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Abstract

Top-down force is referred to arthropod pest management delivered by the organisms from

higher trophic levels. In the context of prevalent adoption of transgenic Bt crops that produce

insecticidal Cry proteins derived from Bacillus thuringiensis (Bt), it still remains elusive

whether the top-down forces are affected by the insect-resistant traits that introduced into

the Bt crops. We explored how Bt cotton affect the strength of top-down forces via arthropod

natural enemies in regulating a non-target pest species, the cotton aphid Aphis gossypii

Glover, using a comparative approach (i.e. Bt cotton vs. conventional cotton) under field

conditions. To determine top-down forces, we manipulated predation/parasitism exposure

of the aphid to their natural enemies using exclusion cages. We found that the aphid popula-

tion growth was strongly suppressed by the dominant natural enemies including Coccinel-

lids, spiders and Aphidiines parasitoids. Coccinellids, spiders and the assemblage of other

arthropod natural enemies (mainly lacewings and Hemipteran bugs) are similarly abundant

in both plots, but with the parasitoid mummies less abundant in Bt cotton plots compared to

the conventional cotton plots. However, the lower abundance of parasitoids in Bt cotton

plots alone did not translate into differential top-down control on A. gossypii populations

compared to conventional ones. Overall, the top-down forces were equally strong in both

plots. We conclude that transgenic Bt cotton does not disrupt the top-down forces regulating

the cotton aphid in central China.

Introduction

In terrestrial ecosystems, bottom-up and top-down forces in structuring arthropod communi-

ties have been extensively documented. Top-down force is characterized as the population

suppression of herbivorous arthropods caused by predation, parasitism or infection exerted by

the organisms from higher tropic levels i.e. natural enemies [1–5]. However, the strength of
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top-down forces via these biological interactions are susceptible to various biotic and/or abi-

otic factors [6–8], and they can even interact with bottom-up forces [9].

Top-down force is referred to arthropod pest management in the context of biological con-

trol in agro-ecosystems [10]. Within “plant-herbivores insect-natural enemy arthropod” tri-

trophic interactions, however, top-down forces are influenced by various biotic factors such as

plant features in terms of food/shelter and resistant traits [11,12], or abiotic factors such as fer-

tilization regimes [13–15]. In order to enhance top-down forces, various habitat manipulation

strategies have been proposed to attract natural enemies and/or promote their performance in

suppressing the pest populations [12,16]. Specifically, these practices have been advised in the

“Push-Pull strategy” [17]. In such strategies, the options have largely relied on enhancing the

biocontrol services of natural enemies through manipulation of physical and chemical features

of habitat (i.e. external factors). However, it is acknowledged that the manipulation and/or

selection of innate traits of plants [18,19], as well as insect-resistance traits that are introduced

into the plants, may also impact the arthropod natural enemy community and thus the efficacy

of top-down forces.

In modern agriculture, insect-resistant transgenic crops—mostly produce Bacillus thurin-
giensis (Bt) proteins—have been increasingly adopted worldwide [20]. Bt crops have been and

continue to be effective tools offering considerable management of several major pest guilds,

and they have been regarded as one of the most cost-efficient and environmentally sound

strategies [21,22]. While Bt crops are developed to manage target phytophagous pests, the

unintentional effects of Bt crops on non-target phytophagous insect and arthropod natural

enemies [23–27] and specifically the impacts on their behaviors [28] should not be underesti-

mated. These issues have raised the concern on the ecological compatibility between the crop

insect-resistance traits and biological control delivered by those biocontrol agents [29].

The Yangtze River Valley Cotton-planting Zone (YRZ) is one of the largest cotton-planting

regions in China. In this region, Bt cotton has long been commercially used. The cotton aphid,

Aphis gossypii Glover (Hemiptera: Aphididae) is considered as a secondary pest in YRZ as it is

not targeted by Bt toxins as other aphid species [30]. Despite that cotton aphids have shown

continuous decline in their seasonal population density in Bt cotton fields in the past two

decades in China [6], cotton aphid outbreaks occasionally occur and reach economically dam-

aging levels in some areas [31], which was likely due to particular weather conditions (e.g. less

rainfall during the aphid population-growth season) or pesticide resistance [32]. We have doc-

umented strong top-down forces in regulating A. gossypii in Bt cotton field [10]; such top-

down forces have been primarily offered by Coccinellids and Aphidiine parasitoids. It still

remains elusive whether the top-down forces have been influenced by the insect-resistant traits

introduced into Bt cotton cultivars. This issue becomes extremely relevant since the uninten-

tional direct and indirect effects of Bt crops on beneficial arthropods (e.g. natural enemies)

have been recently highlighted [27,28]. In addition, while direct impact of Bt cotton on the cot-

ton aphid is unlikely [31], other co-occurring arthropods may indirectly affect A. gossypii via

plant-mediated indirect interactions. A recent study has documented that such interaction can

be largely mediated by the presence of Bt proteins [33]. That study proposed that Bt cotton

may benefit Bt-insensitive herbivores (e.g. aphids), which might link to the decreased induc-

ible chemical defenses in Bt cotton due to lack of Lepidopteran pests feeding.

As a departure of our previous study [10], we further explored how Bt cotton affect the

strength of top-down forces in regulating A. gossypii populations in the field. We designed a

comparative study using a Bt cotton cultivar combining two insect-resistance genes Cry1Ac
and CpTI (Cowpea Trypsin Inhibitor), and its near-isogenic cultivar as control. The objective

is to enhance the knowledge on ecological compatibility between transgenic insecticidal traits

Ecological Compatibility of Bt Crops and Biological Control
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in cotton and biocontrol services offered by arthropod natural enemies in cotton agro-

ecosystems.

Material and Methods

Cotton varieties

Seeds of Bt cotton (“CCRI 41”, hereafter named “Bt cotton”), producing Cry1Ac and CpTI

(Cowpea Trypsin Inhibitor), and those of the corresponding non-Bt near-isoline (“CCRI 23”,

hereafter named “conventional cotton”) were obtained from College of Plant Sci & Tech,

Huazhong Agricultural University. The CpTI expressed in tobacco plants enhances the insect

resistance to a variety of insect pests as it has anti-metabolic activity to the insects from the

orders Lepidoptera, Coleoptera, and Orthoptera [34]. We assume that A. gossypii is not tar-

geted by the two types of insect resistance in the cultivar CCRI 41. These two cultivars have

been extensively used in our previous studies investigating the potential side effects of Bt cot-

ton on non-target arthropods [35–37].

Aphid colony

Naturally occurring cotton aphids were collected in May 2013 from a cotton field at the Exper-

imental Station of Huazhong Agricultural University (HZAU), Wuhan, China. The aphid col-

ony was reared on the non-Bt cotton seedlings, i.e. cultivar CCRI 23, under laboratory

conditions (28 ± 1˚C, RH 70 ± 10%, 14 h light). The aphid colony lived healthy on those seed-

lings and no yellow dwarf was observed. The colony was subsequently used as the source for

artificial infestations of cotton plants in the field experiments.

Field experiment setup

The field experiment was conducted at the Experimental Station of HZAU. The field was pre-

viously cultivated free of insecticide application and only the routine agronomic practices (e.g.

tillage) were applied. Bt cotton and conventional cotton seedlings were planted in a 1.43-ha

field on 12th May. Regarding the seedling density, the sowing distance was 40 cm in each row

with a distance of 30 cm between the two rows within each ridge. The distance among the

ridges was 80 cm. The foliar fertilization of urea (two times of spray at concentrations of 0.5%

and 1% on 20th May and 14th June, respectively) and monopotassium phosphate (active gradi-

ent with 750 g/ ha) was uniformly applied to both cultivars (Hubei Yihua Chemicals Ltd.,

China). Other routine practices were performed except for pesticides application [10]. Weed

control relied on hand hoeing at four different dates throughout the experiment. Irrigation

was conducted once during the dry period in June and ditches were made to facilitate drainage

during the rainy season in July.

The cage restriction technique was designed following the methods described in our previ-

ous study [10]. All the cages were made of bamboo sticks (2m x 2m x 2m, length x width x

height) covered by nylon mesh netting with openings of 530×530μm. Three different treat-

ments were applied using restriction cages: (i) “exclusion cages”, four upright bamboo sticks

completely coved by mesh in which aphids were fully-protected from arthropod natural ene-

mies (predators and parasitoids); (ii) “sham cages”, built with the netting mesh but included a

40-cm high opening in the middle and the bottom of the cage respectively. This treatment was

set up to assess the possible disruptive effect of cages (e.g. mesh and bamboo sticks) on the

activity of natural enemies and aphid population dynamics; (iii) “no cage”, the completely

open area (named “open field” thereafter) which consisted of four bamboo sticks standing

upright and a tape surrounding them as a cue for sampling range. To avoid the effects of

Ecological Compatibility of Bt Crops and Biological Control
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ground-dwelling predators, a plastic barrier (around 20 cm buried in the soil) was connected

to the nettings of each exclusion and restriction cage after the study [38].

During 18th June and 20th June, we set up two blocks with one for each cultivar, i.e. either

conventional or Bt cotton. The two blocks were in the same field separated by a distance of 50

meters. Each block included four plots. Within each of these plots three sub-plots were

designed, with one for each of the three treatments (exclusion cage, sham cage and no cage)

randomly allocated. We kept a distance of 10 meters among the four plots and 4 meters among

the sub-plots. Four plants were covered within each cage type which allowed the full growth of

cotton within the cage [10]. One side of the exclusion cage was sewed with a zipper allowing

entry for sampling.

Arthropod population dynamics

Prior to artificial infestation of aphids, any resident aphids and other insects were removed by

hands and aspirators within the plots that covered by cages. On 21th and 22nd June when cot-

ton plants were in flower bud stage with an average plant height of 45 cm, each plant within

the plot was artificially infested by ten aphid adults choosing one leaf from the top of the plant.

The aphids were susceptible to wounding during the infestation. Thus the number of aphids

was checked in the following two days and new aphids were refreshed when necessary. Starting

from 28th June until 25th August, the aphids and/or their natural enemies within each treat-

ment were recorded. The whole body of the four plants in each plot was visually checked to

count the arthropods. The sampling procedure did not cause any physical damage to the

plants. Flying species were firstly recorded by gently shaking the plants. We counted the adults

and larvae of ladybeetles, adults of spiders, and Aphidiine parasitoid mummies, as well as

other arthropod natural enemies mainly including lacewings, Hemipteran bugs, hoverflies,

and mantis. All the recorded species were identified to family or species level. The identifica-

tion followed the experience obtained from our previous study [10], as well as the instructions

from a guidebook specializing on cotton pest and disease identification and management in

China [39]. For identification of aphid parasitoids, the un-merged parasitoid mummies, i.e.

pupae stage of the parasitoid, were counted (with black- and tan-colored mummies belonging

to the Aphelinidae and Aphidiinae parasitoid families, respectively). Mummy samples were

collected for further identification of parasitoids following the identification keys previously

reported [40–45]. The sampling was conducted every 5–7 days from noon to 6 pm for each

sampling date [10].

Data analyses

We tested the effect of “cultivar” (Bt cotton vs. conventional cotton), “cage type” (exclusion

cage vs. sham cage vs. open field), “date” (12 sampling dates) as well as their two-by-two inter-

actions (if applicable) on the density of cotton aphid and four arthropod natural enemy

groups: Coccinellids, spiders, parasitoid mummies, and other natural enemies. Since the

assemblage of Coccinellid adults and larvae acted as generalist predators, the counts of the

adults and larvae were pooled for the analysis. The data were fitted in a GEE GLM (General-

ized Estimating Equations Generalized Linear Model) based on a Poisson error and a log-link

function with repeated measurements (“sampling date” as repeated factor). For the datasets of

natural enemies, we failed to run the model by considering all the two-by-two interactions due

to the numerous zero count values. We then analyzed the data using a more parsimonious

model to remove some of the main effect or interactions that failed to give signs in the model.

Such a parsimonious model has often been used to run GEE GLM on the dataset where

numerous zero data exist. The main effect of “date” and its interaction with other factors on

Ecological Compatibility of Bt Crops and Biological Control
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parasitoid mummies were not able to be tested due to the numerous zero counts. All the data

were processed using R software (R Version 3.2.2, R Core team, Vienna, Austria, 2009) [46].

Results

A summary of total counts of dominate arthropods in experimental plots of Bt cotton and con-

ventional cotton were provided (Table 1). The natural enemy guild was dominated by Cocci-

nellids, spiders as well as Aphiidiines parasitoids (tan-colored mummies). The other natural

enemies mainly consisted of lacewings, Hemipteran bugs and mantis.

Aphis gossypii densities differed significantly among sampling dates (Fig 1; “date”: χ2 =

3446, df = 11, P< 0.001) and among cage types (“cage type”: χ2 = 255.1, df = 2, P< 0.001).

However, the overall population density of A. gossypii did not differ between the two cultivars

(“cultivar”: χ2 = 1.600, df = 1, P = 0.204). Furthermore, the effects of different cages on their

density did not differ between the two cultivars (“cage type x cultivar”: χ2 = 0.100, df = 2,

P = 0.961). In both cultivars, the population density peak of A. gossypii reached over 100-fold

growth in exclusion cages compared to the sham cages and open field plots.

Coccinellids densities differed significantly among the sampling dates (Fig 2; “date”: χ2 =

100.1, df = 11, P< 0.001) and among cage types (“cage type”: χ2 = 24.68, df = 2, P< 0.001).

However, the overall Coccinellids population density did not differ between the two cultivars

(“cultivar”: χ2 = 2.616, df = 1, P = 0.106). The effect of cage type on Coccinellids densities were

similar on both cultivars (“cage type x cultivar”: χ2 = 0.043, df = 2, P = 0.979). In sham cages

and open field plots, the counts of this group followed a similar trend in both cultivars as a

whole. The density of Coccinellids increased gradually and peaked at 6th sampling date and

declined until the end of the survey.

Densities of spiders differed significantly as function of the sampling dates (Fig 3; “date”:

χ2 = 67.60, df = 11, P< 0.001) and among cage types (“cage type”: χ2 = 16.33, df = 2,

P< 0.001). However, their overall population density did not differ between the two cultivars

(“cultivar”: χ2 = 1.646, df = 1, P = 0.200). The effect of cage type on spider densities was similar

on both cotton cultivars (“cultivar x cage type”: χ2 = -86.46, df = 2, P = 1.000). In sham cages

and open field plots, we observed relatively higher densities of Coccinellids at 5th and 6th sam-

pling date. Unlike Coccinellids populations, they did not show any evident density peak and

they were more evenly distributed on a temporal scale.

Table 1. A summary of sampled arthropods in the field survey. Total counts of dominant arthropods in the experimental plots of Bt cotton or conventional

cotton at HZAU experimental station (Wuhan, China) from late June to late August in 2013.

Guild Group/Species Bt cotton Conventional cotton

The pest Cotton aphids 28022 31454

Key arthropod natural enemies Ladybeetlesa 171 193

Spidersb 114 118

Aphidiine parasitoidsc 155 221

Other arthropod natural enemies Lacewingsd 81 79

Hemipteran bugse 70 88

Mantisf 6 11

a includes Propylaea japonica Thunberg (67.8%), Harmonia axyridis Pallas (17.0%), Coelophora saucia Mulsant (11.2%), and other unidentified species.
b includes Ebrechtella tricuspidata Fabricius (48.2%), Hylyphantes graminicola Sundevall (36.7%), and other unidentified species.
c includes Lysiphlebia japonica Ashmead (87.3%), Biondoxys indicus Subba Rao & Sharma, Ischnojoppa luteator Fabricius and other unidentified species.
d includes Chrysopa pallens Rambur (84.6%) and Chrysoperla sinica Tjeder (15.4%).
e includes Orius similis Zheng (43.0%) and other species from Miridae and Nabidae families.
f refers to Hierodula saussurei Kirby

doi:10.1371/journal.pone.0166771.t001

Ecological Compatibility of Bt Crops and Biological Control
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Aphidiines mummies (tan-colored) were most commonly observed whereas Aphelinidae

mummies (black-colored) were barely found during the whole study (with six in total). Their

densities varied significantly among cage types (Fig 4; “cage type”: χ2 = 14.25, df = 2,

P< 0.001) and showed a similar trend in both Bt and conventional cultivars (“cage type x cul-

tivar”: χ2 = 0.117, df = 2, P = 0.943). However, Aphidiine mummies were much less abundant

in Bt cotton compared to conventional cotton plots (“cultivar”: χ2 = 7.310, df = 2, P = 0.007).

Specifically at 5th and 6th sampling date, Bt cotton plots harbored much less (an average of 4

and 6 mummies respectively) than conventional cotton plots (7 and 9 mummies respectively).

The overall densities of Aphidiine mummies fluctuated among a given period of sampling

dates (from 3rd and 7th sampling date) whereas they were rarely found in other sampling dates.

The assemblage of other natural enemies sampled mainly included lacewings, omnivorous

Hemipteran predators, e.g. the bugs belonging to the Miridae, Nabidae and Anthocoridae fam-

ilies, as well as mantis (Table 1; S1 Fig). The sum of densities of these natural enemies differed

significantly among sampling dates (Fig 5; “date”: χ2 = 146.5, df = 11, P< 0.001) and among

cage types (“cage type”: χ2 = 5024, df = 2, P< 0.001). However, their overall population density

did not differ between the two cultivars (“cultivar”: χ2 = 0, df = 1, P = 1.000). The effect of cage

type on the densities of these natural enemy arthropods was similar on both cotton cultivars

(“cultivar x cage type”: χ2 = 1.566, df = 2, P = 0.457). In sham cages and open field plots, we

observed relatively higher densities of those arthropods from 3rd and 7th sampling date. They

were found in relatively low abundance during the last four weeks.

Discussion

Our study provided empirical evidence that transgenic Bt cotton did not disrupt the top-down

forces regulating the cotton aphid A. gossypii in central China. The aphid population growth

was strongly suppressed by the presence of natural enemy guild (mainly Coccinellids, spiders

and parasitoids). Furthermore, such top-down management was equally strong in both Bt and

conventional cotton cultivars. Except that parasitoid mummies are less abundant in Bt cotton

plots compared to conventional cotton plots, Coccinellids, spiders and the assemblage of other

arthropod natural enemies are similarly abundant in both plots.

Fig 1. Population dynamics of cotton aphids. Mean numbers (±SE) of A. gossypii per plot in exclusion cages, sham cages and open field plots

at HZAU experimental station (Wuhan, China) from late June to late August in 2013.

doi:10.1371/journal.pone.0166771.g001
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We demonstrated strong top-down force exerted by natural enemies on cotton aphid popu-

lations. With abundant natural enemies in the open field plots, the aphid population growth

was quite limited when compared to aphid populations in exclusion cages i.e. without attack

by natural enemies. In addition, aphid populations were kept at relatively low levels in the

open field plots throughout the season (despite small population increase from 8th July to 23rd

July, Fig 1). However, the aphid population densities did not differ between Bt and conven-

tional cotton plots in open fields. This result does not support the hypothesis that Bt crops may

benefit the population growth of sap-feeding herbivores due to decreased damage by sensitive

lepidopteran pests [33]. We assume such an inconsistence may be caused by other unknown

ecological factors in the agro-ecosystems that deserve further investigations.

Coccinellids have been found to respond numerically to the seasonal population dynamic

of A. gossypii. These results corroborate our previous study which has recognized them as pre-

dominant biocontrol agents for management of the aphid in Bt cotton field [9]. Similar top-

Fig 2. Population dynamics of ladybeetles. Mean numbers (±SE) of Coccinellids per plot in exclusion cages, sham cages and open field plots at

HZAU experimental station (Wuhan, China) from late June to late August in 2013.

doi:10.1371/journal.pone.0166771.g002

Fig 3. Population dynamics of spiders. Mean numbers (±SE) of spiders per plot in exclusion cages, sham cages and open field plots at HZAU

experimental station (Wuhan, China) from late June to late August in 2013.

doi:10.1371/journal.pone.0166771.g003
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down forces via Coccinellids have been observed on other aphid species in other cropping sys-

tems [38,47,48]. In our study, Propylaea japonica Thunberg was the most abundant species

within Coccinellids group, with Harmonia axyridis Pallas and Coccinella septempunctata Lin-

naeus less abundant. Propylaea japonica is a well-known generalist predator of A. gossypii
[10,31,49,50]. This species can colonize the cotton field during the early cotton seeding stage

when aphid populations start to grow. Besides the aphid they favor, these generalist predators

include other prey items (i.e. spider mites and whiteflies) and non-prey food into their diets,

such as honeydew and nectar (observation by YSY). Despite its predominance, i.e. 67.8%, P.

japonica population has not been independently analyzed in our study. This is mainly for two

reasons. Firstly, all these Coccinellidae species represent a functional guild which can effec-

tively suppress the establishment and subsequent population growth of aphids in the whole

season. Secondly, the population dynamics of P. japonica alone was quite similar to the one

Fig 4. Population dynamics of aphid parasitoids. Mean numbers (±SE) of Aphidiine mummies per plot in exclusion cages, sham cages and

open field plots at HZAU experimental station (Wuhan, China) from late June to late August in 2013.

doi:10.1371/journal.pone.0166771.g004

Fig 5. Population dynamics of other natural enemies. Mean numbers (±SE) of other natural enemies per plot in exclusion cages, sham cages

and open field plots at HZAU experimental station (Wuhan, China) from late June to late August in 2013.

doi:10.1371/journal.pone.0166771.g005
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when all the three species were pooled together. Spiders, another important group of generalist

predators, were also found abundant during the season. However, unlike Coccinellids and par-

asitoids, they did not respond numerically to the aphid population. One explanation could be

that A. gossypii only consists of a small part of diet for the spiders. Still, they can contribute to

slowing down aphid population growth when the aphids are at low density. A molecular

approach may be useful to quantify the actual predation rate occur in the field [51].

High densities of Aphidiidae parasitoids mummies, mainly Lysiphlebia japonica Ashmead

and Binodoxys indicus Subba Rao & Sharma, were found most abundant. Density of the mum-

mies showed a numerical response to the aphid density, which was consistent to our previous

report [10]. However, our current study does not examine the single role of the parasitoids in

management of A. gossypii which has been identified using restriction cages [10]. Combined

impacts of both the generalist predators and specialist parasitoids on A. gossypii are likely to

occur, even though the intraguild predation pressure on the parasitoids mummies was likely

to occur in the open field [52].

When comparing the population dynamics of natural enemies between Bt and conven-

tional cotton plots, however, we found a lower abundance of parasitoid mummies in Bt cotton

plots compared to conventional ones. At least one hypothesis can be evoked to explain such

results. The lower abundance of the parasitoid species may be due to the differences in herbi-

vore-induced volatiles between Bt cotton and conventional cotton. Compared to Bt cotton,

conventional cotton that heavily damaged by target pests may release quantitatively and quali-

tatively different plant volatiles and thus may make them more attractive to the parasitoid

wasps. Indeed, lepidopteran pests (e.g. Agrotis ypsilonn Rottemberg and Spodoptera litura
Fabricius from the Noctuidae family) were abundant (10–20 larvae per plant during the mid-

dle of the season, observation by YSY) in conventional cotton plots whereas they were scarcely

observed in Bt cotton plots. Nevertheless, previous studies did not detect any measurable dif-

ference in parasitoid foraging between slightly-infested Bt and heavily-infested non-Bt plants

from the perspective of changes in profile of organic volatile compounds (VOCs) [53–56].

Besides the effects of plant-emitted volatiles, other possible mechanisms underlying the low

density of parasitoids in Bt cotton field deserves further research. Without replication of con-

ventional and Bt cotton crops (fields) in our study, it is possible that differences in parasitoid

numbers resulted from other factors, such as local landscape features. The meta-analysis by

Chaplin-Kramer et al.[57] has shown that landscape features on a narrower spatial scale is

more likely to influence specialist natural enemies (e.g. aphid parasitoids), whereas generalist

predators responded more strongly to landscape features at broader scales. In such a small-

scale landscape in our study, we assume that the difference in parasitoid abundance between

the conventional and Bt cotton crops might behave slightly differently in other fields showing

different landscape features.

The generalist predators and other arthropod natural enemies showed similar abundance

as well as similar patterns of population dynamics between Bt and conventional cotton plots.

Population densities of the assemblage “other natural enemies” mainly including Syrphidae,

Chrysopa (lacewings), Hemiptera (Miridae, Nabidae and Anthocoridae) did not differ

between the two cotton cultivars. Some species from this group are omnivorous predators.

Even though they frequently feed on plants by inserting their stylets into plant tissues and

sucking liquid content and liquefied materials through enzymatic degradation in salivary [58],

Bt toxins are not detectable in their bodies [59]. We assume that the impact of Cry protein in

Bt cotton on these predators was negligible. In addition, our results support the hypothesis

that response of generalist natural enemies to natural habitat tends to occur at large spatial

scales [57], not at small scale in the present study.
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Within-year seasonal declines of aphid abundance are often correlated with a high level of

predation and parasitism [60,61]. Such strong top-down forces have been shown in our study.

However, it appears that the change in parasitoid abundance alone was not strong enough to

result in different regulation strength on A. gossypii populations between Bt and conventional

cotton plots. In agro-ecosystems, aphids have complex population dynamics often character-

ized by wide variations of population density, both on a temporal and spatial scale [62]. Their

spatial-temporal distribution patterns can be influenced by many other organisms, not limited

to natural enemies which contribute to the suppression of aphid populations [6]. For example,

it remains unclear how A. gossypii population could be affected by the changes in plant suit-

ability (e.g. nutritional quality and defensive traits) induced by the assemblage of co-occurring

phytophagous pests (e.g. Bemisia tabaci Gennadius, Empoasca biguttula Shiraki and Tetrany-
chus cinnabarinus Boisduval). Indeed, it has been recently documented that changes in sec-

ondary metabolisms, e.g. reductions in gossypol and tannin contents in Bt cotton, have

benefited spider mites showing decreased generation time and increased fertility [63].

In conclusion, our data demonstrated that transgenic Bt cotton did not disrupt the top-

down forces contributing to the regulation of cotton aphid A. gossypii in central China. Our

current experimental design may not be optimal to compare Bt cotton and conventional cot-

ton due to the limited availability of fields. The experimental design should include several

field plots in future comparative studies. One prospective subject could be examining whether

the foraging behavior of parasitoid wasps are disrupted in Bt cotton plots in terms of plant-

emitted VOCs compared to conventional cotton plots [55,56]. It is also interesting to study

how the genetic engineering affect the indirect interactions between cotton aphid and other

herbivores, which can be mediated by plant and/or generalist predators [64,65].

Supporting Information
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