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Abstract

Olive oil consumption is beneficial for health as it is associated with a decreased prevalence

of cancer and cardiovascular diseases. Oleic acid is, by far, the most abundant component

of olive oil. Since it can be made through de novo synthesis in animals, it is not an essential

fatty acid. While it has become clear that dietary oleic acid regulates many biological pro-

cesses, the signaling pathway involved in these regulations remains poorly defined. In

this work we tested the impact of an oleic acid-rich diet on hepatic gene expression. We

were particularly interested in addressing the contribution of Liver X Receptors (LXR) in

the control of genes involved in hepatic lipogenesis, an essential process in whole body

energy homeostasis. We used wild-type mice and transgenic mice deficient for both α and

β Liver X Receptor isoforms (LXR-/-) fed a control or an oleate enriched diet. We observed

that hepatic-lipid accumulation was enhanced as well as the expression of lipogenic

genes in the liver of wild-type mice fed the oleate enriched diet. In contrast, none of these

changes occurred in the liver of LXR-/- mice. Strikingly, oleate-rich diet reduced cholestero-

lemia in wild-type mice and induced signs of liver inflammation and damage in LXR-/-

mice but not in wild-type mice. This work suggests that dietary oleic acid reduces cholester-

olemia while promoting LXR-dependent hepatic lipogenesis without detrimental effects to

the liver.

Introduction

Epidemiological studies show that consumption of olive oil rich diet, and more generally Med-

iterranean diet, in which the main component is olive oil, is associated with longevity and a

decreased prevalence of coronary heart diseases, cancers and metabolic syndrome (reviewed
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in [1]). The major fatty acid provided by olive oil is oleic acid or oleate (C18:1 n-9) and it is

known to contribute to the beneficial effects of olive oil consumption [2]. Recently, it has been

shown that dietary oleic acid influences C. Elegans lifespan [3]. However, little is known about

the signaling pathways that may be sensitive to high dietary oleate.

In this work, we aimed at investigating the effects of dietary oleic acid on the regulation of

hepatic gene expression. Indeed, while oleic acid can be synthesized de novo through the activ-

ity of the Stearoyl-CoA desaturase 1 (SCD1), it is clear from results obtained in germline Scd1
KO mice [4–7], liver-specific Scd1 KO mice [8;9] and in mice overexpressing Scd3 [10] that

oleate can contribute to various physiological functions, notably in liver. Dietary olive oil [11]

and oleic acid [12] have been shown to have beneficial effects in different experimental models

of hepatic pathologies termed Non Alcoholic Fatty Liver Diseases (NAFLD) that range from

steatosis to steatohepatitis (NASH). Despite its promoting effect on hepatic lipid accumulation,

oleic acid synthesized de novo also contributes to protect hepatocytes from insulin resistance

[13].

Recently, it has been shown that oleic acid could modulate the activity of Liver X Receptors

(LXR) in human neutrophils [14]. Moreover, LXR activity is sensitive to fatty acids in vitro
[15] and it plays a central role in the hepatic effect of dietary fatty acids on lipogenesis in vivo
[16]. The LXRs are class II nuclear receptors [17]. They are sensitive to oxidized cholesterol

derivatives, the oxysterols, which bind to and activate both LXR isotypes (α, NR1H3 and β,

NR1H2). A rise in oxysterol concentration triggers transcription of LXR target genes. For

instance, LXRα and β regulate genes involved in lipogenesis [18]. LXRα binds to promoters

of lipogenic genes such as Fasn (Fatty acid synthase) [19] or Scd1 [20] and directly promote

de novo fatty acid synthesis. Therefore, pharmacological activation of LXR leads to hepatic

neutral lipid accumulation that is the hallmark of NAFLD [21]. LXRs are also involved in the

reverse cholesterol transport and cholesterol degradation into bile acids. LXR is not only

involved in the excretion of cholesterol [22] but also in the repression in inflammation [23]

and, thereby, may be involved in protecting the liver from insults that may occur in NAFLD

[24].

In this study, we investigated the contribution of LXR to the modulation of lipogenesis,

cholesterol metabolism and inflammation by dietary oleic acid in the liver. We used a nutri-

tional approach in wild-type mice and in transgenic mice lacking the two LXR isoforms

(LXR-/-). We demonstrated that LXR is required for the lipogenic genetic response as well as

the decreased cholesterolemia in response to a diet providing a high content of oleic acid.

Moreover, we identified that, in this process, LXR is protective against lipogenesis-induced

liver inflammation and damage. This work reveals for the first time that LXR contributes to

the effects induced by dietary oleic acid and protects liver from inflammation while inducing

lipogenesis.

Materials and methods

Animals and diets

Eight week-old males LXRα β double deficient mice and their wild-type counterpart with a

mixed C57BL6/129SvJ genetic background were fed ad libitum for 9 weeks a reference diet

(REF) or an oleate-rich diet (OLIV) (pellets prepared by UPAE-INRA, Jouy-en-Josas, France,

replaced twice a week) with free access to water. Diets were isocaloric and contain 5% fat

(w/w). Oils used for experimental diet preparation were grape seed and colza oils (50/50) for

the REF diet and olive oil for the OLIV diet. The composition of the diets and oils are given in

S1 and S2 Tables, respectively. Mice were sacrificed at ZT2. All mice were bred at INRA’s

transgenic rodent facility at 22 ± 2˚C. The animal facilities used are licensed by the relevant
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local authorities for rodents (agreement C31 555 13). All animal experiments were performed

in accordance with the guidelines of European legislation (Council Directive 2010/63/UE) and

French Decree 2013–118 on the protection of animals used for scientific purposes and were

approved by the Local Animal Care and Use Committee (TOXCOM-133) and French Minis-

try of Higher Education and Research (agreement CEEA-86).

Blood and organ sampling

Blood was collected at the submandibular vein in heparin-coated capillaries. Plasma was pre-

pared by centrifugation (1500×g, 10 min) and kept at -80˚C until use. Following euthanasia,

tissues were removed, weighed, dissected, snap-frozen in liquid nitrogen and stored at -80˚C

until use.

Gene expression studies

Total RNA was extracted with TRIzol1 reagent (Invitrogen). For real-time quantitative PCR

(qPCR), total RNA samples (2 μg) were reverse-transcribed using High Capacity cDNA

Reverse Transcription Kit (Applied Biosystems). Primers for SYBR Green assays are presented

in S3 Table. Amplifications were performed on an ABI Prism 7300 Real Time PCR System

(Applied Biosystems). QPCR data were normalized by TATA-box binding protein (Tbp)

mRNA levels and analyzed with LinRegPCR.

Immunoblot analysis

Protein extracts were prepared using the Proteo-Jet cytoplasmic and nuclear extraction kit

(Fermentas). Following separation by SDS-PAGE liver proteins were probed with primary

antibodies from Cell Signaling (β-ACTIN: 4970; LAMIN A/C: 2032; ACLY: 4332; ACLY-P:

4331; ACC: 3662; FASN: 3189), Abcam (ELOVL6: 69857), Santa Cruz Biotechnology

(SCD1: sc-14719; LXR: sc-13068), Lab Vision (SREBP-1: MS-1207-P1ABX), Novus

Biological (ChREBP: nb400-135) and secondary antibodies from Biotium (CF680 or

CF770-labeled). The images were analyzed on the Odyssey Infrared Imaging system (LI-COR

Biosciences).

Biochemical assays

Hepatic lipid content, fatty acids composition and plasma biochemistry was performed as

described earlier [25].

Histology

Frozen liver samples were embedded in Neg 50 (Fisher Scientific). Sections (5 μm, Leica

RM2145 microtome) were stained with Oil- Red-O and visualized with a Leica DFC300 cam-

era (Leica).

Statistical analysis

All data were analyzed using R (www.r-project.org). Data are expressed as the mean ± SEM.

Differential effects were analyzed by Anova followed by Student t-tests with a pooled variance

estimate. For genes expression analysis, p-values were adjusted according Benjamini-

Hochberg procedure. A p-value� 0.05 was considered significant.
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Results

LXR deficiency prevents hepatic lipid accumulation in response to

dietary oleate

In order to investigate whether LXR may be involved in the lipogenic response to oleate, we

tested the effects of dietary oleic acid in vivo. A reference diet (REF, 40% oleic acid) and an ole-

ate rich diet (OLIV; 79% oleic acid) were given for 9 weeks to wild-type and LXR-/- mice. The

relative composition of hepatic fatty acids was measured (Table 1). As expected we observed

an enrichment of oleic acid in the liver of wild-type and LXR-/- mice fed the OLIV diet com-

pared to mice fed the REF diet. The diet and the genotype did not impact body weight, insuli-

nemia or glycemia (Table 2). Wild-type mice fed the OLIV diet displayed lower perigonadic

white adipose tissue weight compared to mice fed the REF diet. Fatty acid composition of this

tissue was also altered. Indeed, in the wild-type mice OLIV diet tended to decrease n-6/ n-3

ratio compared with the REF one (S4 Table). No modification occurred in LXR deficient mice

for both white adipose weight and its n-6/ n-3 ratio (Table 2 and S4 Table). Interestingly, liver

weight was increased by the OLIV diet in both genotypes (Table 2). However, the OLIV diet

Table 1. Effects of an oleic acid-rich diet on hepatic fatty acid profile in LXR+/+ and LXR-/- mice.

LXR+/+ LXR-/-

REF OLIV REF OLIV

C14:0 0,263 0.488b 0.237 0.169a

C16:0 22,53 22.93 18.516a 16.280a

C16:1 n-9 0.791 1.056 0.767 1.306

C16:1 n-7 3.385 4.805 4.977a 5.342

C18:0 12.057 10.704 13.81 11.947

C18:1 n-9 16.605 32.629b 14.215 28.523b

C18:1 n-7 3.578 6.128b 4.425 6.787b

C18:2 n-6 15.968 5.450b 20.862a 10.809a,b

C18:3 n-6 0.383 0.355 0.352 0.416

C18:3 n-3 0.313 0.121b 0.663a 0.126b

C20:1 n-9 0.383 0.563b 0.477 0.792a,b

C20:2 n-6 0.393 0.000b 0.426 0.000b

C20:3 n-9 0.000 1.584b 0.000 1.627b

C20:3 n-6 1.516 1.616 1.569 1.45

C20:4 n-6 12.859 6.360b 10.906 8.438

C20:3 n-3 0.133 0.067 0.315a 0.185

C20:5 n-3 0.281 0.053 0.396 0.326

C22:4 n-6 0.214 0.196 0.282 0.380a

C22:5 n-6 0.51 0.812b 0.234a 0.507a,b

C22:5 n-3 0.263 0.794b 0.502 0.233a

C22:6 n-3 7.202 2.753b 5.78 2.966b

C24:1 n-9 0.373 0.537 0.291 1.393b

n-6/ n-3 4,059 4,326 4,601 5,742a,b

PUFAs/MUFAs 1,700 0,509b 1,837 0,657b

Fatty acids were analyzed by gas chromatography (n = 5 animals per group). Data are the mean of the masse percentage measured in liver of LXR+/+ and

LXR-/- mice fed the REF or the OLIV diet.
a Significant genotype effect.
b Significant difference versus REF diet.

https://doi.org/10.1371/journal.pone.0181393.t001
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led to neutral lipids accumulation in the liver of wild-type mice, which was not observed in

mice lacking LXR (Fig 1A). Quantification of hepatic cholesterol, cholesterol esters and triglyc-

erides showed that while cholesterol esters are increased in both genotypes, OLIV diet leads to

higher levels of triglycerides only in wild-type mice (Fig 1B). Interestingly, LXR-/- mice fed the

OLIV diet showed an increase in free cholesterol while this did not occur in wild-type mice

(Fig 1B). Altogether, these results suggest that the oleic acid-rich diet induces liver steatosis in

a LXR-dependent manner.

LXR is important in the modulation of hepatic gene expression in

response to an oleate rich diet

To further investigate the role of LXR, we next measured the hepatic expression of a set of 142

genes involved in lipid metabolism, nuclear receptors signaling and inflammation (Fig 2).

Results were illustrated in a heatmap coupled with hierarchical classification, which revealed

clusters of genes differently modulated by OLIV diet depending on the genotype. The first

cluster (Cluster 1) is composed of genes specifically up-regulated in wild-type mice fed the

OLIV diet compared to the REF group as this regulation did not occur in LXR-/- mice (Fig 2).

This cluster contained genes involved in lipogenesis such as Acly, Acaca, Fasn, Elovl6 and Scd1.

The heatmap also highlighted a cluster of genes (Cluster 2) whose expression is not modified

in wild-type mice but increased in LXR-/- mice fed the OLIV diet (Fig 2). This cluster mostly

relates to genes involved in inflammatory processes such as Tnfα, Il1β and F4/80. These two

clusters we identified shed the light on the role of LXR in uncoupling lipogenesis and inflam-

mation. As these two molecular processes are known to be both important in NAFLD develop-

ment we further investigated these pathways in our in vivo model.

LXR deficiency impairs the lipogenic response to an oleate-rich diet

The OLIV diet increased the expression of genes involved in lipogenesis such as Acly, Acaca,

Acacb, Fasn, Elovl6 and Scd1 in an LXR dependent manner (Fig 3A). In order to further inves-

tigate this regulation, the expression of key lipogenic proteins was measured (ACLY, its active

phosphorylated form P-ACLY, ACC, FASN, ELOVL6 and SCD1) (Fig 3B: S1 Fig). Protein lev-

els were consistent with the LXR-dependent changes observed in mRNA. In addition to genes

related to lipogenesis, the cluster 1 also contains genes involved in fatty acids desaturation

Table 2. Effects of an oleic acid-rich diet on body, liver, adipose tissue weights, and on plasma parameters in LXR+/+ and LXR-/- mice.

LXR+/+ LXR-/-

REF OLIV REF OLIV

Body weight (g) 31.4 29.9 29.8 29.4

Liver weight % (w/w) 3.77 4.51b 3.58 4.6b

pWAT weight % (w/w) 3.71 2.55b 3.43 3.04

Plasma insulin (ng/mL) 1.379 1.41 1.112 0.881

Plasma glucose (mmol/L) 8.36 8.082 8.607 8.763

Plasma triglycerides (mmol/L) 1.21 1.04 0.883 0.598a,b

Plasma VLDL-TG (mmol/L) 0.859 0.725 0.883 0.598

Body weight gain, liver weight (somatic index), perigonadic white adipose tissue (pWAT) weight (somatic index) and plasma insulin, glucose, triglycerides,

VLDL-TG of LXR+/+ and LXR-/- mice fed the REF or the OLIV diet. Data are the mean±SEM.
a Significant genotype effect.
b Significant difference versus REF diet (n = 6 mice per group).

https://doi.org/10.1371/journal.pone.0181393.t002
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(Fads1 and Fads2) and elongation (Elovl5). Expression of those genes was also induced by

OLIV diet in an LXR-dependent manner. Importantly, this correlates with the concomitant

enrichment of C22:5n-3 which only occurred in the liver of wild-type mice fed the OLIV diet

(Table 1). This cluster also contains genes involved in glycolysis (Lpk) and in triglycerides

Fig 1. High oleic acid diet induces hepatic steatosis in LXR+/+ but not in LXR-/- mice. (A)

Representative Oil Red O-stained frozen sections of liver from mice of both genotypes fed the REF or the

OLIV diet (Scale bars: 100 μm). Neutral lipids appear in red. (B) Liver triglycerides, cholesterol and cholesterol

esters measured by gas chromatography. Data are the mean±SEM of values measured in LXR+/+ and LXR-/-

mice fed the REF or the OLIV diet. a Significant genotype effect. b Significant difference versus REF diet (n = 6

mice per group).

https://doi.org/10.1371/journal.pone.0181393.g001
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Fig 2. High oleic acid diet modulates hepatic gene expression. Hepatic gene expression of 142 genes

related to lipid metabolism, nuclear receptor signaling and inflammation were quantified by qPCR from liver of

LXR+/+ and LXR-/- mice fed the REF or the OLIV diet. Data are presented as a heatmap associated with a

hierarchical classification.

https://doi.org/10.1371/journal.pone.0181393.g002
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Fig 3. LXR mediate the induction of lipogenesis induced by an oleic acid-rich diet. (A) Hepatic Acly, Acaca, Acacb, Fasn, Elovl6, Scd1 mRNA

levels quantified by qPCR. (B) Cytoplasmic protein expression levels of P-ACLY, ACLY, ACC, ELOVL6, SCD1, FASN AND β-ACTIN assayed by

Western Blotting. (C) Fads1, Fads2, Elovl5, Gpat, Pnpla3 and Lpk mRNA quantification assayed by qPCR. (D) Srebp-1c and Chrebp mRNA

quantification assayed by qPCR. (E) Cytoplasmic and nuclear expression levels of LXR, SREBP-1c and ChREBP assayed by Western Blotting. Data

are the mean±SEM of values measured in LXR+/+ and LXR-/- mice fed REF or OLIV diet. a Significant genotype effect. b Significant difference

versus REF diet (n = 6 mice per group).

https://doi.org/10.1371/journal.pone.0181393.g003
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synthesis and remodeling (Gpat and Pnpla3) which displayed the same expression pattern as

lipogenic genes (Fig 3C). To further investigate the role of oleic acid on hepatic lipogenesis, we

studied the implication of the Sterol Responsive Element Binding Protein-1c (SREBP-1c) and

the Carbohydrate Response Element Binding Protein (ChREBP), two transcription factors

which are major regulators of lipogenesis in liver, and whose activation is reflected by their

nuclear localization. Although no change was observed at the gene expression level in response

to the OLIV diet in LXR+/+ mice, oleic acid-rich diet induced an LXR-dependent increase in

SREBP-1c nuclear expression, suggesting that oleate modulates lipogenesis via a pathway

involving an LXR-dependent SREBP-1c activation (Fig 3D and 3E; S1 Fig).

LXR deficiency reveals hepatic inflammation in mice fed an oleate-rich

diet

The second cluster contains several genes involved in inflammation (Fig 2). In agreement with

the anti-inflammatory properties of LXR, we observed an increase of Tnfα and Ccl2 in LXR-/-

mice compared to wild-type controls fed the REF diet. However, all the inflammatory genes of

this cluster (Tnfα, Ccl2, F4/80, Cd68 and Il1β) displayed no diet modulation in wild-type mice,

although, in LXR-/- animals, the OLIV diet increased their expression (Fig 4A). To measure

possible hepatic damages we assayed plasmatic activity of alanine aminotransferase (ALT) and

aspartate aminotransferase (AST). In wild-type mice the OLIV diet did not trigger any modifi-

cation in the concentration of these two enzymes compared to mice fed the REF diet. How-

ever, in LXR-/- animals, the OLIV diet increased ALT and AST concentration compared to

the REF diet (Fig 4B). Hepatic n-3 and n-6 fatty acids composition as well as the n-6/ n-3 ratio

have been shown to be associated with NASH [26;27]. In our model, OLIV diet feeding

increased eicosapentaenoic acid (C20:5 n-3) proportion in wild-type mice although in LXR-/-

animals this diet was decreasing it. Inversely, OLIV diet reduced C18:2 n-6 concentration in a

lesser extent in LXR-/- animals compared to the wild-type ones. Similarly, C20:4 n-6 content

was reduced in the liver of wild-type mice fed the OLIV diet compared to the REF diet fed

ones. In the LXR-/- mice this regulation was lost. More generally, the hepatic n-6/ n-3 ratio

was not undergoing a dietary regulation in the wild-type mice but in the LXR-/- animals this

ratio was increased by the OLIV diet compared to the REF one (Table 1).

Free cholesterol has been identified as a potent inflammatory signal [28;29]. We have

noticed that the hepatic content of free cholesterol (Fig 1B) displays the similar regulation than

the inflammatory genes assayed in the liver as well as ALT and AST plasmatic activity (Fig 4B).

Moreover, we observed that the OLIV diet decreases both plasma cholesterol and lathosterol,

an indicator of whole body cholesterol synthesis, compared to the REF diet in wild-type mice.

In mice lacking LXR no modification occurred (Fig 4C). Therefore, when mice are fed an

oleate-rich diet, LXR contributes to decrease plasma cholesterol concentrations while its defi-

ciency unravels signs of hepatotoxicity in response to OLIV diet.

Discussion

The Liver X Receptors are type II nuclear receptors which are involved in cholesterol reverse

transport, its excretion through the bile [22] or trans-intestinal cholesterol efflux [30;31] and

in the limitation of inflammation [32] and proliferation [33]. As a consequence, LXR has

emerged as potent target to treat large range of diseases related to cholesterol from cardiovas-

cular diseases such as atherosclerosis [34] to cancer [35] or Alzheimer’s disease [36]. However,

these promising properties are hampered by the fact that LXR is a potent activator of key genes

involved in the control of hepatic lipogenesis. Indeed, LXRE have been described in Acaca
[37], Fasn [19], Scd1 [20], Srebp-1c [38] and Chrebp [39] promoters. Moreover, LXR is
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Fig 4. LXR protects from hepatic damage induced by an oleic-rich diet. (A) Tnfα, Ccl2, F4/80, Cd68 and

Il1βmRNA quantification assayed by qPCR. (B) Plasma activity of ALT and AST. (C) Plasma cholesterol and

lathosterol levels analyzed by gas chromatography. Data are the mean±SEM of values measured in LXR

+/+ and LXR-/- mice fed the REF or the OLIV diet. a Significant genotype effect. b Significant difference versus

REF diet (n = 6 mice per group).

https://doi.org/10.1371/journal.pone.0181393.g004
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important for the activity of SREBP-1c [40] and ChREBP [41] and its activation by synthetic

agonist induces lipogenesis, steatosis and VLDL secretion [21].

Dietary oleic acid exerts several beneficial effects in many organs linked to energy homeo-

stasis. Dietary supplementation with an oleic acid-derived compound restores gut microbiota

dysbiosis induced by high fat diet [42]. Oleate supplementation in high fat diet increases anti-

inflammatory M2 macrophages [43] and improves insulin signaling and inflammatory param-

eters [44] in white adipose tissue. In skeletal muscle cells, oleate signaling triggers fatty acid

oxidation through a PKA-SIRT1-PGC1α axis [45]. It has been recently published that oleic

acid, the major fatty acid present in olive oil, could modulate the expression of LXR target

genes in human neutrophils [46]. Observational studies show that a correlation exists between

olive oil consumption and a decreased prevalence of cardiovascular diseases and cancers [1]

which are linked to LXR activity.

In this study, we questioned whether LXR could mediate the effects of dietary oleic acid. As

it has been described that this fatty acid increases lipogenesis and triglycerides accumulation

in the liver [9], we focused on hepatic lipid metabolism and in particular on lipogenesis. To

address this issue, we used wild-type and knockout mice lacking both LXR isoforms that were

fed either a control diet (40% oleate) or an oleic acid-rich diet (79% oleate). When challenged

with these two isocaloric diets, both wild-type and LXR-/- mice displayed major changes in

hepatic fatty acids composition (Table 1). However, while hepatic triglyceride content of wild-

type mice was increased, LXR-/- mice livers displayed no changes in response to the diet rich

in oleic acid (Fig 1). Moreover, by measuring the hepatic expression of 142 genes involved in

energy metabolism, nuclear receptor signaling and inflammation, we identified a cluster of

genes following the same modulation pattern as hepatic triglycerides (Fig 2). In wild-type

mice, high oleic acid diet stimulated lipogenic gene expression and protein content in liver in a

LXR-dependent manner. The oleic acid-rich diet had no effects on nuclear ChREBP accumu-

lation but promoted SREBP-1c activation in a LXR-dependent way (Fig 3). In vitro we did not

observe any regulation of lipogenic genes in response to oleic acid on the cell lines we tested

(S2 Fig). However, when we compared the effect of triolein to olive oil in vivo we observed an

increase in lipogenic gene expression in response to triolein. Altogether, these data suggest

that LXR is required for the hepatic response to oleic acid in vivo.

Although it was reported that LXR activation by a synthetic ligand triggers lipogenesis and

VLDL-TG secretion [21], in our study the LXR mediated up-regulation of lipogenesis by the

OLIV diet was not associated with hypertriglyceridemia (Table 2), or high levels of VLDL-TG

(Table 2) which is observed in mice treated with potent pharmacological agonist of LXR. It has

been demonstrated that long-term treatment with an LXR agonist has beneficial effects on adi-

pose tissue homeostasis, notably by mitigating inflammatory parameters, decreasing visceral

adipose tissue weight and redistributing fat from visceral adipose tissue to subcutaneous adi-

pose tissue [46]. Although we did not focus on adipose tissue, we observed an LXR-dependent

decrease of perigonadic adipose tissue weight (Table 2) associated with a modulation of fatty

acid composition reflecting a lower inflammatory status in mice fed the OLIV diet (S4 Table).

These data are in agreement with the work of Archer et al. in which long term LXR activation

leaded to fat redistribution from visceral to subcutaneous fat pads and reduction of inflamma-

tion in these tissues [46].

The most common model of progression from NAFLD to NASH is a two-step model. The

first hit is the accumulation of triglycerides in the liver or steatosis. The second step encom-

passes several hepatic injuries including inflammation and cholesterol overloading. However,

this classic model has been challenged (reviewed in [47]). Here, we provide new model of dis-

sociation between steatosis and hepatic damage. Indeed, through our gene expression analysis

in the liver, we identified a cluster of genes involved in inflammation whose expression does
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not change in wild-type mice but increases in LXR knockout mice fed the oleic acid-rich diet

(Fig 4A). This cluster contains genes encoding for TNF-α and IL-1β whose expression is asso-

ciated with the one of CXCL10, a newly described marker of NASH [48]. Moreover, the

plasma transaminase concentration of ALT and AST (Fig 4B) as well as hepatic free cholesterol

content (Fig 1B) followed the same regulation pattern. Therefore, the steatosis we observed in

wild-type mice fed the OLIV diet is not associated with hepatic damage and, strikingly, the

deficiency of LXR revealed liver injury induced by the OLIV diet. These results are in accor-

dance with two studies in which the loss of function of key lipogenic genes, Scd1 [49] and

Dgat2 [50], in a methionine and choline deficient diet-induced NASH model, exacerbates

hepatic damages despite reduced steatosis. LXR also appears to display putative protective role

in NASH (reviewed in [51]). It has been also reported that lipogenesis induced by ChREBP

overexpression dissociates hepatic steatosis from insulin resistance a feature linked to NAFLD

[13]. More generally, it appears that lipogenesis may lead to the production of signaling mole-

cules decreasing disease risks, a concept called “lipoexpediency” [52].

Finally, we also observed that the oleate rich diet drives beneficial effects on cholesterol

parameters. Indeed, OLIV diet decreased the cholesterolemia in wild-type mice although no

changes occurred in LXR knockout mice (Fig 4C). It is interesting to note the antinomy exist-

ing between cholesterol and oleic acid. Indeed, we showed that oleate rich diet decreased cho-

lesterolemia and it has also been reported that oleate increases the expression of ABCA1, a key

player involved in reverse cholesterol transport, in human neutrophils [14]. Conversely, Scd1
whole body knockout mice fed a low fat high carbohydrate diet (a model of complete oleic

acid depletion) displays hypercholesterolemia and cholestasis [53]. Therefore, it seems that

oleic acid regulates cholesterol content in the organism. Cholesterol is an important factor in

the progression of several diseases such as cardiovascular diseases [54,55], cancers [56–59],

Alzheimer’s disease [60] and NASH [28,61], thus, its control by oleate appears to be of impor-

tance. Here, we showed that LXR mediates the decrease of cholesterolemia in response to an

oleate-rich diet. This role of LXR on cholesterolemia could explain the beneficial effects of

olive oil in epidemiological studies (reviewed in [1]). However, this potent link needs further

examination as well as the mechanisms by which LXR activity is triggered in response to die-

tary oleic acid. Indeed, unlike essential fatty acids of the n-6 and n-3 series, oleic acid does not

act as an inhibitor of lipogenic enzymes. Therefore, it is possible that increasing the relative

abundance of dietary oleate reduces the effects of dietary polyunsaturated fatty acids on gene

expression [15;16;62]. In addition, the hypothesis that oleate directly binds and activates LXR

is unlikely. Indeed, the work of Ou et al. showed that, in cell culture oleic acid represses LXR

activity [15]. Moreover, it has recently been demonstrated that unlike short chain fatty acids,

oleic acid is unable to bind and activate LXRα [63]. In addition, growing evidences highlight

the modulation of co-activators [64] and regulators of nuclear receptors activity such as SIRT1

[45] by oleic acid. Such indirect mechanisms can be considered in the regulation of LXR activ-

ity by oleic acid. It is also possible that LXR may regulate key factors in the well-described

response to exogenous oleic acid on hepatic lipogenesis and inflammation that has been

highlighted in vivo [9;64].

Altogether, our work further suggests that oleic acid may play some important function in

the regulation of gene expression. We also present evidence that LXR is involved in this pro-

cess. The elucidation of underlying mechanisms requires further investigation.
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S2 Table. Relative fatty acid composition of dietary oils (%).

(DOCX)

S3 Table. Oligonucleotide sequences for real time PCR.

(DOCX)

S4 Table. Fatty acids were analyzed by gas chromatography. Data are the mean of the masse

percentage measured in liver of LXR+/+ and LXR-/- mice fed the REF or the OLIV diet. a Sig-

nificant genotype effect. b Significant difference versus REF diet. (n = 6 animals per group).

(DOCX)

S1 Fig. Quantification of cytoplasmic and nuclear proteins presented in Fig 3. (A) Cyto-

plasmic ACLY, P-ACLY, ACC, FAS, ELOVL6, SCD1, SREBP-1 and ChREBP protein quantifi-

cation. (B) Nuclear SREBP-1, ChREBP and LXR protein quantification. Values are

mean ± SEM (n = 6); a Significant gentotype effect. b Significant difference versus REF diet.

(TIF)

S2 Fig. Oleate does not induce LXR target genes in vitro. mRNA expression of Fatty acid

synthase (Fasn) and Stearoyl-CoA Desaturase 1 (Scd1) measured by qPCR in Hepa1 cells (A)

and in Mouse embryonnic fibroblast (B) treated with TO901317 or with Oleic Acid (OA) pro-

vided as an albuminic complex. Values are means ± SEM (n = 3), �: Significant (p<0,05) effect

compared with DMSO (for TO901317 treated conditions) or with BSA (for OA treated condi-

tions).

(TIF)

S3 Fig. Triolein promotes lipogenic gene expression in vivo. Hepatic Acaca, Fasn, Elovl6,

Scd1 and Cyp4a14 mRNA levels quantified by qPCR. Data are the mean ± SEM of values mea-

sured in C57Bl/6J fed fat free diet and daily gavaged with triolein (TRIOL), the same olive oil

we used in the OLIV diet (OLIV), a mix of theses two oils (OLIV/TRIOL) and a mix of OLIV

and fish oil (OLIV/FISH) as a negative control for lipogenic genes. a Significant difference ver-

sus OLIV/FISH, b Significant difference versus OLIV, c Significant difference versus OLIV/

TRIOL (n = 6 per group except OLIV/FISH group (n = 4)).

(TIF)
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