such as Dengue virus (DENV), West Nile virus (WNV), and Plasmodium parasites also affect mosquito cytoskeleton during infection (Vlachou et al., 2005; Wang et al.,

2010). The finding that some pathogens manipulate tick immune response to facilitate infection has been also reported in mosquitoes infected with Plasmodium

falciparum (Beerntsen et al., 2000). Similarly, the expression of immune response genes such as those involved in the JAK/STAT pathway may serve to limit bacterial

and fungal proliferation in fruit fly and mosquitoes (Beerntsen et al., 2000). Apoptosis plays an important role in tick-pathogen interactions (de la Fuente et al., 2016).

While inhibition of cell apoptosis by pathogens facilitates infection, host cell response may activate alternative apoptotic pathways to limit infection (de la Fuente

et al., 2016). These findings have been also described in for example Aedes aegypti and Anopheles gambiae mosquitoes infected with DENV and P. falciparum,

respectively (Ramphul et al., 2015; Eng et al., 2016). The control of tick cell epigenetics by A. phagocytophilum has been proposed as a mechanism used by the

pathogen to facilitate infection and multiplication (Cabezas-Cruz et al., 2016). Similar mechanisms have been described to operate at the mosquito-Plasmodium

interface (Gómez-Díaz et al., 2012).

However, the functional mechanisms by which these processes are affected at the vector-pathogen interface may vary between pathogen and vector species

(Figure 4). The limited information available on the functional characterization of these processes in ticks and other arthropods limits the scope of the comparative

analysis between different vectors. Nevertheless, recent results support that in some cases the protein function described in model insect species may be different

in the evolutionarily distant ticks. Differences in vector competence may be genetically encoded by differences in the immune response pathways operating at each

vector-pathogen interaction (Baxter et al., 2017). For example, Tudor-SN, a conserved component of the basic RNAi machinery with a variety of functions including

immune response and gene regulation, is involved in defense against infection in Drosophila (Sabin et al., 2013) but not in ticks (Ayllón et al., 2015b). The IMD pathway

is involved in protection against infection in arthropods, but recent results support the existence of two functionally distinct IMD circuits in insects and ticks (Shaw

et al., 2017). Future comparative analyses between different vector species will provide additional information on the functional implication of the different biological

processes in vector-pathogen interactions and vector competence (Gerold et al., 2017).

FIGURE 4 | Pathogens inhibit vector cell apoptosis by different mechanisms. After infection of tick salivary glands, A. phagocytophilum inhibit apoptosis by

decreasing the expression of the pro-apoptotic genes coding for proteins such as ASK1 and Porin. Porin down-regulation is associated with the inhibition of

mitochondrial Cyt c release (Ayllón et al., 2015a). In contrast, A. phagocytophilum infection does not affect Bcl-2 levels, probably because this protein but not Porin is

essential for tick feeding (Ayllón et al., 2015a). A. phagocytophilum also induces ER stress in tick cells which play a role in reducing the levels of MKK that inhibits

apoptosis (Villar et al., 2015a). Another interesting mechanism of A. phagocytophilum to inhibit apoptosis is the manipulation of glucose metabolism by reducing the

levels of PEPCK (Villar et al., 2015a). The capacity of A. phagocytophilum to downregulate gene expression in neutrophils was associated with HDAC1 recruitment to

the promoters of target genes by the ankyrin repeat protein AnkA (Garcia-Garcia et al., 2009a,b; Rennoll-Bankert et al., 2015). Tick HDAC1 is overrepresented in

A. phagocytophilum-infected salivary glands and chemical inhibition of this protein decreases A. phagocytophilum burden in tick cells (Cabezas-Cruz et al., 2016).

Infection of tick cells with flaviviruses results in the up-regulation of genes such as hsp70 that inhibit apoptosis (Mansfield et al., 2017). N, Nucleus; M, Mitochondria;

ER, Endoplasmic Reticulum; Cyt c, Cytochrome c; ASK1, Apoptosis signal-regulating kinase 1; MKK, Mitogen-activated Protein Kinase; HDAC1, Histone Deacetylase

1; AnkA, Ankyrin A; PEPCK, Phosphoenolpyruvate Carboxykinase; FOXO, Forkhead box O; Hid, Head involution defective; JNK, Jun amino-terminal kinases; Casp,

caspases. The molecules and processes represented in green are up-regulated, while those represented in red are down-regulated in response to infection. The

activity of the molecules represented in blue varies in response to infection.
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