In vivo FRET–FLIM reveals cell-type-specific protein interactions in Arabidopsis roots - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Nature Année : 2017

In vivo FRET–FLIM reveals cell-type-specific protein interactions in Arabidopsis roots

Résumé

During multicellular development, specification of distinct cell fates is often regulated by the same transcription factors operating differently in distinct cis-regulatory modules(1-3), either through different protein complexes, conformational modification of protein complexes, or combinations of both. Direct visualization of different transcription factor complex states guiding specific gene expression programs has been challenging. Here we use in vivo FRET-FLIM (Forster resonance energy transfer measured by fluorescence lifetime microscopy) to reveal spatial partitioning of protein interactions in relation to specification of cell fate. We show that, in Arabidopsis roots, three fully functional fluorescently tagged cell fate regulators establish cell-type-specific interactions at endogenous expression levels and can form higher order complexes. We reveal that cell-type-specific in vivo FRET-FLIM distributions reflect conformational changes of these complexes to differentially regulate target genes and specify distinct cell fates.

Dates et versions

hal-01606777 , version 1 (02-10-2017)

Identifiants

Citer

Yuchen Long, Yvonne Stahl, Stefanie Weidtkamp-Peters, Marten Postma, Wenkun Zhou, et al.. In vivo FRET–FLIM reveals cell-type-specific protein interactions in Arabidopsis roots. Nature, 2017, 548 (7665), pp.97-102. ⟨10.1038/nature23317⟩. ⟨hal-01606777⟩
249 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More