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Summary

� Xylem vulnerability to embolism is emerging as a major factor in drought-induced tree mor-

tality events across the globe. However, we lack understanding of how and to what extent cli-

mate has shaped vascular properties or functions. We investigated the evolution of xylem

hydraulic function and diversification patterns in Australia’s most successful gymnosperm

clade, Callitris, the world’s most drought-resistant conifers.
� For all 23 species in this group, we measured embolism resistance (P50), xylem specific

hydraulic conductivity (Ks), wood density, and tracheary element size from natural popula-

tions. We investigated whether hydraulic traits variation linked with climate and the diversifi-

cation of this clade using a time-calibrated phylogeny.
� Embolism resistance varied widely across the Callitris clade (P50: �3.8 to �18.8MPa), and

was significantly related to water scarcity, as was tracheid diameter. We found no evidence of

a safety-efficiency tradeoff; Ks and wood density were not related to rainfall. Callitris diversifi-

cation coincides with the onset of aridity in Australia since the early Oligocene.
� Our results highlight the evolutionary lability of xylem traits with climate, and the leading

role of aridity in the diversification of conifers. The uncoupling of safety from other xylem

functions allowed Callitris to evolve extreme embolism resistance and diversify into xeric

environments.

Introduction

In the light of current climate change, the role of environmental
fluctuation in driving biodiversity and its distribution is of partic-
ular interest (Thuiller et al., 2005, 2011). It is now clear that
rapid and pronounced changes in environmental conditions can:
reduce climatic niche availability, potentially driving populations
or species to extinction (Mittelbach et al., 2007; Eiserhardt et al.,
2015); open up new suitable niche space allowing range expan-
sion; drive adaptation; and even lead to the emergence of new
species (Pennington et al., 2004; Hua & Wiens, 2013; Koenen
et al., 2015; Qvarnstr€om et al., 2016). For example, the transition
to a colder and drier climate in the mid-to-late Miocene (c. 13.8–
5.3 million yr ago (Ma)) is associated with vegetation changes in
the Cape Flora of South Africa, leading to a major increase in
diversification in Aizoaceae (Dupont et al., 2011). Over the same
period, the South American orchid genus Hoffmannseggella radi-
ated into more open habitats with the cooling climate in eastern
Brazil (Antonelli et al., 2010). The emergence of the sclerophyll
biomes in Australia 25Ma has also been associated with adaptive

radiations, with evidence from the fossil record (Carpenter et al.,
1994; Hill, 2004) and using phylogenetics, for example, in
Banksia and eucalypts (Crisp et al., 2004). Although we do not
fully understand the rise of the angiosperms (Augusto et al.,
2014), climate shifts at the end of the Eocene c. 34Ma could also
explain the decline of some gymnosperm lineages (Crisp &
Cook, 2011).

Although some species have shown great capacity for adapta-
tion (Meyers & Bull, 2002) and shifts in distribution (Davis &
Shaw, 2001), reports of potential habitat contraction and increas-
ing extinction risk of tree species as a consequence of today’s
rapid climate change are increasing (e.g. Eiserhardt et al., 2015;
Corlett & Westcott, 2013; Sax et al., 2013). It thus becomes
apparent that in order to better predict climate change-induced
effects on diversity and habitat range of trees, it is necessary to
identify adaptive traits that could offer resistance to extinction
and have the potential to respond to natural selection during
rapid climate change.

For vascular plants, and tall trees in particular, providing a
continuous stream of water to their photosynthetic aerial shoots
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is one of their most vital needs and greatest challenges, especially
as climate change will increase frequency and severity of droughts
and heat waves (Stocker et al., 2013; Pfautsch, 2016). Water
transport in plants is driven by the process of transpiration at the
leaf–atmosphere interface, which generates a water-potential gra-
dient throughout the plant. Formalized by the cohesion-tension
theory (Dixon, 1914; Tyree & Zimmermann, 2002), water
transport is possible thanks to the strong hydrogen bonds
between water molecules that allow liquid water to remain in a
metastable state while at negative pressure, i.e. under tension.
The main drawback of this remarkable function is the risk of
xylem embolism, or breakage of the water column because of cav-
itation, which becomes ever more likely as evaporative demand
increases, and as soil water potential declines during drought.
After embolism, the air-filled conduits restrict water transport,
and high amounts of xylem embolism can lead to plant death
(Brodribb & Cochard, 2009; Urli et al., 2013). The breakdown
of the vascular system through embolism is thought to be
involved in multiple mass mortality events during and after
droughts in forests across the globe in recent decades (Anderegg
et al., 2012, 2016). Various adaptive mechanisms protect plants
from these potentially catastrophic events, such as limiting water
loss through transpiration and the drop in xylem pressure by clos-
ing stomata early during drought (Delzon & Cochard, 2014), or
xylem adaptations that limit the formation of air bubbles and the
irreversible spread of embolism (Schuldt et al., 2015; L€ubbe
et al., 2016). Recent advances have revealed that cavitation events
occur at air–sap interfaces within pores between functional and
embolized conduits (Choat et al., 2008; Lens et al., 2013). In
conifers, bordered pits contain a valve-like structure called the
torus which is deflected to block the pit aperture, protecting
functional tracheids from air entry (Bailey, 1916). While this
provides conifers with increased protection from embolism com-
pared with angiosperms (Maherali et al., 2004; Pittermann et al.,
2005; Choat et al., 2012), embolism still occurs as a result of
imperfect sealing of the pit aperture by the torus (Bouche et al.,
2014).

Plants need to balance embolism resistance (xylem safety) with
optimizing rates of water transport (xylem efficiency) to their
photosynthetic organs (Tyree & Zimmermann, 2002; Hacke
et al., 2006). The advantages of xylem safety are evident (i.e.
increased survival during drought), whereas xylem efficiency
allows increased carbon allocation to leaves relative to sapwood
area, for example, allowing rapid growth and optimizing photo-
synthesis in competitive settings (Santiago et al., 2004; Poorter
et al., 2010). The link between safety and efficiency is indirect, as
wider conductive elements transport water efficiently but are
weaker under the mechanical stress imposed by negative xylem
pressure in drought-tolerant species (Sperry et al., 2008). Thicker
cell walls could influence pit morphology, notably the pit mem-
brane, thereby increasing xylem embolism resistance (Tyree &
Sperry, 1989; Li et al., 2016). The final compromise reached
between safety and efficiency is strongly determined by species
ecology and phylogeny. For example, species growing in compet-
itive wet environments are more likely to maximize efficiency
over safety (Sperry et al., 2006; Choat et al., 2012). In any case,

there is little evidence of a universal and strong relationship
between safety and efficiency at a higher ecological and taxo-
nomic scale. This tradeoff is only suggested by the absence of
species with a xylem that combines both embolism resistance and
transport efficiency (Gleason et al., 2016). However, there are
many ‘incompetent’ species, i.e. with vasculature that is both vul-
nerable to embolism and inefficient for water transport. The
impact of water availability on water transport efficiency seems,
however, to be noticeable at more restricted evolutionary scales.
For instance, xeric Eucalyptus species evolved narrower vessels
and denser wood than species in more mesic environments,
reflecting a tradeoff of hydraulic traits in response to climate
across Australia (Pfautsch et al., 2016). Similarly, tracheid lumen
diameter tracks rainfall across Callitris columellaris populations
(Bowman et al., 2011).

At broad evolutionary scales there is substantial variation in
the xylem pressure inducing 50% loss of hydraulic conductance,
termed P50 (Maherali et al., 2004; Pittermann et al., 2012;
Bouche et al., 2014). On the other hand, at finer infrageneric and
intraspecific scales there is generally low variability (Delzon et al.,
2010) and little genetic differentiation for xylem embolism resis-
tance (Lamy et al., 2011; S�aenz-Romero et al., 2013; but see
David-Schwartz et al., 2016; Hajek et al., 2016). However, no
studies have examined embolism resistance among closely related
species over a wide climatic gradient. Callitris is a conifer genus
of shrubs and trees that underwent an ecological radiation with
the emergence of dry environments in Australia over the last 30
million yr (Pittermann et al., 2012). It is the largest genus of
Cupressaceae in the southern hemisphere, with 15–20 species
recognized by different authors (Hill & Brodribb, 1999; Farjon,
2005; Eckenwalder, 2009; Piggin & Bruhl, 2010). This clade dis-
plays a marked xeric affinity, despite spanning a huge rainfall gra-
dient across Australia and New Caledonia, i.e. from c. 200 to
over 2000 mm yr�1. With some of the most drought-tolerant
species currently known (Brodribb et al., 2010; Larter et al.,
2015), this clade presents an ideal group of species to investigate
plant ecophysiology and the development of drought tolerance
from an evolutionary perspective.

Our main objective was to investigate the evolution of the vas-
cular system of all members of the Callitris clade. First, we con-
structed an extensive physiological dataset of xylem embolism
resistance, xylem specific hydraulic conductivity and xylem
anatomical traits. We then obtained species occurrence data and
tested whether variation in hydraulic traits was linked to species
climatic preferences and the diversification of this clade, estab-
lished with a time-calibrated phylogeny based on DNA sequence
data from multiple loci. We hypothesized that, owing to the large
aridity gradient occupied by this clade, resistance to embolism
should vary widely and track climatic conditions. Given the
genus-level phylogenetic scale and extensive climatic gradient,
our second hypothesis was that a tradeoff existed between safety
and hydraulic efficiency, as a result of large selective pressures
from competition and climatic stress driving hydraulic traits.
Specifically, we expected the most xeric species to have a resistant,
less efficient xylem with many narrow tracheids, while species
from more mesic regions would have wider tracheids, favoring
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xylem efficiency but reducing safety from embolism. Our third
hypothesis was that if hydraulic traits in this group evolved
rapidly in response to climate, then phylogeny would have little
impact on traits and tradeoffs. In relation to this hypothesis, we
expected that the distribution of members of the Callitris clade
reflected an ecological radiation in response to increasing aridity
in the Australian region since the end of the Eocene c. 34Ma.

Materials and Methods

Collection of plant materials

For the purpose of this study, we collected samples from wild
populations for Actinostrobus acuminatus, Actinostrobus arenarius,
Actinostrobus pyramidalis, Callitris canescens, Callitris drummondii,
Callitris endlicheri, Callitris glaucophylla, Callitris gracilis, Callitris
muelleri, Callitris neocaledonica, Callitris roei, Callitris sulcata,
Callitris verrucosa, and Neocallitropsis pancheri and from botanical
gardens for Callitris baileyi, Callitris endlicheri, Callitris macleayana,
and Callitris monticola (Table 1; Fig. 1). We also included data
from previous studies for Callitris tuberculata, C. columellaris, C.
gracilis, Callitris preissii, Callitris rhomboidea and A. pyramidalis
(Brodribb et al., 2010; Delzon et al., 2010; Larter et al., 2015), and
pooled data from all sources for analysis. The close relationship
between the genera Callitris s.s., Neocallitropsis and Actinostrobus
(Pye et al., 2003; Piggin & Bruhl, 2010) led us to treat them as a
single Callitris clade (or Callitris s.l.). We collected straight
branches c. 40 cm long and 1 cm in diameter, using hand-held
secateurs or telescopic branch-cutters from sun-exposed parts of the
crown, although we expect little variation in xylem embolism resis-
tance across organs in conifers (Bouche et al., 2016). We sampled
three to 10 individuals depending on the availability of healthy
adult trees. We immediately removed all leaves on the branches,
and carefully wrapped the samples (in wet paper towels, plastic bags
and packing tape), to avoid any water loss during courier transport
to analytical facilities in Bordeaux, France. They were then shipped
as quickly as possible, refrigerated and maintained in a humid
environment until hydraulic measurements were conducted.

Species climate

The climate experienced by Callitris species varies widely from
hot, semiarid Mediterranean climate in southwestern and cen-
tral Australia to wet tropical or monsoonal climates in North-
ern Australia, Queensland and New Caledonia (Fig. 1). In
order to describe each species’ climate, we downloaded species
occurrence points from the Global Biodiversity Information
Facility (GBIF; Booth, 2014). After excluding data with pos-
sible species misidentification or GPS coordinate errors, we
extracted climate information for each point using climate
data from the WorldClim database (Hijmans et al., 2005)
using QGIS software (Quantum, 2011). We also obtained
potential evapotranspiration (P-ET) and aridity index (AI)
from the CGIAR-CSI database (Trabucco & Zomer, 2009).
We then extracted the mean and median values of the distri-
butions of each climatic variable for each species.

Physiological and anatomical traits

All hydraulic measurements were done with the standard proto-
col developed at the University of Bordeaux using the ‘Cavitron’
technique (Cochard et al., 2005), which uses centrifugal force to
induce a negative pressure in a spinning sample. The loss of
hydraulic conductance as a result of embolism is monitored while
incrementally decreasing the negative pressure experienced in the
xylem. We used a thicker, reinforced rotor specifically designed
to safely reach high speeds (26 000 g, or 13 000 rpm with a stan-
dard 27.5 cm rotor), inducing xylem pressure below �16MPa.
This technique allowed us to construct vulnerability curves and
simultaneously estimate xylem specific hydraulic conductivity Ks

(kg m�1 MPa�1 s�1), derived from the maximum conductance
measured at high xylem pressure divided by sample length and
sapwood area. A sigmoid model was fitted to each individual vul-
nerability curve (207 in total) from which we obtained the P50
parameter (MPa), which is the xylem pressure inducing 50% loss
of conductance (Pammenter & Vander Willigen, 1998). Values
were then averaged across all samples for each species.

Following xylem embolism resistance measurements, a 1–2 cm
segment was excised from the basal part of the samples in order
to conduct xylem anatomy measurements. Several transverse sec-
tions per individual were cut using a sliding microtome, stained
using safranine at 1%, and examined using a light microscope
(DM2500M; Leica Microsystems, Wetzlar, Germany). We
selected three individuals per species and took five digital images
per individual, which were then analyzed using ImageJ (NIH,
Bethesda, MD, USA). Magnification was 9400 for all samples
except for N. pancheri, C. sulcata and C. neocaledonica, for which
we used 9200 magnification to increase the total number of tra-
cheids visible on each image. Sample preparation and photogra-
phy were conducted at either the University of Bordeaux or
Western Sydney University (Hawkesbury Institute for the Envi-
ronment), using the same protocol. Images were manually edited
to remove imperfections before automatic image analysis.
Tracheids with an incomplete lumen (i.e. placed on the edge of
the images) were excluded from the analysis. Overall, 80 individ-
ual samples (three to five per species) and a total of 400 images
were analyzed, resulting in a total of 33 652 tracheids measured.
We extracted from each image the area of each tracheid lumen,
total image area and number of analyzed tracheids, and pooled
the data by individual for analysis. From the total analyzed area,
total tracheid number, and area of each tracheid, we derived for
each individual mean, minimum and maximum tracheid diame-
ter, the average number of tracheid per unit area (TF; n mm�2)
and the ratio of tracheid lumen area divided by total image area
(void to wood ratio; %).

According to the Hagen–Poiseuille law, hydraulic conductivity
of a conduit varies according to the fourth power of its diameter,
which means that larger tracheids contribute disproportionately
more to the overall hydraulic conductance (Tyree &
Zimmermann, 2002). To use a hydraulically meaningful measure
of tracheid diameter, we calculated the hydraulically weighted
hydraulic diameter (Dh; Tyree & Zimmermann, 2002), defined
as:
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Dh ¼
P

D4

N

� �1=4
Eqn 1

where N is the total number of tracheids and Dh is the mean
diameter required to achieve the same overall conductance with
the same number of conductive elements. We then calculated the
theoretical conductance (Kth; kg m

�1 MPa�1 s�1), which is the
theoretical rate of flow through a cylindrical pipe according to
the Hagen–Poiseuille law:

Kth ¼ D4
hpq

128 � g � TF Eqn 2

where g is the viscosity of water at 20°C (1.0029 10�9 MPa s)
and q is the density of water at 20°C (998.2 kg m�3). For appro-
priate units, we transformed Dh to m (9 10�6) and TF to m�2

(9 105).
Xylem water flow efficiency represents the joint conductivity

of both tracheid lumens (i.e. Kth) and bordered pits (Hacke et al.,
2005). We calculated pit conductivity Kpit (kg m

�1 MPa�1 s�1)
as follows:

Kpit ¼ 1

Ks
� 1

Kth

� ��1

Eqn 3

We macerated sapwood of 14 Callitris species and measured
length (lm) and counted bordered pits (hereafter pitting) of 700
individual tracheids (50 per species), for a subset of species repre-
sentative of the range of climate encountered by Callitris. To pre-
pare maceration slides (after Franklin, 1945), splinters of outer
sapwood were incubated for 12 h at 60°C in plastic vials (2 ml
Eppendorf) that contained acetic acid and hydrogen peroxide
(50 : 50). Following the incubation, splinters were repeatedly
washed and dehydrated in ethanol (50–70–96%) with water
before staining with safranin–ethanol solution. After excess stain
was removed, samples were mounted on glass slides, and cells
were imaged using a light microscope and a digital camera (Leica
DFC 500); ImageJ was again used for image analysis.

Wood density was estimated using X-ray imagery (Polge,
1966) for three individuals per species on transversal sections of
c. 1 mm thickness. We used a silicone scale of known densities
for calibration, and analyzed the images using Windendro (Guay
et al., 1992) to obtain two radial density profiles per section, from
which we estimated mean wood density (g cm�3).

Phylogenetic reconstruction

We built on the increased availability of molecular sequences to
produce a new phylogeny of Callitris, Actinostrobus and
Neocallitropsis. We took a broad view of species delimitations, i.e.
treating C. columellaris, Callitris intratropica, and C. glaucophylla
separately, as well as C. tuberculata, C. preissii, C. verrucosa and
C. gracilis. Various treatments of these as subspecies and/or
synonyms are available in the literature (Hill, 1998; Hill &
Brodribb, 1999; Farjon, 2005, 2010; Eckenwalder, 2009). WeT
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used the PHLAWD pipeline (Smith et al., 2009) to obtain
sequences from GenBank (Benson et al., 2011) with the aim of
constructing a large multilocus dataset. We used a range of loci
from plastid (rbcL, matK, trnL, psbB, petB) and nuclear DNA
(ITS, needly, leafy). To complete the dataset, we used unpub-
lished sequences (rbcL and matK) for the species C. roei,
C. monticola, C. baileyi, and C. columellaris (N. Nagalingum,
pers. comm.).

Alignments from PHLAWD were manually trimmed and
checked, and we selected the most appropriate DNA substitution
models using maximum likelihood implemented in MEGA
(Tamura et al., 2011) (see Supporting Information Table S1 for
details). To check for incongruence between the chloroplastic
and nuclear datasets, we first analyzed both matrices separately
using maximum likelihood with RAXML (v.8.0.20) and bayesian
inference implemented in BEAST v.1.8.2 (Drummond & Ram-
baut, 2007) (Fig. S1). Finally, we combined the data to construct
a time-calibrated phylogeny for the subfamily Callitroidae
(Cupressaceae). We used the recognized position of Papuacedrus
as sister to all other species in this group to root the tree (Leslie
et al., 2012; Mao et al., 2012). We set a minimum constraint on
the age of crown Callitroidae (Leslie et al., 2012; Mao et al.,
2012) by using the Patagonian fossil Papuacedrus prechilensis
(Wilf et al., 2009), based on an ovulate cone from the early to
mid-Eocene (51.9–47.5 Ma). The maximum age for the appear-
ance of crown Callitroidae was conservatively set by evidence that
crown Cupressaceae (i.e. subfamilies Callitroidae and Cupres-
soidae) was present by 99.6Ma, using leafy shoots and cones of
the fossil Widdringtonia americana from the Cenomanian
(McIver, 2001). Although this fossil is probably too old to belong
to the extant genus Widdringtonia, it definitely belongs to the

Cupressaceae s.s., that is, excluding the Taxodioid lineages. We
used the earliest evidence of Callitris (Paull & Hill, 2010) to con-
strain the crown of the Callitris clade. C. leayana from early
Oligocene Tasmania has cone scales and leaves in whorls of three,
which are easily distinguishable from Fitzroya, the only other
extant genus with this arrangement. However, this fossil bears
characters of both Callitris and Actinostrobus, and the phyloge-
netic relationships between the two genera are still ambiguous
(Pye et al., 2003; Piggin & Bruhl, 2010). Finally, we used
Fitzroya acutifolia to calibrate the split between Fitzroya and
Diselma, based on the high similarity between the fossil leaves
and cones from the early Oligocene and extant Fitzroya (Paull &
Hill, 2010). We used a uniform prior for the root calibration
(49.9–99.6Ma), and lognormal priors for the crown Callitris
clade and the Fitzroya–Diselma split, specified so that the 95%
confidence interval (CI) spanned 28.3–48.3 Ma. We ran the
chain for 100 million generations, sampling every 10 000. We
discarded the first 25% of the chain as burn-in and evaluated
convergence using TRACER v.1.6 – all effective sample sizes were
well above 200.

Statistical analyses

Vulnerability curve fitting was done in SAS 9.4 (SAS Institute
Inc., Cary, NC, USA). All remaining data manipulation and
analysis were run in R v.3.2.3 (R Core Team, 2015). We per-
formed linear regressions on raw data and log-transformed data
with nearly identical results, so we present only untransformed
correlations to simplify interpretation. When significant rela-
tionships appeared nonlinear, we fitted a nonlinear model (i.e.
y = a9log(x) + b) with nonlinear least-squares (NLS function) in

Deserts and xeric shrublands
Mediterranean forests, woodland and scrub

Montane grasslands and shrublands
Temperate broadleaf and mixed forests
Temperate grasslands, savanas and shrublands

Tropical and subtropical moist broadleaf forests
Tropical and subtropical dry broadleaf forests

Tropical and subtropical grasslands, savannas and shrublands

Actinostrobus arenarius
Actinostrobus pyramidalis

Actinostrobus acuminatus

Callitris tuberculata Callitris canescens

Callitris roei
Callitris drummondii

Callitris glaucophylla

Callitris endlicheri

Callitris muelleri

Callitris sulcata
Callitris neocaledonica

Callitris gracilis

Callitris verrucosa

Neocallitropsis pancheri

Fig. 1 Map of locations of wild populations
sampled for this study. Colors represent
terrestrial eco-regions taken from Olson et al.

(2001).
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R. However, to allow comparisons across bivariate relation-
ships, in all cases we report the R2 values from the linear cor-
relations. Phylogenetic generalized least squares (PGLS) were
run using the CAPER package v.0.5.2 (Orme, 2013). PGLS
accounts for the statistical nonindependence in cross-species
trait correlations by adjusting the residual error structure using
a variance/covariance matrix derived from the phylogeny
(Garamszegi, 2014). It explicitly allows for varying amounts of
phylogenetic signal in the data by using Pagel’s lambda (Pagel,
1999), thus removing the risk of overcorrecting for phylogeny
when shared evolutionary history does not affect trait relation-
ships. We used PHYTOOLS v.0.5 (Revell, 2013) to map the evo-
lution of P50 onto the time-calibrated phylogeny using a
Brownian motion model of evolution and maximum likeli-
hood. We used APE v.4.0 (Paradis et al., 2004) to estimate
ancestral states, to plot the number of lineages through time,
and to obtain the gamma statistic (Pybus & Harvey, 2000).

Results

Variation in hydraulic traits

Xylem embolism resistance varied widely across the Callitris
clade, from P50 =�3.8� 0.1 MPa in C. neocaledonica to
�18.8� 0.6MPa in C. tuberculata (mean� SE; Fig. 2;
Table S2). P50 had a mean of �11.7� 0.7 MPa across the whole
clade. Xylem specific hydraulic conductivity (Ks) varied approxi-
mately sixfold, from 0.187� 0.014 kg m�1 MPa�1 s�1 in
C. oblonga to 1.25� 0.05 kg m�1 MPa�1 s�1 in C. intratropica,
with a clade-wide mean of 0.52� 0.05 kg m�1 MPa�1 s�1. Our
analysis of xylem anatomy uncovered extensive variation, with
some species containing many small, densely packed tracheids
(e.g. C. tuberculata, mean diameter = 9.04� 0.23 lm, tracheid
frequency = 3250� 126 n mm�2), while others had fewer but
wider tracheids (e.g. C. sulcata, 14.14� 0.77 lm and

Neocallitropsis pancheri

Callitris macleayana

Callitris sulcata

Callitris preissii

Callitris canescens

Callitris columellaris
Callitris intratropica

Callitris glaucophylla

Callitris tuberculata

Callitris verrucosa

Callitris gracilis

Callitris endlicheri

Callitris rhomboidea

Callitris muelleri

Actinostrobus acuminatus
Actinostrobus pyramidalis

Actinostrobus arenarius

Callitris drummondii

Diselma archeri

Widdringtonia nodiflora
Libocedrus bidwillii

Libocedrus yateensis

Pilgerodendron uviferum

Papuacedrus papuana

Callitris baileyi

Callitris oblonga

Callitris monticola

Callitris roei

Fitzroya cupressoides
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Fig. 2 Time-tree of Callitroidae and the evolution of resistance to embolism (P50) in the Callitris clade. (a) Phylogeny of Callitroidae. Blue bars at nodes
represent 95% highest posterior density from the BEAST analysis, and numbers represent Bayesian posterior probabilities (not shown if < 0.95). Branches of
the phylogeny are colored according to P50 reconstructed using the Brownian motion model (scale bottom left). Stars mark fossil-calibrated nodes. Letters
A–E indicate the five subclades within crown Callitris. (b) Bar plot of P50 for each species in the phylogeny, colored according to species aridity index (AI).
Red, AI < 0.5; green, 0.5 <AI < 1; blue, AI > 1. Callitris neocaledonica is the only missing species: P50 =�3.8 MPa, AI = 2.0. Pli., Pliocene; P., Pleistocene.

� 2017 The Authors

New Phytologist� 2017 New Phytologist Trust
New Phytologist (2017) 215: 97–112

www.newphytologist.com

New
Phytologist Research 103



1607� 178 n mm�2). Accordingly, theoretical hydraulic con-
ductance (Kth) also displayed a wide range of values, with the
xylem of C. sulcata c. 10 times more efficient than that of
C. gracilis (13.2� 1.7 and 1.15� 0.14 kg m�1 MPa�1 s�1,
respectively). Comparatively, variation in wood density was mod-
erate yet significant, from 0.57� 0.02 g cm�3 in C. oblonga to a
maximum of 0.74� 0.04 g cm�3 in N. pancheri.

Using occurrence data, we found that across the geographical
range of the Callitris clade, mean annual precipitation (MAP)
varied from c. 300 mm for C. tuberculata in Western Australia to
over 2100 mm for N. pancheri in New Caledonia. Similar varia-
tion was found for the aridity index (AI), ranging from 0.21 to
2.03 for C. tuberculata and C. neocaledonica, respectively. Mean
annual temperature varied from 12.8°C for C. oblonga to 26.8°C
for C. intratropica.

We tested the role of water availability in determining species’
hydraulic properties. More negative P50 was strongly related to
increasing aridity across species ranges (Fig. 3a,b; R² = 0.78 and
0.81 for MAP and AI, respectively). This trend was confirmed
using PGLS, proving the adaptive role of xylem embolism resis-
tance in Callitris. There was nonetheless wide variation in P50 for
similar rainfall values. For example, in the most arid environ-
ments with MAP < 450 mm, embolism resistance was in the
range P50 =�12 to �19MPa. Tracheid dimensions also track
rainfall, with increasing precipitation associated with wider tra-
cheids (Fig. 3g,h; R ² = 0.45 and 0.48 for MAP and AI, respec-
tively). Neither Ks (Fig. 3d–f) nor wood density (Fig. 3j–l) were
linked to MAP in the studied clade. However, these traits were
related to mean annual temperature, with warmer climates linked
to higher transport efficiency and higher wood density, although
R² values were low (Fig. 3f,l; R² = 0.245 and 0.135, respectively).
By contrast, we found no evidence for an effect of temperature
on P50 or tracheid diameter (Fig. 3c,i). Accounting for phyloge-
netic proximity using PGLS did not impact these trait–climate
relationships (Table S3). We note that since MAP enters into the
calculation of AI, these two variables are strongly correlated.

In our dataset, we found that P50 and tracheid diameter were
strongly positively correlated, and P50 and tracheid frequency
were negatively correlated, with resistant species having numerous
smaller tracheids compared with species that were more vulnera-
ble (Fig. 4a,b). No relationship was detected between P50 and
void-to-wood ratio or wood density (Fig. 4c,d). In turn, Ks

appeared to be disconnected to some extent from tracheid and
wood traits, showing only a significant relationship with tracheid
frequency (Fig. 4f). The remarkably high conductance measured
for C. intratropica must be highlighted, as it is the result of a
highly unusual combination of hydraulic traits: narrow Dh

(Fig. 4e), low tracheid frequency (Fig. 4f), and moderate void-to-
wood ratio (Fig. 4g) and wood density (Fig. 4h). Overall,
hydraulic safety (P50) and efficiency (Ks) were not closely linked
to wood traits in the Callitris clade, yet resistant species developed
smaller, more frequent tracheids. We also investigated the safety–
efficiency tradeoff hypothesis, but we found no significant rela-
tionship between P50 and Ks (Fig. 5). In this line, bordered pit
conductivity was unrelated to P50 (Fig. 5c). By contrast, theoreti-
cal maximum hydraulic conductance (Kth) was negatively

correlated with xylem embolism resistance. Resistant species had
a theoretically less efficient xylem when only considering tracheid
lumen conductivity (Fig. 5b), which is consistent with smaller
tracheids being related to embolism resistance (Fig. 4a). By con-
trast, bordered pit conductivity (Kpit) was unrelated to P50, and
remained around or below 1 kg m�1 MPa�1 s�1 across species
(Fig. 5c). These relationships were not impacted by phylogenetic
history (Table S4). Finally, tracheid length and average number
of pits per tracheid were weakly correlated with embolism resis-
tance, where more embolism-resistant species had shorter tra-
cheids with fewer pits (e.g. C. tuberculata, 1167� 35 lm and
38� 2 pits) than more vulnerable species (e.g. C. macleayana,
1931� 43 lm and 81� 3 pits). However, higher pitting was not
associated with an increase in overall conductance (Fig. S2).

Phylogeny and trait evolution

Our phylogenetic analyses recovered the well-recognized relation-
ships within the subfamily Callitroidae, with the Pilgerodendron–
Libocedrus clade sister to remaining species. The Diselma-Fitzroya
clade is closely allied to Widdringtonia (Fig. 2). Within the
Callitris s.l. group containing the paraphyletic Callitris,
Actinostrobus and Neocallitropsis, early divergences dated to
between 30 and 25Ma are not well resolved (Fig. 2). We found
five separate subclades (see letters in Fig. 2): C. drummondii and
C. baileyi (A), the three Actinostrobus species (B), two tropical
northeastern clades composed of the New Caledonian species N.
pancheri and C. sulcata (B) and C. macleayana (C) and a well-
supported core Callitris clade encompassing the remaining Aus-
tralian species (E), which is comfortably the most species-rich
group within Callitris (14 species).

When examining diversification trends, our phylogenetic anal-
ysis indicates an upward shift c. 30 Ma (Fig. 6a), with the rapid
successive divergences of the five subclades identified in Fig. 2a. A
second acceleration in diversification corresponds with the diver-
gences in the core Callitris clade (clade E in Fig. 2a), c. 17Ma
and continuing to the present. Tempo of diversification varied
through time, with a c-statistic of 2.36 (P = 0.02), indicating
either an early decrease in extinction rates or a pulse of speciation
toward the present (Pybus & Harvey, 2000). By mapping the
evolution of xylem embolism resistance onto the phylogeny, we
showed that several lineages achieved extreme P50 under
�15MPa independently over the last 10 million yr, i.e. A.
arenarius, C. canescens, C. columellaris and C. tuberculata
(Fig. 2a). Overall, P50 was extremely labile, with large differences
between closely related species, for example C. monticola and
C. roei (P50 =�8.8 and �12.2 MPa, respectively), C. oblonga and
C. canescens (�10.9 and �16.9MPa), N. pancheri and C. sulcata
(�4.1 and �8.2MPa) and A. pyramidalis and A. arenarius
(�11.8 and �15.2MPa). Related species of the Callitroideae
subfamily are relatively vulnerable to xylem embolism, e.g.
Papuacedrus papuana (P50 =�4.7MPa) and Pilgerodendron
uviferum (P50 =�4.4MPa). The ancestral P50 reconstruction
inferred that the ancestral state in the Callitroidae subfamily was
c. �7.2MPa (95% CI:�1.6 to �12.4MPa), and that the com-
mon ancestor of the Callitris clade was moderately resistant, with
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indicated by asterisks: ***, P < 0.001; **, P < 0.01; *, P < 0.05; ns, nonsignificance at a = 0.05. Dashed curves in (a) and (b) represent the best fit nonlinear
model. C_tu, Callitris tuberculate; C_in, C. intratropica; N_pa, Neocallitropsis pancheri; P-ET, potential evapotranspiration. Red, AI < 0.5; green,
0.5 <AI < 1; blue, AI > 1. Error bars represent� SE.
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P50 ~�10.4MPa (95% CI: �8 to �12.9MPa). Details for the
reconstructed P50 values at each node of the phylogeny can be
found in Fig. S3.

Discussion

Evolution of P50 and the adaptive radiation of Callitris

Our results provide strong evidence that the evolution of extreme
xylem embolism resistance accompanied the radiation of the
Callitris clade and was driven by the aridification of the
Australian continent during the last 30 million yr.

The Callitris clade is by far the most embolism-resistant group
of trees in the world, containing multiple extreme P50 records
(i.e. C. glaucophylla (�14.4MPa), C. preissii (�15MPa), A.
arenarius (�15.2MPa), C. columellaris (�15.8MPa), C. canescens
�16.9MPa) and C. tuberculata (�18.8 MPa)). Only a handful
of other gymnosperm species reach P50 values lower than
�13MPa, for example in Juniperus (Willson et al., 2008; Choat
et al., 2012) and Tetraclinis (Bouche et al., 2014), and also
conifers from the Cupressaceae family. Previous studies at
broader evolutionary and geographical scales found a weak P50–
rainfall relationship, reporting both vulnerable and resistant
species in areas of low precipitation (Brodribb & Hill, 1999;

Maherali et al., 2004; Choat et al., 2012; Brodribb et al., 2014).
By contrast, our study at a regional, more restricted evolutionary
scale reveals a strong relation between xylem embolism resistance
and MAP (Fig. 2a). Further, our results suggest that variation in
P50 can be largely predicted by local AI (Fig. 2b). These results
reveal two contrasting patterns in extant Callitris that either
occupy high rainfall environments and have relatively vulnerable
xylem or are distributed in xeric or seasonally dry environments
with much less vulnerable xylem.

The poor fossil record of Callitris (Hill & Brodribb, 1999;
Paull & Hill, 2010) and uncertainty in deep divergences in both
our study and previous work (Pye et al., 2003; Piggin & Bruhl,
2010) shrouds in uncertainty the inference of ancestral ecology or
drought tolerance in the Callitris clade. However, our mapping
of P50 across the Callitroidae suggests that the vascular apparatus
of the last common ancestor of Callitris was less resistant to
drought-induced xylem embolism (Fig. 2a). In line with our
results, the earliest definite fossil member of this clade is dated to
c. 30Ma and is associated with an assemblage of rainforest taxa,
but shares characters with modern Callitris species found in both
dry and wet environments (Paull & Hill, 2010). Before this time
most of Australia was covered with warm and temperate rain-
forests, with year-round wet climates, but the end of the Eocene
(34Ma) is marked by a global cooling event and a major drop in
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sea level (Martin, 2006; Macphail, 2007). This cooling trend is
visible in the oxygen-isotope composition record (Fig. 6c) and is
linked to lower rainfall based on paleosols from central Australia
(Fig. 6b). Concomitantly, vegetation shifts indicate the existence
of dry seasons and the emergence of the open woodland

ecosystems, at least in central Australia (Crisp et al., 2004;
Martin, 2006; Fujioka & Chappell, 2010). The onset of more
severe aridity in mainland Australia is dated to the mid-Miocene
(Martin, 2006; Fujioka & Chappell, 2010; Metzger & Retallack,
2010). The extreme aridity over much of central Australia today
is relatively young and linked to the glacial cycles in the northern
hemisphere c. 1–4Ma; (Crisp et al., 2004; Byrne et al., 2008).
Over this period, highly resistant xylem seems to have evolved
multiple times independently in different lineages within the
group, as a result of convergent evolution. For instance, analo-
gous low P50 values are expressed in Actinostrobus and in the rest
of the Callitris clade. Meanwhile, our analysis found that the
diversification of the Callitris clade happened in two successive
pulses, the first at c. 30Ma and the second from the mid-
Miocene onwards (i.e. from c. 16Ma to the present), coinciding
with the major shifts in the climate of the region. This may
underpin increasing aridification as a major driving force in
Callitris evolutionary history, and the evolution of extreme xylem
embolism resistance as a main trigger of their diversification, pro-
viding Callitris with an outstanding competitive advantage over
the last 30 million yr.

On the lower end of the Callitris xylem embolism resistance
spectrum, we find a group of New Caledonian species (clade C;
Fig 2a), which occur in tropical forests with significantly higher
rainfall regimes. Previous work has shown that past climatic refu-
gia may have persisted in the New Caledonia during the last
glacial cycle, mitigating the significant drought that affected the
region (Pouteau et al., 2015). The high P50 values observed in the
New Caledonian clade may therefore result from a lack of
drought-exerted selective pressure. Despite the remarkable
diversity of conifers in New Caledonia (Jaffr�e et al., 1994; De
Laubenfels, 1996), the Callitris clade is poorly represented with
only three species, compared with 13 species of Araucaria. These
are highly vulnerable to xylem embolism, with P50 typically in
the range of �2 to �3MPa (Bouche et al., 2014; Zimmer et al.,
2016). Both these groups are threatened by climate change, as a
result of their fragmented distributions and reduced habitat
linked to human activity (Beaumont et al., 2011; Pouteau &
Birnbaum, 2016). These taxa have different histories in Australia:
Araucaria diversity has declined to only two extant species over
the last 30 million yr (Kershaw & Wagstaff, 2001), probably
because of their limited tolerance to drought (Zimmer et al.,
2016). On the other hand, Callitris has thrived, largely thanks to
the evolution of its xylem driven by reduced water availability.

Coevolution of xylem traits

A drought tolerance strategy based on a highly embolism-
resistant xylem is expected to come with costs, notably with
higher carbon investment in conduit walls to cope with extreme
xylem tensions and a reduction in water transport efficiency as a
result of the associated reduction in conduit size (Hacke et al.,
2001; Sperry, 2003; Pittermann et al., 2006a,b, 2011). High
embolism resistance in xeric Callitris species is associated with
small conduits, which is consistent with the trend in conifers and
angiosperms (Sperry et al., 2006). Similarly to the trend across all
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conifers (Hacke et al., 2001), we found no species with high
embolism resistance and low wood density. However, we found
no evidence of an influence of aridity or P50 on wood density,
and the highest wood density was found in N. pancheri, the
species with the highest P50 measured in this study, a small slow-
growing tree found on ultramafic soils in hot tropical climates

with high rainfall. Wood density is a key functional trait that is
determined by many factors, for example ring width, temperature
and soil fertility (Chave et al., 2006; Heineman et al., 2016). It is
worth noting here that all three New Caledonian species have
high wood density and are found on skeletal, poor ultramafic
soils, characterized by low concentrations of nitrogen, potassium,
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phosphorus, and calcium, and sometimes toxic concentrations of
magnesium, nickel and manganese (Jaffr�e, 1995). Additionally,
and in spite of a significant reduction in tracheid diameter, we
found no significant decrease in xylem specific hydraulic conduc-
tance with increasing aridity and increasing resistance to
embolism. This is in agreement with the lack of a linear trend
across all conifers (Brodribb & Hill, 1999; Gleason et al., 2016).

How do embolism-resistant Callitris species maintain high
water flow while reducing tracheid diameter? Xylem specific con-
ductivity in conifers is strongly influenced by tracheid length
and the total area of pits connecting adjacent tracheids (Pitter-
mann et al., 2005). In Callitris, however, we found no evidence
of a relationship between tracheid length or number of pits and
Ks, while more resistant species did tend to have shorter tracheids
and fewer pits (Fig. S2). This could be linked to the increased
probability of a rare ‘leaky’ pit in tracheids with more numerous
pits, similar to the ‘rare pit’ hypothesis in angiosperms (Choat
et al., 2003; Wheeler et al., 2005). Resistance of pits to water
flow is mainly linked to the size and distribution of pores in the
pit membrane and the depth and width of the pit aperture tun-
nel (Hacke et al., 2004; Bouche, 2015). Embolism resistance is
linked to the sealing of the pit aperture by the torus in conifers
(Domec et al., 2006; Cochard et al., 2009; Delzon et al., 2010;
Pittermann et al., 2010; Bouche et al., 2014). Increasing torus
size relative to pit aperture (i.e. increasing torus overlap) has
been shown to be related to more negative P50, but does not
reduce overall pit conductivity, which is mostly related to the
size of pores in the margo and the pit aperture dimensions
(Hacke et al., 2004; Pittermann et al., 2010; Bouche, 2015).
Our results demonstrate that in the Callitris clade, water flow
through vascular tissue is mostly limited by pit resistivity, indi-
cated by Kpit << Kth, as in other conifers (Pittermann et al.,
2006a). Additionally, bordered pits can be efficient for water
transport, leading to high values of Kpit, and can also limit air-
seeding under high xylem tension (Pittermann et al., 2005;
Domec et al., 2006). A prime example is C. intratropica, with
average tracheid diameters (Dh = 14.2 lm; see Fig. 3) but by far
the highest xylem conductivity in Callitris
(125 10�5 m²MPa�1 s�1), coupled with highly resistant xylem
(P50 =�12.8MPa).

In other conifer genera, variation in xylem embolism resistance
seems to be limited, for example in Pinus, in which P50 varies
between c. �3 and �5MPa (Delzon et al., 2010). The extraordi-
nary lability of embolism resistance in the Callitris clade is proba-
bly linked to their capacity to uncouple xylem safety from
construction cost and xylem efficiency. Additionally, Callitris
species display a typical anisohydric behavior, allowing the xylem
midday water potential to track declining soil water potential dur-
ing drought (Brodribb et al., 2013). Unlike many other conifer
species, they use leaf desiccation rather than high concentrations
of ABA to induce stomatal closure, allowing them to recover more
quickly after rewatering (Brodribb & McAdam, 2013; Brodribb
et al., 2014). However, continued leakage of water vapor from the
leaf surface through closed stomata exposes their xylem to more
negative water potential during prolonged drought – hence the
need for more negative P50 to avoid embolism-induced loss of

hydraulic conductance. This derived strategy is followed by both
Callitris and their sister-taxa in the Callitroidae subfamily (e.g.
Austrocedrus, Widdringtonia, Fitzroya). A possible cost of this
strategy could be the reinforcement of the leaves of these species,
allowing them to endure extremely low leaf water potential before
suffering leaf damage during drought (e.g. �8MPa in Callitris
rhomboidea (Brodribb et al., 2014), and �11MPa in
C. columellaris and C. preissii (Brodribb et al., 2010)). The more
conservative water management strategy evident in many other
conifers (e.g. Pinaceae, Araucariaceae) could help to explain the
absence of very high embolism resistance in these clades (Delzon
et al., 2010; Brodribb et al., 2014).

Our results confirm the evolutionary lability of xylem resistance
to embolism, with a transition towards extreme resistance of several
species within the Callitris clade. Combined with the onset of severe
aridity in Australia, our results detail the remarkable adaptive radia-
tion of this group. Despite overwhelming evidence for the role of
decreasing water availability in shaping xylem traits, we found no
evidence of its effect on xylem water transport efficiency and wood
density. Species from more xeric areas develop smaller tracheids,
but both wood traits and embolism resistance are totally discon-
nected from overall xylem conductivity. This suggests a lack of
tradeoffs between construction costs and safety, on the one hand,
and efficiency on the other. We also highlight a likely evolutionary
role of pit-level traits in this clade, regarding hydraulic safety and
efficiency. While this clade has shown a remarkable capacity to
adapt and even thrive in increasingly arid conditions, modern cli-
mate change largely exceeds the pace of past climate upheavals.
Many of the more vulnerable Callitris species have small restricted
distributions and are already threatened by habitat destruction
through land-use change and regular fires (IUCN, 2015), and could
therefore be in severe danger of extinction in the coming decades.
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