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Summary

� Microalgae play a major role as primary producers in aquatic ecosystems. Cell signalling reg-

ulates their interactions with the environment and other organisms, yet this process in phyto-

plankton is poorly defined. Using the marine planktonic diatom Pseudo-nitzschia multistriata,

we investigated the cell response to cues released during sexual reproduction, an event that

demands strong regulatory mechanisms and impacts on population dynamics.
� We sequenced the genome of P. multistriata and performed phylogenomic and transcrip-

tomic analyses, which allowed the definition of gene gains and losses, horizontal gene trans-

fers, conservation and evolutionary rate of sex-related genes. We also identified a small

number of conserved noncoding elements.
� Sexual reproduction impacted on cell cycle progression and induced an asymmetric

response of the opposite mating types. G protein-coupled receptors and cyclic guanosine

monophosphate (cGMP) are implicated in the response to sexual cues, which overall entails a

modulation of cell cycle, meiosis-related and nutrient transporter genes, suggesting a fine

control of nutrient uptake even under nutrient-replete conditions.
� The controllable life cycle and the genome sequence of P. multistriata allow the reconstruc-

tion of changes occurring in diatoms in a key phase of their life cycle, providing hints on the

evolution and putative function of their genes and empowering studies on sexual reproduc-

tion.

Introduction

Phytoplankton feature prominently in aquatic ecosystems, show-
ing striking morphological and functional diversity and account-
ing for one-half of the Earth’s primary productivity (Falkowski &
Knoll, 2011). Diatoms are a major component of phytoplankton
with over 100 000 species (Mann & Vanormelingen, 2013) and
contribute substantially to primary production and major biogeo-
chemical cycles (Armbrust, 2009). A high rate of DNA turnover,
horizontal gene transfer (HGT) from bacteria and endosymbiotic
events are responsible for the chimeric nature of diatom genomes,
which have probably contributed to the heterogeneity of their
physiological and ecological traits (Bowler et al., 2010).

The first assembled genomes of a centric (Thalassiosira
pseudonana, Armbrust et al., 2004) and a pennate (Phaeodactylum
tricornutum, Bowler et al., 2008) diatom were small in size (27–
32Mb) with 10 000–14 000 genes. They contained only one-half
of the genes with an annotated function, and c. 35% of the genes
were reported to be species specific. Further, c. 5% of
P. tricornutum genes were predicted to be acquired by HGT from

bacteria. These genomes contributed towards an understanding
of the genes and pathways involved in nutrient assimilation and
metabolism of diatoms. To improve our understanding of the
evolution and adaptation of this highly diverse group of organ-
isms, additional diatom genomes were sequenced, such as those
of the open-ocean centric diatom Thalassiosira oceanica (Lommer
et al., 2012), the oleaginous Fistulifera solaris (Tanaka et al.,
2015) and the polar diatom Fragilariopsis cylindrus (Mock et al.,
2017), instrumental for the study of iron physiology, lipid
metabolism and adaptation to cold, respectively.

The dynamics of planktonic communities are strongly depen-
dent on the life cycle traits of the individual species. Diatoms
have a unique life cycle characterized by progressive cell size
reduction in the population, imposed by a rigid silica wall. A few
exceptions apart, sexual reproduction is an obligate phase in
diatom life cycles, important not only to generate genetic diver-
sity, but also to escape the miniaturization process, thus allowing
the persistence of populations by restoring the original cell size
(Montresor et al., 2016). It has been proposed that some of the
unique features of the diatom genomes may reflect the unusual
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characteristics of diatom life cycles (Bowler et al., 2008). How-
ever, the most widely used diatom models are putatively asexual
and this has hampered research on the molecular and genomic
underpinning of sexual reproduction.

The marine planktonic pennate diatom Pseudo-nitzschia
multistriata has a typical, controllable size reduction–restitution
life cycle in which cells of opposite mating type (MT+ and MT�)
produce gametes when they are below the size threshold for sex
(D’Alelio et al., 2009). On gamete conjugation, an expandable
zygote is produced, within which the cell of maximum size is
formed (Fig. 1). Sexual reproduction requires a threshold cell
concentration to start, suggesting that chemical signalling is
needed to allow the induction of the sexual phase in this species
(Scalco et al., 2014). Diffusible chemical cues have been shown to
be responsible for a multi-step sexualization process, and two sex
pheromones have been characterized for the benthic diatom
Seminavis robusta (Gillard et al., 2013; Moeys et al., 2016). The
availability of transcriptomic data for the latter species and for

P. multistriata, coupled with a comparative genomic approach,
led us to the identification of the diatom genes involved in meiosis
(Patil et al., 2015). Although the meiosis toolkit is well conserved,
the sexual cues and the response mechanisms might have diverged
substantially between benthic species, which can glide on the sub-
strate to follow attraction cues, and planktonic species, which are
suspended in the water column. Indeed, it is a mystery how pen-
nate planktonic diatoms find their partner and the significance of
pheromone signalling remains completely unexplored.

Pseudo-nitzschia multistriata is able to produce the neurotoxin
domoic acid, a molecule that can contaminate seafood and cause
a syndrome called amnesic shellfish poisoning (Trainer et al.,
2012). The genome sequence of this toxic species and insights
into the mechanisms underlying its life cycle regulation will facili-
tate investigations on the dynamics of toxic Pseudo-nitzschia
blooms.

We chose P. multistriata as a model to study sexual repro-
duction. We report the assembly and annotation of its genome,

Fig. 1 Schematic drawing of the life cycle of Pseudo-nitzschia multistriata. Starting clockwise from the bottom portion of the cycle, the vegetative phase is
characterized by progressive cell size reduction of the population imposed by the rigid silica wall, made up of two unequal thecae. During this process, the
cells reach the sexualization size threshold (SST) and can either keep decreasing in size until death, or undergo sexual reproduction and escape the
miniaturization process, producing large cells. In the heterothallic P. multistriata, sex can occur only if strains of opposite mating type come into contact.
The perception of chemical cues deriving from the mating partner (0–12 h) brings cells of opposite mating type to pair (12–24 h). The formation of
gametes (24–36 h) takes place following meiosis. Conjugation of the haploid gametes (24–48 h) produces two expandable zygotes (36–48 h) that develop
into auxospores (36–72 h). Within each auxospore, an initial cell of maximum size is synthesized (60–72 h), restoring the vegetative phase of the cycle. The
time interval for each stage is indicated. Representative microscopic images of the different stages are shown outside the circle; bar, 10 lm. Thick black
arrows mark the sampling time points for the experiments described in this work. MT, mating type.
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which was first exploited to reveal unexplored features of
diatom genomes, such as conserved noncoding elements
(CNEs) with a potential regulatory function, and transposable
element activity. We also assessed the turnover of gene families
amongst Stramenopiles through an in-depth phylogenomic
approach to better identify conserved and unique features of
P. multistriata, and to provide novel information on HGT.
Furthermore, the availability of the P. multistriata genome,
coupled with a transcriptomic approach, led us to dissect the
signalling pathways employed in the early phases of sexual
reproduction. Several mating type (MT)-specific gene expres-
sion changes were observed, highlighting the involvement of
different pathways in the response to putative pheromones,
whereas other changes were common to both MTs, including
growth arrest and the modulation of cell cycle genes and nutri-
ent transporters.

Materials and Methods

Strains

A Pseudo-nitzschia multistriata (Takano) Takano pedigree was
built starting from two strains collected in 2009 (Fig. 2). Strain
B856, chosen for genome sequencing, was made axenic by treat-
ment with antibiotics (Supporting Information Methods S1).
RNA-seq reads used to produce the de novo transcriptome were
obtained from strains Sy373, Sy379, B856 and B857 (Fig. 2e).
For the differential expression studies, strains B856, B857 and
B938 were used with B936, B937 and B939, isolated from the
LTER (Long TERm) station MareChiara (40°48.50N, 14°150E).
Cultures were kept at a temperature of 18°C, irradiance of
80 lmol photons m�1 s�1 and in a 12 h : 12 h light : dark pho-
toperiod.

Genome sequencing and assembly

B856 cells were collected onto 1.2-lm pore-size membrane filters
(RAWP04700 Millipore) and DNA was extracted with phenol–
chloroform as described in Sabatino et al. (2015). The
P. multistriata genome was assembled from a total of 172 million
101-bp overlapping paired-end reads with c. 175-bp inserts, 117
million 100-bp paired-end reads with c. 450-bp inserts, 72 mil-
lion c. 68-bp (after trimming) mate pair reads with c. 1.2-kb
inserts and 5.4 million c. 156-bp (after trimming) mate pair reads
with c. 4.5-kb inserts. Mate pair libraries were processed by
NEXTCLIP to remove adapters. Depending on the library, the
genome size was estimated to be between 71 and 82Mb using
SGA preqc. Reads from libraries exceeding 1009 coverage were
randomly subsampled to 1009 and then assembled into scaffolds
by ALLPATHS-LG (Gnerre et al., 2011) via RAMPART (Mapleson
et al., 2015). The completeness of the genome was evaluated
using CEGMA with the set of 248 core eukaryotic genes (CEGs)
(Parra et al., 2007). The assembly (accession number
PRJEB9419) can be visualized at http://apollo.tgac.ac.uk/Pseud
o-nitzschia_multistriata_V1_4_browser/sequences (username
and password: pnitzschia).

Gene prediction and annotation

Protein-coding genes were predicted using a workflow incorpo-
rating RNA-seq reads, homologous proteins from P. tricornutum,
T. pseudonana and a de novo P. multistriata transcriptome assem-
bly. RNA-seq reads were combined from four different libraries
(samples: B856, libraries HCUO and HCUH; B857, libraries
HCUN and HATT; available at http://genomeportal.jgi.doe.
gov/pages/dynamicOrganismDownload.jsf?organism=Psenittra
phaseII) and assembled de novo. The transcripts generated were
used as training data for AUGUSTUS (Stanke et al., 2006). The
model built on the training data was applied to the entire repeat
masked assembly, together with external support from homolo-
gous proteins aligned using EXONERATE (Slater & Birney, 2005).
The predicted gene models were annotated using ANNOCRIPT

(Musacchia et al., 2015).
Repeats were identified using REPET. The TEDENOVO pipeline

(Flutre et al., 2011) was used to build a library of consensus
sequences of repetitive elements in the genome assembly. The
TEANNOT pipeline (Quesneville et al., 2005) was employed with
default settings using the sequences from the filtered combined
library as probes to perform genome annotation.

Full-length complete long terminal repeats (LTRs) were iden-
tified using LTRHARVEST and LTRDIGEST (Gremme et al.,
2013). The relative age of LTR insertion was estimated using the
method proposed in previous studies (Kimura, 1980).

The statistics for the genomic features in Table 1 were
extracted from the GFF files using shell scripts and the
BEDTOOLS package (Quinlan, 2014). The genome size, N50 value
and GC content were taken from the respective publications (Arm-
brust et al., 2004; Bowler et al., 2008; Cock et al., 2010; L�evesque
et al., 2010; Lommer et al., 2012; Tanaka et al., 2015; Mock et al.,
2017).

Identification of CNEs

The public genomes of sequenced diatoms were aligned pair-
wise against the reference P. multistriata genome with LASTZ.
Utilities from the University of California Santa Cruz (UCSC)
genome browser source code tree (Speir et al., 2016) were used
to generate NET alignments from the raw pairwise
alignments.

The pairwise NET alignments in MAF format were combined
into a single diatom NET alignment file using the roast binary
from the MULTIZ package (Blanchette et al., 2004) with
P. multistriata as reference. Custom PERL scripts were used to scan
the diatom NET alignment to identify conserved intergenic blocks
(window, 20 bp; step, 10 bp) which do not overlap gene/expressed
sequence tags in the species conserved. Searches for transcription
factor binding sites were performed using JASPAR 2014 (Mathelier
et al., 2014).

Expansion of gene families in P. multistriata

Proteomes of Stramenopiles were compared against hidden
Markov models (HMMs) of protein families classified in the
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SUPERFAMILY database (Wilson et al., 2009). The compar-
ison was performed using Perl scripts provided by the
SUPERFAMILY database (http://supfam.cs.bris.ac.uk/SUPER
FAMILY/howto_use_models.html) and the hmmscan binary
from HMMER3 (Eddy, 1995). For each SUPERFAMILY
present in P. multistriata, a Z-score was calculated using the
following formula (no. of SUPERFAMILY genes in P. multist
riata –mean no. of SUPERFAMILY genes in all proteomes)/
SD of SUPERFAMILY genes in all proteomes.

Identification of gene families by clustering of protein
sequences

An All vs All BLASTp search was performed on the combined
FASTA file of proteomes from bacteria, archaea and 50 eukary-
otes. The results of the BLASTp search were provided to the
orthAgogue software (Ekseth et al., 2014) for the estimation of
homology between the protein sequences. The ‘abc’ format
output from ORTHAGOGUE was given to the MCL software

Fig. 2 Main features of Pseudo-nitzschia multistriata and its genome. (a, b) Microscopic images showing three cells in a chain in a normal culture with
bacteria, in bright field and fluorescence, respectively, and (c, d) four cells in an axenic culture without bacteria. DAPI (40,6-diamidino-2-phenylindole)
stains DNA in cell nuclei (arrowheads) and bacterial nucleoids (thin arrows). Bars, 10 lm. (e) Pseudo-nitzschia multistriata pedigree showing four
generations. Strain B856 was used to produce the genome sequence. (f) Estimation of species divergence based on amino acid identity of coding genes.
The x-axis represents the average percentage identity of BLASTp hits with maximum scores for the first species against the second. The y-axis represents
the cumulative proportion of the genes showing a given percentage identity. (g) Distribution of percentage identity for noncoding elements conserved
between Pseudo-nitzschia species (light blue dots), among P. multistriata, Pseudo-nitzschia multiseries and Fragilariopsis cylindrus (red dots) and in other
combinations. The x-axis represents the identified conserved noncoding elements, stacked for best visualization of their distribution of conservation.
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(Enright et al., 2002) for clustering of the proteins into homol-
ogous groups.

Estimation of gene family gains and losses in Stramenopiles

Clusters containing only one-to-one orthologues of each stra-
menopile species (85 clusters, considering 13 species mentioned
in the ‘Expansion of gene families in P. multistriata’ subsection)
were chosen to generate the species tree for Stramenopiles using
MAFFT (Katoh & Standley, 2013).

The alignments were concatenated and trimmed with trimAl.
ProtTest (Darriba et al., 2011) was then run on the trimmed con-
catenated alignment to determine the best amino acid substitu-
tion matrix to generate a phylogenetic tree based on the Bayesian
Information Criterion score. The identified model was employed
to generate the phylogenetic tree using a maximum likelihood
and a Bayesian approach employing RAXML and MRBAYES (Sta-
matakis, 2006). In both approaches, Blastocystis hominis was used
as outgroup. Protein clusters with at least one member from any
stramenopile species were identified to obtain 28 927 clusters.
For each stramenopile species, a binary code was established stat-
ing the presence or absence of the species in each cluster. The
binary file, together with the maximum likelihood tree, was sub-
jected to DOLLO parsimony analysis using the PHYLIP package
(Felsenstein, 1989). The topologies of the maximum likelihood
and Bayesian trees were compared with treedist from the PHYLIP

software, indicating an identical topology.

Identification of genes acquired from red algae and by HGT
from bacteria in P. multistriata

Identification of HGT events in P. multistriata was performed
with the following steps: identification of protein clusters con-
taining at least one P. multistriata protein; building of a multiple
alignment for each cluster using MAFFT (Katoh & Standley,
2013); trimming of columns with ≥ 95% gaps in the alignment
generated using TRIMAL (Capella-Guti�errez et al., 2009); genera-
tion of a phylogenetic tree using FASTTREE.

Phylogenetic trees for each cluster were parsed to identify genes
of potential bacterial origin using the following criteria: identifica-
tion of a clade represented in the majority by bacteria, archaea
and diatoms (≥ 90%) without members from metazoa, plantae or
fungi; bootstrap cut off at the clade of interest ≥ 0.5 or if the
average bootstrap value for the tree is ≥ 0.5 (if one of the boot-
strap values is ≤ 0.5, the tree is still retained (if other filters are
passed) as a candidate with medium confidence); to add further
stringency to the analysis, at least five bacterial members must be
present in the clade of interest (10 when P. multistriata is the only
eukaryote in the clade) to avoid false positives as a result of mis-
placement of a single protein within the clade of another taxon,
which can be caused by issues such as long branch attraction.

Co-culture experiments

Three independent co-culture experiments were performed, two
for RNA-seq (MT+B856xMT-B939 and MT+B938xMT-B857)

and one for quantitative PCR (MT+B937xMT-B936). A
bipartite glass apparatus (Duran flasks; VWR, Dresden, Ger-
many) (Paul et al., 2012) was used for the co-culture of strains of
opposite MTs. A 0.22-lm pore size hydrophilic polyvinylidene
fluoride membrane (Durapore, Millipore) was placed in between
the bottles to keep the cells separate. Control parental strains
were grown in monoculture. The cell concentration was
80 000 cells ml�1 for each strain. The cells were grown in f/2
medium (Guillard, 1975). A 36-h dark incubation was employed
to synchronize the cultures. Samples were collected 2 and 6 h
after the start of the experiment. Fifty-millilitre samples were cen-
trifuged, resuspended in cold methanol and stored at �20°C.
They were resuspended in Tris-EDTA buffer, treated with RNase
I (300 lg ml�1) for 45 min and stained with SYBR Green
(1 : 10 000 dilution of SYBR® Green I – 10 0009 concentrate,
Invitrogen) for 15 min. Cell cycle synchronization was verified
with a FACSCalibur flow cytometer (Becton Dickinson Bio-
Sciences Inc., Franklin Lakes, NJ, USA) with standard filters and
a 488-nm Ar laser. SYBR Green fluorescence (DNA) was col-
lected through 530� 30-nm optical filters in order to assess the
percentage of cells in the different cell cycle phases. Control cells
always presented a bimodal distribution of SYBR Green fluores-
cence, allowing the assessment of cell cycle blockage (one peak)
in treated samples. Sample acquisition was realized using BD
CELLQUEST software, and the relative proportions of cells in the
different phases of the cell cycle were assessed using ModFit soft-
ware (Verity Inc., Palo Alto, CA, USA).

RNA extraction and sequencing

Samples were collected on 1.2-lm pore size membrane filters
(RAWP04700 Millipore) and extracted with TrizolTM (Invitro-
gen) according to the manufacturer’s instructions; the gDNA
contamination was removed by DNase I treatment (Qiagen), fol-
lowed by purification using an RNeasy Plant Mini Kit (Qiagen).
RNA quantity was determined using a Qubit® 2.0 Fluorometer
(Life Technologies, Thermofisher, Waltham, MA, USA) and
integrity using a Bioanalyzer (2100 Bioanalyzer Instruments, Agi-
lent Technologies, Santa Clara, CA, USA).

Libraries were prepared using a Beckman Biomek FX and an
Illumina® TruSeq® Stranded Total RNA Sample Preparation kit,
with poly-A selection and starting with 500 ng of total RNA.
Samples were sequenced on an Illumina HiSeq2000 producing
single-end 50-bp reads. Library preparation and sequencing were
performed at the Genecore Facility of the European Molecular
Biology Laboratory (EMBL), Germany.

RNA-seq filtering, mapping and differential expression
analysis

The raw sequencing reads were processed with TRIMMOMATIC

(Bolger et al., 2014) to trim low-quality bases and adapters
and to filter reads with low quality and smaller than 36 bases.
The STAR aligner (Dobin et al., 2013) was used to map the
filtered reads onto the P. multistriata genome. The AUGUSTUS

gene models were associated with the mapped reads from each
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sample to generate raw counts for each gene as a measure of
their expression level. EDGER (Robinson et al., 2010) was used
to obtain the differentially expressed genes. In brief, general-
ized linear models were used to estimate dispersion consider-
ing multiple factors (MT, control/sexualized and species
strain), whereas a more classical negative binomial distribution
was used to compare only the control and sexualized stages
independently in each MT.

For quantitative PCR validation, total RNA was extracted
from samples collected at 6 h. One microgram of total RNA was
reverse transcribed using a QuantiTect® Reverse Transcription
Kit (Qiagen). Nineteen genes were selected (Table S1). TUB-A
(Adelfi et al., 2014) was used as reference. Real-time PCR ampli-
fication and analyses were performed as described in Patil et al.
(2015).

Identification of homologous genes and Ka : Ks analysis

The analysed data included 12 152 and 19 703 coding DNA
sequences (CDSs) of P. multistriata and Pseudo-nitzschia
multiseries (Psemu1, downloaded from the Joint Genome Insti-
tute (JGI)), respectively. As a first step, a reciprocal best BLAST hit
(RBH) was used to identify P. multistriata and P. multiseries
orthologues. Only alignments covering at least 30% of
P. multistriata sequences were retained. The analysis identified
7128 reciprocal best BLAST hits. Next, each pair of sequences was
aligned with PRANK (L€oytynoja, 2014) using the empirical codon
model, and the alignments were refined using TRIMAL (Capella-
Guti�errez et al., 2009). Of the 7128 alignments, 6066 were suit-
able for Ka : Ks calculation. Ka : Ks calculation was performed
with KaKs_Calculator (Wang et al., 2010); the model for the cal-
culation was chosen for each alignment using the corrected
akaike information criterion (AICc) model selection method.

An extended version of the methods can be found in
Methods S1.

Results and discussion

The P. multistriata genome sequence and first identification
of CNEs in diatoms

To sequence the genome of P. multistriata, we used a strain
derived from the cross of two siblings, grown under axenic condi-
tions (Fig. 2a–e). The sequencing and assembly yielded a genome
of 59Mb composed of 1099 scaffolds with an N50 of 139 kb.
Estimated heterozygosity was 0.18% and the distribution of allele
frequencies peaked at c. 0.5, indicating a diploid clonal strain. A
total of 99.5% of variable sites presented two alleles; only c. 500
of c. 110 000 variable sites showed more than two alleles, mainly
associated with repeats and noncoding regions. A total of 12 008
genes were predicted on the assembled scaffolds. The regions
comprising coding genes accounted for 50% of the genome,
where c. 80% of genes (9653 genes) were assigned a UNIPROT ID
and an additional 214 genes were exclusively annotated for the
presence of a protein domain. Estimation of genome completion
by CEGMA identified 221 (89.11%) of CEGs as complete and an

additional seven CEGs (3%) as partial, indicating a high-quality
genome assembly and gene build. The statistics and features of
the genome assembly and gene prediction for P. multistriata and
selected Stramenopiles are summarized in Table 1 and Fig. S1.

Sequence conservation at the amino acid level can be a poten-
tial indicator of species divergence; hence, we used the sequence
homology between species with known evolutionary history to
estimate the divergence within diatom genomes (Fig. 2f). Consis-
tent with its known phylogenetic relationships (Kooistra et al.,
2007), P. multistriata shows maximum amino acid identity with
the congeneric species P. multiseries, followed by the phylogeneti-
cally close F. cylindrus and then by the more distant
P. tricornutum. The group of raphid pennates to which the four
species belong is thought to have evolved c. 60 million yr ago
(Ma) (Kooistra et al., 2007). Yet, the divergence of these diatom
pairs is comparable with that between eukaryotic pairs known to
have separated earlier (Plasmodium falciparum and P. vivax,
reported to have separated c. 90–100Ma (Perkins & Schall,
2002); Arabidopsis thaliana and Physcomitrella patens, with flow-
ering plants reported to have diverged from the bryopsids c.
400–450Ma (Rensing et al., 2008)), confirming the rapid
evolutionary rates in diatoms (Bowler et al., 2008).

In comparison with coding genes, the noncoding part of
diatom genomes remains vastly unexplored, with no precise
information on noncoding regions that might act as regulatory
elements, as reported in animals, plants and unicellular eukary-
otes (Vavouri et al., 2007; Piganeau et al., 2009; Haudry et al.,
2013). Here, we take a first step towards the identification and
classification of CNEs in diatoms using a comparative genomic
approach centred on P. multistriata. CNEs play a role in the reg-
ulation of gene expression, often being part of promoters or
enhancers (Woolfe et al., 2005). We identified a core set of c.
1500 CNEs in the genome of P. multistriata (mean length,
110 bp; mean identity, 73%; Table S2) when compared with
other diatom genomes. As expected, the majority of the pre-
dicted CNEs (93%, 1462 CNEs) were conserved exclusively
between the Pseudo-nitzschia species (Fig. 2g). A smaller subset
of c. 50 CNEs was conserved between Pseudo-nitzschia species
and F. cylindrus (26), between P. multistriata and P. tricornutum
(15), and between P. multistriata and T. pseudonana (10,
Fig. 2g), suggesting functional constraints leading to noncoding
conservation over large evolutionary distances. The predicted
CNEs showed a significant enrichment to be located near tran-
scription start sites (TSSs) (Student’s t-test, P = 0.0034;
Fig. S2a), indicating that they are probably involved in tran-
scriptional regulation. Genes associated with the gene ontology
(GO) molecular function terms ‘signal transducer activity’ and
‘sequence-specific DNA binding transcription factor activity’ were
enriched in loci containing CNEs (Fisher test, P ≤ 0.05), further
supporting the functionality of the CNE. In addition, a signifi-
cant enrichment of transcription factor binding sites of major
transcription factor families was observed in CNE sequences
compared with that observed in random sequences of similar
size (Fig. S2b–d; Table S3). Thus, the proximity to genes related
to the regulation of transcriptional control, together with the
binding site propensity for transcription factors, corroborate
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previous reports which indicate that CNEs are often involved in
the regulation of transcription (Inada et al., 2003; Sanges et al.,
2013), and provide evidence in support of their functionality in
diatoms.

Approximately 25% of the P. multistriata genome comprises
repetitive elements, 8% of which are in genic regions and 92% of
which are in intergenic regions. The repetitive element coverage
is significantly higher than that of other diatoms (6.4% in
P. tricornutum and 1.9% in T. pseudonana). Of the known classes
of repetitive elements, LTR retrotransposons were the most
abundant group of annotated repeats (6%) (Fig. S3a–c), similar
to previous reports in other diatoms (Maumus et al., 2009), as
well as other Stramenopiles (Cock et al., 2010; Ye et al., 2015),
yeast (Bleykasten-Grosshans & Neuv�eglise, 2011) and some
flowering plants (Bennetzen, 2005). To investigate the role of
LTRs in shaping the genomic structure of P. multistriata, a
de novo search specific for complete LTR elements was performed
in the genomes of five diatoms and that of Oryza sativa. Intact
retroelements have a built-in molecular clock useful for estimat-
ing their insertion times, based on sister LTR divergence. Pseudo-
nitzschia species have, on average, older insertions of LTR ele-
ments (45% insertions in the last 0.5 Mya) with respect to
F. cylindrus, P. tricornutum and T. pseudonana (80%, 65% and
61% insertions in the last 0.5 Mya, respectively) (Table S4), indi-
cating an earlier expansion of LTR retroelements in the Pseudo-
nitzschia genus. However, LTR elements of the Copia lineage
also showed a recent burst of activity, suggesting that they might
still be active in generating genetic variability in Pseudo-nitzschia,
as shown in P. tricornutum (Maumus et al., 2009) (Fig. S3d).

High-resolution phylogenomic analyses define gene family
expansions, gene gains and HGT in diatoms

Lineage-specific gene duplications, losses and pseudogenization,
together with genome rearrangements and horizontal transfer of
genes between species, have paved the way for the evolution of
diversity (Koonin, 2010).

In order to identify gene family expansions in diatoms, we
compared the proteomes of 13 Stramenopiles (including five
diatoms) against the collection of gene families from the
SUPERFAMILY database. In total, 11 families showed expan-
sion within the diatom lineage (Fig. 3; Table S5); none was
P. multistriata specific. We confirmed an expansion of a gene
family (pseudouridine synthase) (Fig. 3a) reported to be expanded
in the P. tricornutum genome (Bowler et al., 2008) and found
specific expansion events within the order Bacillariales (Fig. 3a).

In addition to gene family expansions, gene family gains and
losses also contribute to the evolution and diversification of
species. A study on the Ectocarpus genome showed large-scale gene
gains and losses within Stramenopiles, where lineages giving rise
to multicellularity were reported to show a high rate of evolution
of new gene families (Cock et al., 2010). Until a few years ago,
the limited availability of sequenced genomes resulted in a lack of
resolution to identify gene gain/loss events during the divergence
of Stramenopiles. Taking advantage of the latest sequenced
genomes, we were able to use c. 2 million protein sequences fromT
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(a)

(b)

(c)

Fig. 3 Evolution of gene families in diatoms. (a) Expansion of gene families within diatoms. Each column represents a stramenopile species and each row
represents a given gene family showing expansion within diatoms as compared with other Stramenopiles. Names of diatom species are given in red,
whereas names of other Stramenopiles are given in blue. The colour intensity and size of the circles are proportional to the number of genes falling under
the given gene family. (b) A species tree of Stramenopiles derived using a maximum likelihood approach, built using 85 genes showing one-to-one
orthology among the selected species. The selected genes include genes with a wide range of functions. Branch lengths are drawn to scale. At each branch
point, the number of gene family gains and losses is indicated in green and brown, respectively. The number of orphans present in each organism is shown
in blue. (c) Phylogenetic tree for a cluster containing proteins annotated with an uncharacterized cystatin-like domain, conserved in bacteria. The tree
topology depicts a potential horizontal gene transfer event which led to the introduction of the gene within diatoms. The regions coloured red, blue and
green represent bacteria, diatoms and other Stramenopiles, respectively. Species codes used in the tree: ecsi, Ectocarpus siliculosus; naga, Nannochloropsis
gaditana; symi, Symbiodinium minutum; psmu, Pseudo-nitzschia multistriata; psmus, Pseudo-nitzschia multiseries; frcy, Fragilariopsis cylindrus; phtr,
Phaeodactylum tricornutum; thps, Thalassiosira pseudonana; chre, Chlamydomonas reinhardtii; chva, Chlorella variabilis; BODB suffix is used for all
bacterial species. For the correspondence between protein IDs used in this tree and GenBank IDs, see Supporting Information Methods S1.
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organisms spanning the tree of life (50 eukaryotes, 1000 bacteria,
170 archaea; Table S6) to infer, at an unprecedented resolution,
gene gains/losses in diatoms. Phylogenetic clustering analysis gen-
erated c. 240 000 clusters of putative homologous proteins, 8113
of which contained 9122 P. multistriata proteins. Approximately
26% (2886 singlets + 241 genes in 109 clusters) of the
P. multistriata proteome was predicted to be orphan (P. multistri-
ata-specific) (Fig. S4), which is slightly less than that reported for
other diatoms (P. tricornutum, 35%, Bowler et al., 2008;
T. pseudonana, 29%, Armbrust et al., 2004) and similar to esti-
mates deriving from transcriptomic data (Di Dato et al., 2015).
Based on these data, we built a comprehensive species tree for 13
Stramenopiles by concatenating the alignments of 85 clusters of
one-to-one orthologues conserved across the 13 species. The
species tree topologies generated independently by maximum
likelihood and Bayesian inference were identical and supported
by bootstrap values > 90 at all branch points (Fig. 3b). The tree
topology is congruent with a previous report (Yang et al., 2012),
except for Aureococcus anophagefferens and diatoms forming a
monophyletic group separated from the other Stramenopiles
(Ectocarpus siliculosus and Nannochloropsis gaditana). Interest-
ingly, a similar topology has been obtained recently using chloro-
plast genomes to infer phylogeny (�Sev�c�ıkov�a et al., 2015),
suggesting, in accordance with our results, a comparatively more
recent split of pelagophytes and diatoms than previously esti-
mated (Gobler et al., 2011). We then performed a Dollo parsi-
mony analysis considering the presence/absence profiles of the
identified protein clusters within the produced stramenopile
species tree. Only those clusters containing at least one stra-
menopile member were considered (c. 27 000 clusters). We
observed large-scale gene family gain and loss events (Fig. 3b),
suggesting a high order of genetic diversity among the species
compared. A large number of orphan gene families were predicted
for each species, confirming extensive species-specific gains and/or
rapid gene divergence as a major feature of stramenopile genomes.
We then performed a GO term enrichment analysis on the subset
of gene families gained at particular branch points (Figs 3b, S5).
Although gene families significantly gained by autotrophic Stra-
menopiles (lower clade in Fig. 3b) were mostly related to photo-
synthesis (Fig. S5a), gene families associated with terms such as
‘mitotic cell cycle spindle assembly check point’, ‘synaptonemal
complex assembly’ and ‘G protein-coupled receptor signalling
pathway’ were enriched in Pseudo-nitzschia species and
F. cylindrus, suggesting that potential novel mechanisms evolved
in these diatoms to regulate cell division and, possibly, sexual
reproduction (Fig. S5b).

The clusters of homologous genes produced were then used
for the identification of putative HGT events from bacteria to
diatoms. A total of 32% of the P. multistriata genes were placed
in clusters containing putative orthologues from bacteria, red
algae, plants, fungi and metazoans. Among these, genes falling
exclusively within clusters dominated by bacterial genes might
reflect ancient HGT events from bacteria to diatoms. We identi-
fied 392 P. multistriata proteins showing homology exclusively
with bacteria (Fig. S6). To refine these results, we developed a
stringent classification method which, starting from the clusters

of orthologous proteins, generated > 9000 phylogenetic trees
containing at least one P. multistriata protein and, based on the
topology of each tree, predicted 252 genes of bacterial origin
specifically within diatoms. This is < 50% of the number of genes
reported to be of bacterial origin in P. tricornutum (587 genes)
(Bowler et al., 2008) and more than a previous estimate at lower
resolution (Lommer et al., 2012). Repeating the analysis consid-
ering HGT events within Stramenopiles and the SAR supergroup
(Stramenopiles, Alveolates and Rhizaria), we predicted 353 and
438 P. multistriata genes of potential bacterial origin, respec-
tively. We conclude that the detailed taxonomic resolution intro-
duced in our study allowed for the filtering of candidate genes
previously considered to be of bacterial origin via HGT because
of a lack of data from related species at the time of analysis. The
252 genes predicted to be of bacterial origin are proposed as a
conservative set of genes introduced in the diatom lineage
through HGT (Table S7). They are smaller in size than average
(t-test; P value for gene length, 1e-04; P value for exon length,
1.4e-05), with no significant difference in the number of exons/
gene (Mann–Whitney test, P = 0.48) and length of introns (t-
test, P = 0.24) (Fig. S7). These genes are enriched for GO terms
involved in processes such as ‘energy metabolism’, ‘oxidative stress
response’ and ‘substrate transport’ (Fig. S8; P < 0.05). In support of
our results, the ‘quinone oxidoreductase’ (PSNMU-V1.4_AUG-
EV-PASAV3_0025570.1) was already known to be derived from
HGT in diatoms (Nosenko & Bhattacharya, 2007). In addition,
a significant difference (t-test, P = 0.014) in the GC content for
HGT genes compared with all P. multistriata genes supports their
foreign origin (Garcia-Vallv�e et al., 2000) (Fig. S9). Twenty-four
HGT events are specific to the Pseudo-nitzschia genus; an exam-
ple is shown in Fig. 3(c).

Apart from bacteria, 123 genes in P. multistriata were classified
to be of red algal origin (Table S8), consistent with the notion
that diatom progenitors originated from an ancient secondary
endosymbiosis event involving a red alga and a heterotrophic
eukaryote (Bowler et al., 2010).

Global gene expression changes at the onset of the sexual
phase highlight a stronger response in MT� cells

We exploited the controllable life cycle of P. multistriata to
investigate the changes occurring in diatom cells in a key phase
of their life cycle (Fig. 4). To study gene expression changes
induced by the perception of chemical cues deriving from the
mating partner, each of two P. multistriata strains was placed in
one compartment of an apparatus that allowed free exchange of
the medium, but not physical contact between the cells
(Fig. 4a). Sampling times were 2 h (T1) and 6 h (T2) after co-
culture, the time at which the two MTs are sensing each other
(black arrows in Fig. 1; Fig. S10; Table S9). Interestingly,
although control strains in an isolated monoculture continued
to progress through the cell cycle, cells of both MTs in the
experimental set-up arrested their cell cycle in the G1 phase
(Fig. 4b). Previous observations over a longer period of time
(14 d, Scalco et al., 2014) have revealed a marked decrease in
growth of P. multistriata cultures undergoing sexual
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reproduction. The occurrence of growth arrest concomitantly
with sexual reproduction is known in yeast, where the cell cycle
is arrested in G1 as a consequence of pheromone signalling
(Wilkinson & Pringle, 1974). One of the roles of pheromones
is indeed cell synchronization to release gametes, simultaneously
increasing the success of sexual reproduction (Frenkel et al.,
2014). A total of 1112 genes (9% of the total P. multistriata
genes) were differentially expressed in any of the comparisons
(all sexualized vs all control samples, MT+ sexualized vs MT+
controls, and MT� sexualized vs MT� controls) (Tables S10,
S11). A larger number of genes appeared to be regulated in
MT� compared with MT+ (596 in MT� and 182 in MT+,
Fisher test, P < 0.01) (Table S12). In a cross, both MTs behave
similarly (most of the cells arrest their growth and only a small
fraction, c. 20%, undergo meiosis; Scalco et al., 2014), and the

gametes produced are morphologically indistinguishable
(Fig. 1). However, microscopic and time-lapse observations have
shown that the P. multistriata MT� cell in a pair undergoes
meiosis, on average, 30 min earlier than the MT+ cell (Scalco
et al., 2016). This observation suggests that the general response
of the cells to pheromones is slightly out of phase, with MT�
cells initiating the process earlier than MT+ cells, and this
partly explains the different gene expression profiles between
MT+ and MT�. In addition to this asynchrony, other MT-
specific changes can be explained by the fact that each of the
two MTs secretes specific pheromones, produced by different
mechanisms and triggering MT-specific responses. Signalling
involving multiple molecules has been demonstrated for
S. robusta (Moeys et al., 2016) and postulated for
Pseudostaurosira trainorii (Sato et al., 2011). In S. robusta, the

(a)

(b)

(c)

(d)

Fig. 4 Cell cycle and gene expression changes in the early stages of sexual reproduction. (a) Co-culture glass apparatus containing cultures of opposite
mating type (MT) separated by a membrane held by a metal ring (black arrowhead), and control bottles containing each of the two MTs. (b) Cell cycle
phases of MT+ and MT– control (grey) and sexualized (green) samples represented by the relative percentage of cells in G1 (upper) and S +G2 +M (lower)
phases, at the beginning of the experiment (0) and 2 and 6 h later. Whiskers in the boxplot extend to � 1.59 interquartile range (IQR). (c) Plot showing
the logFC (fold change) (y-axis) of genes differentially expressed, ordered according to the logCPM (counts per million) on the x-axis. (d) Percentage of
orphan genes and gene gains in the set of genes differentially expressed at the onset of the sexual phase in Pseudo-nitzschia multistriata compared with
the percentages of the same classes in the entire gene set.
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compound diproline acts as an attraction pheromone (Gillard
et al., 2013), whereas the molecule SIP+, secreted by MT+ cells,
triggers both cell cycle arrest and diproline production in MT�
cells (Moeys et al., 2016).

Genes differentially expressed during sexual reproduction
are involved in signalling, metabolism, nutrient transport
and meiosis

The largest fraction of genes was found to be regulated in both
MTs at T2 (Fig. 4c), where we observed a general tendency to
downregulate genes encoding nutrient transporters, such as sili-
cate (PSNMU-V1.4_AUG-EV-PASAV3_0083020.1),

ammonium, nitrate/nitrite and formate transporters (Tables 2,
S10), suggesting that the cells, once the sexual phase is initiated,
modulate their nutrient uptake. Interestingly, two P. multistriata
genes with significant homology to the P. tricornutum diatom-
specific cyclins dsCYC5 and dsCYC4 were downregulated at T2
(Tables 2, S10). Phaeodactylum tricornutum dsCYC5 is known to
respond to phosphate addition and is supposed to be involved in
signal integration to regulate the cell cycle, whereas dsCYC4 is
involved in the perception of growth stimuli (Huysman et al.,
2013). In our experiment, we used nutrient-replete medium, and
it is unlikely that the cells suffered from nutrient limitation after
only 6 h of treatment. Thus, the downregulation of nutrient
transporters and cyclins involved in sensing the nutritional status

Table 2 Selection of genes differentially expressed in Pseudo-nitzschia multistriata cells 6 h after chemical contact of opposite mating types (MTs)

Pathway/process GeneModel ID Gene description logFC

ABC transporters PSNMU-V1.4_AUG-EV-PASAV3_0056660.1 ATP-binding cassette, subfamily B (MDR/TAP), member 1 2.14
Cell cycle and meiosis PSNMU-V1.4_AUG-EV-PASAV3_0056780.1 DNA repair protein RAD51 homologue 1, RAD51-A1a 7.60

PSNMU-V1.4_AUG-EV-PASAV3_0104040.1 DNA repair protein RAD51 homologue 3, RAD51-Ca 2.86
PSNMU-V1.4_AUG-EV-PASAV3_0089060.1 Pds5a 1.95
PSNMU-V1.4_AUG-EV-PASAV3_0102810.1 Structural maintenance of chromosomes protein 5 2.02
PSNMU-V1.4_AUG-EV-PASAV3_0079810.1 Structural maintenance of chromosomes protein 3 1.67
PSNMU-V1.4_AUG-EV-PASAV3_0116990.1 Structural maintenance of chromosomes protein 1 2.60
PSNMU-V1.4_AUG-EV-PASAV3_0072170.1 Cohesin complex subunit SCC1 (RAD21) 2.07
PSNMU-V1.4_AUG-EV-PASAV3_0079350.1 Cohesin complex subunit SA-1/2 (SCC3) 2.49
PSNMU-V1.4_AUG-EV-PASAV3_0081540.1 G2/mitotic-specific cyclin S13-6 (dsCYC5) �1.66
PSNMU-V1.4_AUG-EV-PASAV3_0095090.1 Cyclin-B2-2 (dsCYC4) �2.14

Nitrate metabolism PSNMU-V1.4_AUG-EV-PASAV3_0102470.1 Ferredoxin-dependent glutamate synthase 2 �1.88
PSNMU-V1.4_AUG-EV-PASAV3_0012680.1 Ammonium transporter 1, member 5 �2.01
PSNMU-V1.4_AUG-EV-PASAV3_0048930.1 Nitrate/nitrite transporter NarU �1.88

Transcription factors PSNMU-V1.4_AUG-EV-PASAV3_0036500.1 Transcription factor SKN7 �2.63
PSNMU-V1.4_AUG-EV-PASAV3_0061620.1 Transcriptional activator Myb �2.31

Protein processing PSNMU-V1.4_AUG-EV-PASAV3_0032180.1 Major intracellular serine protease �1.96
Receptor like PSNMU-V1.4_AUG-EV-PASAV3_0028550.1 Probable leucine-rich repeat receptor-like

protein kinase At2g33170
2.39

PSNMU-V1.4_AUG-EV-PASAV3_0087210.1 Probable leucine-rich repeat receptor-like
protein kinase At1g35710

�1.84

PSNMU-V1.4_AUG-EV-PASAV3_0079570.1 Receptor-like protein kinase 5 �1.83
PSNMU-V1.4_AUG-EV-PASAV3_0113140.1 Probable leucine-rich repeat receptor-like

serine/threonine protein kinase At4g08850
�1.70

PSNMU-V1.4_AUG-EV-PASAV3_0039440.1 Receptor-like protein kinase HSL1 �1.69
PSNMU-V1.4_AUG-EV-PASAV3_0029550.1 Leucine-rich repeat receptor-like serine/threonine

protein kinase GSO2
�1.62

PSNMU-V1.4_AUG-EV-PASAV3_0018920.1 Somatic embryogenesis receptor kinase 1 �1.52
PSNMU-V1.4_AUG-EV-PASAV3_0055410.1 Probable leucine-rich repeat receptor-like

serine/threonine protein kinase At4g26540
�2.32

PSNMU-V1.4_AUG-EV-PASAV3_0055070.1b Probable leucine-rich repeat receptor-like
protein kinase

�2.41
PSNMU-V1.4_AUG-EV-PASAV3_0055080.1b

Signalling PSNMU-V1.4_AUG-EV-PASAV3_0051110.1 Soluble guanylate cyclase 88E 6.30
Miscellaneous PSNMU-V1.4_AUG-EV-PASAV3_0102760.1 Protein aardvark (adhesion protein) 6.09

PSNMU-V1.4_AUG-EV-PASAV3_0112340.1 Tetratricopeptide (TPR) repeat-containing proteinc

(protein–protein interactions)
2.94

PSNMU-V1.4_AUG-EV-PASAV3_0063230.1 Salicylate carboxymethyltransferase 3.50
PSNMU-V1.4_AUG-EV-PASAV3_0078620.1 E3 ubiquitin-protein ligase Nedd-4 3.30

MT-specific
Miscellaneous PSNMU-V1.4_AUG-EV-PASAV3_0041130.1 Heat shock factor protein 3 3.41

PSNMU-V1.4_AUG-EV-PASAV3_0103000.1 Cathepsin D 6.96
PSNMU-V1.4_AUG-EV-PASAV3_0067710.1 TPR repeat-containing proteinc (protein–protein interactions) �2.86

aGene identity defined in Patil et al. (2015).
bGene models to be merged in a single model.
cAutomatic annotation yields nephrocystin.
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suggests the existence of a complex interplay for the integration
of external signals, including mating signals. Upregulation of
genes encoding the cohesin complex (SMC1, SMC3, SCC3,
RAD21; Patil et al., 2015), required to hold sister chromatids
together during the S phase, indicated preparation for meiosis,
which will occur a few hours later (Fig. 1; Scalco et al., 2016).
This was also supported by the simultaneous upregulation of the
meiosis-related genes RAD51-A1, RAD51-C, SMC5, PSD5 and
Smc-containing proteins (Tables 2, S10).

One of the strongest inductions (6.3-fold) was observed
in both MTs for a soluble guanylate cyclase (Tables 2, S10).

Notably, a bifunctional guanylyl cyclase/phosphodiesterase (GC/
PDE) was found to be upregulated in MT� S. robusta cells in
response to the SIP+ pheromone (Moeys et al., 2016). Although
the S. robusta GC/PDE and the P. multistriata guanylate cyclase
show some degree of similarity (25% identity), they are not
orthologues (data not shown). The P. multistriata GC/PDE
homologue (PSNMU-V1.4_AUG-EV-PASAV3_0076150.1)
was also regulated, albeit at a lower level (1.9-fold). Therefore,
through different genes, cyclic guanosine monophosphate
(cGMP) synthesis and downstream activation of signalling are
common responses to pheromone perception.

Fig. 5 Conservation of the genes differentially expressed in the experiments described in this work. Conservation is shown as the presence/absence of a
horizontal line in 52 different species belonging to Prokaryotes, Rhizarians, Chromalveolates, Excavates, Unikonts and Plantae.
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The presence of G protein-coupled receptors (GPCRs), one of
the largest families of cell surface receptors in eukaryotes, has
been reported in P. multiseries (Port et al., 2013), and we also
detected gain of this class in P. multistriata. In the RNA-seq data,
PSNMU-V1.4_AUG-EV-PASAV3_0072880.1, homologous to
GPCR3 (Port et al., 2013), is upregulated, and the inositol phos-
pholipid signalling pathway, which is downstream of GPCRs,
also appears to be employed by P. multistriata cells to transduce
information (Table S10). GPCRs bind many signalling
molecules and our data indicate that they might be involved in
the perception of mating cues in diatoms, as has been reported in
yeast (Alvaro & Thorner, 2016).

The MT� sexualized strain displayed a seven-fold increase in
Cathepsin D, a pepsin-like aspartate protease, which has been
shown to cleave proteins in the extracellular matrix (Handley
et al., 2001). In Saccharomyces cerevisiae, an extracellular peptidase
is involved in the degradation of the pheromone, a process that
helps to align the pheromone gradient to detect the direction of
the nearest mating partner, increasing mating efficiency (Barkai
et al., 1998).

Nineteen genes were selected for quantitative PCR validations
on samples from an independent experiment, and changes were
confirmed for 16 of them (Table S1).

A subset of genes differentially expressed during sexual
reproduction shows lineage-specific evolution

Rapid divergence and positive selection are common for genes
involved in sexual reproduction and can contribute to the estab-
lishment of reproductive isolation (Swanson & Vacquier, 2002).

Our results support this assumption. A significantly higher pro-
portion of genes differentially expressed during the early phases
of sexual reproduction (sensing, Fig. 1) were predicted to be
P. multistriata orphans (35%) or gene gain events in Bacillariales
(20%) with respect to the same proportions in the whole pro-
teome (Fisher test, P < 0.05; Fig. 4d; Tables S13, S14). In addi-
tion, when comparing the average identity between
P. multistriata and P. multiseries orthologues (or between
P. multistriata and other diatoms), genes differentially expressed
in our experiment showed lower conservation with respect to the
entire P. multistriata gene set (Fig. S11).

Furthermore, using our in-depth clustering of P. multistriata
genes with a diverse range of prokaryotes and eukaryotes, we
observed that the majority of non-orphan genes differentially
expressed during the sexual phase were specific to diatoms
(Figs 5, S11e).

The data indicate that a substantial fraction of the differen-
tially expressed genes are diatom specific, Bacillariales specific or
Pseudo-nitzschia specific, or orphans, consistent with the unique-
ness of the diatom life cycle and with the necessity to evolve
species-specific mechanisms to attract and mate with the right
partner.

Reproductive proteins show a tendency to be under positive
selection (Clark et al., 2006). In order to identify the
P. multistriata genes which are under positive selection, we
selected all one-to-one homologues between P. multistriata and
P. multiseries, and calculated the Ka : Ks ratio (number of non-
synonymous mutations/number of synonymous mutations) to
measure their evolutionary divergence (Yang & Bielawski, 2000).
Ka : Ks > 1 indicates a selective advantage to amino acid

Fig. 6 Cell response to sexual cues. Diagrammatic representation of a Pseudo-nitzschia multistriata cell with the principal genes involved in the response to
chemical cues acting at the beginning of sexual reproduction. Green triangles represent upregulation and red triangles downregulation of expression. PLC,
Phospholipase C; DAG, diacylglycerol; PIP2, phosphatidylinositol biphosphate; IP3, inositol trisphosphate; GTP, Guanosine-50-triphosphate; N, nucleus; ER,
endoplasmic reticulum; M, mitochondrion; Ch, chloroplast; G, Golgi; LRR, leucine-rich repeat.
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substitutions in a protein. Of the 6066 homologous pairs identi-
fied (Table S15), 434 were among those regulated during sexual
reproduction and included 11 genes showing a strong positive
selection (Ka : Ks > 1). This group contains six unknown genes,
two peptidases, two leucine-rich repeat (LRR) receptor-like pro-
tein kinases and a putative DNA helicase (Table S15). The next
gene in the list, with a Ka : Ks value of 0.92, is the homologue of
the S. robusta GC/PDE. Further studies will clarify whether any
of these genes has a specific role in recognizing the right mating
partner, avoiding interspecies breeding. Finally, 20 differentially
expressed genes are derived from bacteria by HGT in diatoms
(Table S16); an example (nitrate/nitrite transporter, PSNMU-
V1.4_AUG-EV-PASAV3_0048930.1) is shown in Fig. S12.

A schematic summary of the regulated pathways and functions
in a P. multistriata cell responding to sexual cues is shown in
Fig. 6.

These data provide markers for data mining of metatranscrip-
tomic datasets and will improve our ability to understand and
monitor toxic Pseudo-nitzschia blooms.
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Table S9 Summary statistics of RNA-seq read mapping results
for Pseudo-nitzschia multistriata samples

Table S10 Differential expression analyses of all sexualized sam-
ples vs all control samples, MT+ sexualized samples against MT+
controls, and MT� sexualized samples against MT� controls, at
two different time points

Table S11 LogFC (fold change) and false discovery rate (FDR)
values for all Pseudo-nitzschia multistriata transcripts for the same
conditions as in Table S10

Table S12 Statistics of genes differentially regulated during the
sexualized stage in both mating types at two different time points

Table S13 Differentially expressed genes predicted to be gene
gain events in diatoms post-divergence from Phaeodactylum
tricornutum

Table S14 Differentially expressed genes predicted to be orphan
genes in Pseudo-nitzschia multistriata

Table S15 Rate of evolution of homologous pairs of Pseudo-
nitzschia multistriata and Pseudo-nitzschia multiseries

Table S16 Genes predicted to be introduced via horizontal gene
transfer (HGT) in diatoms, showing differential expression dur-
ing sexual reproduction in Pseudo-nitzschia multistriata
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