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Abstract Plasma Membrane is the primary structure for adjusting to ever changing conditions.

PM sub-compartmentalization in domains is thought to orchestrate signaling. Yet, mechanisms

governing membrane organization are mostly uncharacterized. The plant-specific REMORINs are

proteins regulating hormonal crosstalk and host invasion. REMs are the best-characterized

nanodomain markers via an uncharacterized moiety called REMORIN C-terminal Anchor. By

coupling biophysical methods, super-resolution microscopy and physiology, we decipher an original

mechanism regulating the dynamic and organization of nanodomains. We showed that targeting of

REMORIN is independent of the COP-II-dependent secretory pathway and mediated by PI4P and

sterol. REM-CA is an unconventional lipid-binding motif that confers nanodomain organization.

Analyses of REM-CA mutants by single particle tracking demonstrate that mobility and

supramolecular organization are critical for immunity. This study provides a unique mechanistic

insight into how the tight control of spatial segregation is critical in the definition of PM domain

necessary to support biological function.

DOI: 10.7554/eLife.26404.001

Introduction
Membrane proteins and lipids are dynamically organized in domains or compartments. Emerging

evidences suggest that membrane compartmentalization is critical for cell signaling and therefore

for development and survival of organisms (Grecco et al., 2011). The understanding of molecular

mechanisms governing protein sub-compartmentalization in living cells is one of the most critical

issues regarding the comprehension of how membranes function.
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In this paper, we exploit the protein family REMORIN (REMs), the best-characterized PM-domain

markers in plants (Raffaele et al., 2009; Jarsch et al., 2014; Jarsch and Ott, 2011). REMs belong

to a multigenic family of six groups encoding plant-specific membrane-bound proteins involved in

responses to biotic and abiotic stimuli (Raffaele et al., 2009; Jarsch et al., 2014; Jarsch and Ott,

2011; Raffaele et al., 2007; Gui et al., 2014; Jamann et al., 2016). The physiological functions of

REMs have been poorly characterized. To date, their involvement has been clearly reported in

plant-microbe interactions and hormonal crosstalk: in Solanaceae, group 1 REMs limit the spreading

of Potato Virus X (PVX), without affecting viral replication (Raffaele et al., 2009), and promote sus-

ceptibility to Phytophthora infestans (Bozkurt et al., 2014). A group 2 REM was described as essen-

tial during nodulation process in Medicago truncatula (Lefebvre et al., 2010; Tóth et al., 2012). In

rice, a group 4 REM is upregulated by abscissic acid and negatively regulates brassinosteroid signal-

ing output (Gui et al., 2016). Arabidopsis group 4 REMs play also a role as positive regulators of

geminiviral infection (Son et al., 2014). Finally, group 1 and group 6 REMs regulate the PM-lined

cytoplasmic channels called plasmodesmata (PD), specialized nanochannels allowing intercellular

communication in plants. Remarkably, these latter isoforms of REMs were found to be able to mod-

ify PD aperture leading to a modification of viral movement (Raffaele et al., 2009; Perraki et al.,

2014) and an impact on the grain setting in rice, respectively (Gui et al., 2014). To fulfil these func-

tions, REMs need to localize to the PM (Perraki et al., 2012; Bozkurt et al., 2014). Nevertheless,

the functional relevance of REM PM-nanodomain organization and the molecular mechanisms under-

lying PM-nanodomain organization of REM remain to be elucidated.

Our groups defined a short peptide located at the C-terminal domain of REM, called REM-CA

(REM C-terminal Anchor) as a novel membrane-binding domain shaped by convergent evolution

among unrelated putative PM-binding domains in bacterial, viral and animal proteins. (Perraki et al.,

2012; Raffaele et al., 2013; Konrad et al., 2014). REM-CA is necessary for PM localization of REMs

and sufficient to target a given soluble protein (e.g. GFP) to the PM, highlighting that PM-domain

localization is conferred by the intrinsic properties of REM-CA. REM-CA binds in vitro to polyphos-

phoinositides but the association of REM-CA with the PM is not limited to electrostatic interactions

and the final interaction with PM display anchor properties similar to intrinsic protein (Perraki et al.,

2012). REM-CA can be S-acylated (Hemsley et al., 2013), although this modification is not the

determinant for their localization to membrane domains, since deacylated versions of some REMs

remain able to localize to membrane domains (Jarsch and Ott, 2011; Hemsley et al., 2013). The

specificity of targeting, the anchoring and nanoclustering mechanisms mediated by REM-CA to the

PM inner-leaflet nanodomains remain therefore elusive.

In this paper, using various modeling, biophysical, high-resolution microscopy and biological

approaches, we deciphered an original and unconventional molecular mechanism of REM anchoring

to PM: the target from the cytosol to PM by a specific PI4P-protein interaction, a subsequent folding

of the REM-CA in the lipid bilayer, and its stabilization inside the inner-leaflet of the PM leading to

an anchor indistinguishable from an intrinsic membrane protein. By constructing mutants, we were

able to alter REM PM-nanodomain organization. Unexpectedly, single molecule studies of REM

mutants reveal that single-molecule mobility behavior is not coupled to supramolecular organization.

These mutants were unable to play their role in the regulation of cell-to-cell communication and

plant immune defence against viral propagation, emphasizing the putative role of PM nanodomains

in signal transduction involved in the plant cell’s responses against viruses.

Results and discussion
To specifically analyze the implication of REM-CA-lipid interactions in membrane targeting, we used

the naturally non-S-acylated REM variant: Solanum tuberosum REMORIN group 1 isoform three

called StREM1.3 (Figure 1—figure supplement 1). StREM1.3 is the best-studied isoform of REMs:

StREM1.3 is a trimeric protein (Perraki et al., 2012) that strictly localizes to the PM and segregates

in a sterol-dependent manner into ca. 100 nm nanodomains (Raffaele et al., 2009; Demir et al.,

2013). In this study, we use Nicotinana benthamiana leaf epidermal cells as a model tissue. In this

context, we showed that StREM1.3 is a functional homolog of the PM-localized Nicotinana ben-

thamiana endogenous group 1b REMs toward the restriction of Potato Virus X (PVX) spreading. Con-

sistently, NbREM1.2 and NbREM1.3 isoforms are highly expressed in leaf epidermis (Figure 1—

figure supplement 2). Importantly, PVX is a mechanically transmitted virusfor which the infection
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initiates in the epidermis and spreads from cell-to-cell via different tissues to reach the phloem vas-

culature and infect the whole plant (Cruz et al., 1998). In this context, leaf epidermis is the appropri-

ate tissue to study the role of PM-nanodomains in the cell’s responses to viruses.

StREM1.3 is targeted to PM domains by a mechanism likely
independent of the secretory pathway
Trafficking studies of REMs in plant cells showed that their PM localization (observed as secant or

tangential views of epidermal cells, Figure 1A) seem not rely on vesicular trafficking (Raffaele et al.,

2013; Gui et al., 2015; Konrad et al., 2014). Consistent to what was shown for the rice group 4

REM (Gui et al., 2015), YFP-StREM1.3 was normally targeted to the PM upon inhibition of COP-II-

mediated ER-to-Golgi trafficking by overexpression of a dominant-negative SAR1 (de Marcos Lousa

et al., 2016) or by treatment with Brefeldin A (BFA), a pharmacological inhibitor of ADP-ribosylation

factor 1-GTPase and its effectors, ARF-guanine-exchange factors, of the COP-I-mediated secretory

pathway (Peyroche et al., 1999) (Figure 1B and Figure 1—figure supplement 3). Moreover, orga-

nization of YFP-StREM1.3 in the plane of the PM was not affected in presence of dominant-negative

SAR1 (Figure 1B) as quantified by the Spatial Clustering Index (SCI) calculated as the max-to-min

ratio of fluorescence intensity in the PM (Figure 1—figure supplement 4).

StREM1.3 being a hydrosoluble protein intrinsically attached to the PM with no transit peptide,

no transmembrane domain and no membrane anchor signatures (Raffaele et al., 2007), altogether

our data suggest that StREM1.3 (likely under the form of a trimer [Perraki et al., 2012]) is targeted

to the PM from the cytosol by a mechanism independent of the classical COP-II-mediated secretory

pathway and that the formation of StREM1.3 PM-nanodomains likely does not rely on secretory

trafficking.

REMORIN localization into highly-ordered PM-nanodomains is mediated
by sterol and phosphatidylinositol 4-phosphate
Group 1 REMs co-purify in the detergent-resistant membrane biochemical fraction with sterols and

phosphoinositides (PIPs) (Raffaele et al., 2009; Demir et al., 2013; Mongrand et al., 2004;

Furt et al., 2010). REM-CA also binds to PIPs in vitro (Perraki et al., 2012). We therefore tested the

involvement of both sterols and PIPs in the PM-nanodomain localization of StREM1.3 in vivo by mod-

ifying the PM lipid content. First, to alter membrane sterol composition we chose fenpropimorph

(fen). Fen alters the PM sterol-composition but not the total amount of sterols (Grison et al., 2015;

Hartmann et al., 2002). As expected, after fen treatment, the content of D5-sterols decreased con-

currently with an increase in cycloartenol (Figure 1—figure supplement 5A). This qualitative modifi-

cation of sterol composition had no effect on the targeting of YFP-StREM1.3 to the PM but

abolished its nanodomain organization measured by the SCI (Figure 1C). Proton pump PMA fused

to GFP was used as control of membrane integrity after fen treatment (Figure 1—figure supple-

ment 5B–E). To obtain further evidence of the enrichment of StREM1.3 into sterol-enriched nanodo-

mains, expected to display a higher degree of order (Dufourc, 2008), we used the environment–

sensitive probe di-4-ANEPPDHQ in vivo (Zhao et al., 2015). Figure 1D shows that nanodomains

enriched in YFP-StREM1.3 co-localized with highly ordered regions of the PM, in good agreement

with the involvement of sterols in StREM1.3 localization.

Second, we tested the implication of PIPs in StREM1.3 recruitment to the PM. We focused in par-

ticular on Phosphatidylinositol 4-phosphate (PI4P). Recent works showed that PI4P is enriched in the

inner-leaflet of plant PM, conferring a negatively charged electrostatic field that defines PM identity

in regard to other endomembranes (Vermeer et al., 2009; Simon et al., 2016, 2014). To alter the

PI4P content, we used the Myristoylated/Palmitoylated-Phosphatidylinositol 4-phoshatase SAC1p

enzyme from yeast (Hammond et al., 2012) fused to mTurquoise2 (MAP-mTU2-SAC1p) which spe-

cifically dephosphorylates PI4P at the PM level (Hammond et al., 2012; Stefan et al., 2011;

Mesmin et al., 2013; Moser von Filseck et al., 2015a, 2015b) without impacting PS or PI(4,5)P2

(Simon et al., 2016) (Figure 1—figure supplement 6). Compared to the expression of the dead ver-

sion of MAP-SAC1p, the expression of the active form induced a reduction in PM-associated PI4P

concentration leading to a strong decrease of both YFP-StREM1.3 signal and lateral segregation at

the PM (Figure 1E). These data suggest that PI4P is required for the targeting of StREM1.3 at the

PM and for its sub-compartmentalization within the PM plane.
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Figure 1. REMORIN localization into highly ordered PM nanodomains is mediated by sterols and PI4P. (A)

Explanatory schematic of the secant or surface views of N. benthamiana leaf abaxial epidermal cell plasma

membrane (PM) used throughout the article. (B) Confocal imaging surface views of Nicotinana benthamiana leaf

epidermal cells expressing YFP-StREM1.3 with or without dominant-negative SAR1H52N (PMA4-GFP was used as a

potency control, see Figure 1—figure supplement 2), 24 hr after agroinfiltration. Tukey boxplots show the mean

fluorescence intensity and the Spatial Clustering Index, SCI (n = 3, quantification made on a representative

Figure 1 continued on next page
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Altogether, these results suggest that PM inner-leaflet lipids, notably sterols and PI4P are critical

for the targeting of the StREM1.3 to PM nanodomains by a mechanism independent of the classical

secretory pathway (Figure 1F).

REM-C-terminal anchor peptide is an unconventional PM-binding
domain embedded in the bilayer that folds upon specific lipid
interaction
As mentioned before, REM-CA is critical for PM-targeting (Perraki et al., 2012; Raffaele et al.,

2013; Konrad et al., 2014; Gui et al., 2015) (Figure 2A). To better understand the role of lipids

and the function of REM-CA in the assembly of StREM1.3 into nanodomains, we used a combination

of biophysical, modeling and biological approaches.

First, liquid-state NMR spectra of REM-CA in aqueous environment showed that REM-CA peptide

is unstructured (Perraki et al., 2012) (Figure 2—figure supplement 1A). Second, equivalent spec-

tra, acquired in hydrophobic environment showed that REM-CA folds into an alpha helical conforma-

tion (Figure 2—figure supplement 1A). Third, to gain insights into the embedment of REM-CA in

the PM we performed solid-state NMR experiments on liposomes mimicking the PM inner-leaflet

composition i.e. containing phosphatidylcholine (PC), PIPs and phosphatidylserine (PS) (Cacas et al.,

2016) (Figure 2—figure supplement 1B,C shows the lipid content of the phosphoinositide mix, fur-

ther called PIPs, used in this study). In these conditions, REM-CA’s partial insertion into liposomes

increased the degree of order of the first 10 carbon atoms of acyl chains indicated that REM-CA is

partially embedded in the lipid phase (Figure 2B). Importantly, REM-CA insertion does not modify

Figure 1 continued

experiment, at least 38 cells per condition). (C) Surface view confocal images showing the effect of Fenpropimorph

(Fen) on PM patterning of YFP-StREM1.3 domains 20 hr after agroinfiltration. Tukey boxplots show the mean

fluorescence intensity and the SCI of YFP-StREM1.3 in the Mock (DMSO) or Fen-treated leaves (50 mg/mL), at least

46 cells from three independent experiments. (D) Secant view confocal fluorescence microscopy images displaying

the degree of order of CFP-StREM1.3-enriched domains (left panel) by the environment-sensitive probe

Di-4-ANEPPDHQ (middle panel) 48 hr after agroinfiltration. Di-4-ANEPPDHQ red/green ratio (RGM) was measured

for the global PM, and for the 10, 5, 2% most intense CFP-StREM1.3 signal-associated pixels (right panel). A lower

red/green ratio is associated with an increase in the global level of membrane order, at least 70 cells from three

independent experiments. (E) Surface view confocal images showing the effect of dead or active constructs of

MAP-SAC1p (MAP-mTurquoise2-SAC1p from yeast, see Figure 1—figure supplement 5) on PM domain

localization of YFP-StREM1.3 20 hr after agroinfiltration. Tukey boxplots show the mean fluorescence intensity and

the SCI of YFP-StREM1.3, at least 52 cells from four independent experiments. (F) Model showing the PI4P-driven

targeting of the trimer of StREM1.3 to the PM and its PI4P- and sterol-dependant nanodomains organization. In all

panels, p-values were determined by a two-tailed Mann-Whitney test.

DOI: 10.7554/eLife.26404.002

The following figure supplements are available for figure 1:

Figure supplement 1. Sequence alignment of 51 group 1 REMORIN C-terminal Anchor sequences.

DOI: 10.7554/eLife.26404.003

Figure supplement 2. Nicotiana benthamiana Group 1b REMORINs are expressed in leaf epidermal cells, encode

for PM nanodomain localized proteins and are functional homologs of StREM1.3 toward PVX propagation.

DOI: 10.7554/eLife.26404.004

Figure supplement 3. YFP-StREM1.3 is targeted to the PM-domains by a mechanism independent of the COP-I/

COP-II secretory pathway.

DOI: 10.7554/eLife.26404.005

Figure supplement 4. Spatial clustering index calculated as the max-to-min ratio of fluorescence intensity in the

PM.

DOI: 10.7554/eLife.26404.006

Figure supplement 5. Modification of the sterol pool of N.benthamiana leaves by the drug Fenproprimorph (fen).

DOI: 10.7554/eLife.26404.007

Figure supplement 6. Myristoylation and Palmitoylation (MAP)-mTurquoise2-SAC1p localizes at PM of N.

benthamiana leaf epidermal cells and specifically depletes PM PI4P but not PI(4,5)P2 or PS.

DOI: 10.7554/eLife.26404.008
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Figure 2. | REMORIN C-terminal anchor peptide is an unconventional PM-binding domain embedded in the bilayer that folds upon specific lipid

interaction. (A) Primary sequence of StREM1.3 showing the two putative regions 1 and 2 (R1 and R2) composing the REM-CA. Hatched domain

represents the putative coiled-coil helix. (B) Order parameter of the carbon atoms of the fatty acid moiety of all-deuterated 1,2-dimyristoyl-D54-sn-3-

phosphocholine (DMPC-d54) in PM inner leaflet-mimicking liposomes revealed by deuterium NMR. (C) Plots of the maximal surface pressure variation

Figure 2 continued on next page
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the overall bilayer structure as suggested by a very similar global thermotropism (Figure 2—figure

supplement 1D,E).

Next, we determined the REM-CA peptide regions that are inserted in the hydrophobic core of

the bilayer. In silico analyses predicted that REM-CA is structurally divided into two regions (Fig-

ure 2—figure supplement 2): a putative helical region (171-190aa, called Region 1, R1) and a more

hydrophobic non-helical region (191-198aa called Region 2, R2). We thus tested the ability of REM-

CA, R1 or R2 peptides alone to insert into monolayers mimicking the PM inner-leaflet (Cacas et al.,

2016). Adsorption assays showed that the penetration capacity of the peptide REM-CA was higher

in the monolayers composed of PC, PIPs and sitosterols, than in monolayers composed of PC alone

(Figure 2—figure supplement 3A). Furthermore, peptide R2 but not the R1 was able to insert into

monolayers (Figure 2C). Consistently, deletion of R2 in the REM-CA of YFP-StREM1.3 abolished PM

association in planta (Figure 2D).

We next performed Fourier transform-infrared spectroscopy (FT-IR) to characterize REM-CA-lipid

interactions at atomistic level. FT-IR showed a maximum intensity shift in the absorbance wavenum-

ber of lipid phosphate groups in the presence of REM-CA, R1 and R2 peptides, with a stronger

effect of R1 as compared to R2 (Figure 2—figure supplement 3B). This clearly shows that the polar

heads of lipids are involved in the REM-CA-liposome interactions. Moreover, a maximum intensity

shift in the absorbance wavenumber of carbon-hydrogen bonds was observed in presence of R2,

which confirmed that R2 is more embedded than R1 within the lipid phase (Figure 2E).

To further inquire into the role of lipids in the folding of REM-CA, we performed structural analy-

ses by FT-IR and solid-state NMR of the peptides in liposomes containing either PC alone, or PC

with PIPs and sitosterols. FT-IR experiments showed that REM-CA, R1 and R2 peptides are mainly a

mix of different structures in PC-containing liposomes (Figure 2F). In contrast, R1 was more helical

and R2 was more extended when sitosterol and PIPs are present in the bilayer (Figure 2F). Impor-

tantly, PIPs were sufficient to induce R1, R2 and REM-CA folding (Figure 2—figure supplement 3B).

Lipid-mediated folding of REM-CA, embedded in the bilayer, was further confirmed by solid-state

NMR on liposomes containing 13C-labeled REM-CA peptides on three residues: L180 and G188 in

R1 and I194 in R2 (underlined in Figure 2A). Solid-state NMR spectra confirmed that R1 adopted a

single non-helical conformation in PC, while partially folding into an alpha helix in the presence of

PIPs and sitosterol (Figure 2G, Figure 2—figure supplement 3C).

Figure 2 continued

(DP) vs. the initial surface pressure (Pi) (left panel) and the corresponding maximal insertion pressure (MIP) and synergy factor (right panel) obtained

from the adsorption experiments performed viaa Langmuir trough with a monolayer composed of phosphatidylcholine (PC), phosphoinositides (PIPs)

and sitosterol (Sito) (see Figure 2—figure supplement 3A). The insignificant DP obtained for D1 indicates that D1 cannot penetrate into the

monolayer. (D) Subcellular localization of YFP-StREM1.3 deleted for R2, transiently expressed in N. benthamiana leaf epidermal cells. Scale bars, 10 mm.

(E) FT-IR spectra measured in the 1155–1255 cm�1 absorbance region for the REM-CA, R1 and R2 peptides inserted into MLVs composed of PC:PIPs:

Sito (see Figure 2—figure supplement 3B). (F) FT-IR spectra in the 1600–1700 cm�1 absorbance region for the REM-CA, R1, R2 peptides and liposome

alone with MLVs composed of PC alone and PC:PIPs:Sito (see Figure 2—figure supplement 3B). (G) Solid-state NMR spectra of REM-CA peptides co-

solubilized with DMPC-d54 supplemented with PIPs and Sitosterol (see Figure 2—figure supplement 3C). Excerpts on the position of the Ca

resonance frequencies of Leucines and Isoleucines on the abscissa are depicted. (H) Radial distribution functions (RDF) of Y184 and sterols, and average

distances between the five lysine(K)/arginine(R) residues of REM-CA and the phosphate groups of PI4P during MD simulation, bar indicates mean ± s.d.,

letters indicate significant differences revealed by Dunn’s multiple comparisons test p<0.0001. (I) Model of the insertion of REM-CA in the PM inner-

leaflet based on tensiometry, FTIR, MD and NMR studies. Inset displays Molecular Dynamics (MD) model of the two lysines, K192 and K193, likely in

interaction with the phosphate groups of PIPs.

DOI: 10.7554/eLife.26404.009

The following figure supplements are available for figure 2:

Figure supplement 1. Solution NMR and 31P and 2H solid-state NMR analysis.

DOI: 10.7554/eLife.26404.010

Figure supplement 2. In silico analysis of REM-CA from StREM1.3 suggests the existence of two distinct structural regions.

DOI: 10.7554/eLife.26404.011

Figure supplement 3. Biophysical studies evidence the interaction of REM-CA with lipids.

DOI: 10.7554/eLife.26404.012

Figure supplement 4. Molecular dynamics (MD) simulation reveals interactions between REM-CA residues and lipids in the ternary lipid mixture.

DOI: 10.7554/eLife.26404.013

Gronnier et al. eLife 2017;6:e26404. DOI: 10.7554/eLife.26404 7 of 24

Research article Plant Biology

http://dx.doi.org/10.7554/eLife.26404.009
http://dx.doi.org/10.7554/eLife.26404.010
http://dx.doi.org/10.7554/eLife.26404.011
http://dx.doi.org/10.7554/eLife.26404.012
http://dx.doi.org/10.7554/eLife.26404.013
http://dx.doi.org/10.7554/eLife.26404


Molecular dynamics simulations reveal interactions between REM-CA
residues and lipids in the ternary lipid mixture
Molecular Dynamics (MD) simulation was performed with REM-CA and a bilayer composed of PC,

sitosterol and PI4P, see Video 1. MD confirmed that REM-CA inserted itself in the lipid bilayer and

presented two distinct regions (Figure 2—figure supplement 4A) in good agreement with the in sil-

ico analyses (Figure 2—figure supplement 2). MD proposed that albeit facing the inside of the

bilayer (Figure 2—figure supplement 4B), the lateral ring of tyrosine Y184 (tyrosine being a residue

often observed in interaction with sterols [Nasir and Besson, 2011]) was unlikely to interact with

sterols with a distance between Y184 and sterol superior to 1 mm (Figure 2H). MD also modeled

that lysines and arginine present in REM-CA, namely K192 and K193, and to a lesser extent K183

and R185, can form salt-bridges with the phosphate groups of PI4P (Figure 2H, Figure 2—figure

supplement 4B). The lysine K176 was not in interaction with PI4P.

Altogether, we propose a model for the structure of REM-CA inserted in the PM inner-leaflet,

composed of two domains: a PI4P-mediated alpha-helical folding conformation for R1 arranged on

the PM surface interacting with the lipid polar heads through lysines and arginine and a hydrophobic

conformation for R2 embedded inside the lipid phase (Figure 2I).

Classically, protein interactions with lipids occur through TM segments (Lin and London, 2013) or

for monotopic proteins (to which REMs belong) through GPI anchoring, amphipathic helixes or ionic

interactions (Vinothkumar and Henderson, 2010; Hedger et al., 2015). Moreover, specific interac-

tions with PIPs usually occur through well-described motifs such as PH, C2 or PDZ domains

(Di Paolo and De Camilli, 2006). The membrane-anchoring properties of REM-CA that we reveal

here are therefore unconventional: these properties do not fit into any of the aforementioned lipid-

interacting patterns and to the best of our knowledge such a membrane-anchoring conformation is

not described in structural databases at present.

Positively charged residues of REMORIN C-terminal anchor are
essential for PM-targeting
To further test the role of REM-CA residues found by MD in putative interactions with lipids

(Figure 2H), we followed a near-iterative approach by observing the in vivo localization of YFP-

StREM1.3 REM-CA mutants (Figure 3A,B). First, Y184 was mutated to a phenylalanine. Consistent

with a lack of interaction with sterols (Figure 2H), the YFP-StREM1.3 Y184F mutant was still organized

in PM nanodomains (Figure 4A). Second, we

observed the subcellular localization of 19 YFP-

StREM1.3 single to sextuple substitution mutants

of the four lysines and the arginine present in

REM-CA. Confocal microscopy images pre-

sented in Figure 3C show that single and double

mutants still localized to the PM. In contrast, a

strong impairment in PM-targeting with full or

partial localization in the cytosol was observed

for all triple to sextuple mutants. These results

confirm the involvement of electrostatic interac-

tions between REM-CA and negatively charged

lipids with regard to PM targeting. Interestingly,

in contrast to membrane surface-charge tar-

geted proteins which generally possess a net

charge of up to +8 (Simon et al., 2016;

Heo et al., 2006; Yeung et al., 2008;

Barbosa et al., 2014), the net electrostatic

charge of REM-CA mutants is negative

(Figure 3B). This suggests that the REM-CA/PM

coupling is controlled by a specific lipid-peptide

interaction, primarily governed by the intrinsic

structural properties of the REM-CA moiety, and

not by its net charge.

Video 1. Molecular dynamics (MD) simulation reveals

interactions between REM-CA residues and lipids in

the ternary lipid mixture. MD coarse-grained

simulations propose a model of the insertion of REM-

CA in the lipid bilayer (PLPC/PI4P/sitosterol), where

peptide-lipid interaction would be mediated by the

interaction of REM-CA with the phosphate groups of

PI4P (in gold) and the embedment of the region 2 (in

yellow) inside the lipid phase, see online methods.

DOI: 10.7554/eLife.26404.014
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Positively charged residues of REMORIN C-terminal anchor are
essential for PM-nanodomain identity and function
We next focused on the mutants that still were targeted to the PM to test whether the mutations

had an effect on their localizations in nanodomains. Consistently with MD calculations of the distance

with the PI4P polar-head (Figure 2H), mutating K192, K193, and K183 revealed the requirement of

these residues for a correct nanodomain organization whereas K176 and R185 taken alone are
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Figure 3. Positively charged residues of REMORIN C-terminal anchor are essential for PM targeting. (A) Sequence Logo obtained from 51 Group 1

REM-CA sequences presented in Figure 1—figure supplement 1, and StREM1.3 REM-CA sequence. (B) Summary of the 20 REM-CA mutants of

StREM1.3 generated in this study and their corresponding subcellular localizations. PM, Plasma Membrane; Cyt, Cytosol. The total electrostatic charge

of each mutated REM-CA is indicated. (C) Confocal images presenting secant views of N. benthamiana epidermal cells expressing 20 YFP-StREM1.3

REM-CA mutants (single to sextuple mutations), 48 hr after agroinfiltration. Scale bar of 10 mm applies to all images.

DOI: 10.7554/eLife.26404.015
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dispensable. Moreover, the coupling of K183, K192 and K193 mutations with other mutations on

charged residues increased the alteration of StREM1.3 PM-nanodomain organization as assessed by

the SCI (Figure 4A,B).

To address the functional relevance of REM nanodomain-organization, we exploited the previ-

ously reported role of StREM1.3 in restricting cell-to-cell propagation of PVX by decreasing plasmo-

desmata size-exclusion limit (Raffaele et al., 2009; Perraki et al., 2014, 2012). Single mutants

K176S, Y184F and R185A behaved like StREM1.3 WT whereas K183S and K192A and K193A partially

lost their ability to reduce viral intercellular movement and PD permeability (Figure 4C,D and Fig-

ure 4—figure supplement 1). A close to complete loss of activity was observed with REM-CA dou-

ble mutants, unequivocally linking the protein lateral segregation with its function to regulate cell-to-

cell connectivity.

WT K176S Y184F R185A K183S K192A

K183S K192A

K193A
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Figure 4. Positively charged residues of REMORIN C-terminal Anchor are essential for PM nanodomain localization and REMORIN function in cell-to-

cell permeability. (A) Surface view confocal images of the localization of REM-CA single and double mutants. Scale bar, 10 mm. (B) Tukey boxplot

showing the Spatial Clustering Index of the REM-CA single and double mutants. Letters indicate significant differences revealed by Dunn’s multiple

comparisons test p<0.05 (n = 3). (C) Quantification of Potato Virus X fused to GFP (PVX:GFP) cell-to-cell movement alone (Mock) or co-expressed with

StREM1.3 WT or StREM1.3 REM-CA single and double mutants. Tukey boxplots represent the PVX:GFP infection foci area normalised to the mock

condition. Letters indicate significant differences revealed by Dunn’s multiple comparisons test p<0.05 (n = 3). (D) Plasmodesmal permeability assessed

in the presence of WT, single or double mutants of REM-CA, according to (Perraki et al., 2012). Tukey boxplots represent the percentage of cells

presenting a free diffusion of the GFP (n = 3), letter indicate significant differences revealed by Dunn’s multiple comparisons test p<0.05 (Statistical

analysis in Figure 4—figure supplement 1).

DOI: 10.7554/eLife.26404.016

The following figure supplement is available for figure 4:

Figure supplement 1. Effect of StREM1.3 REM-CA mutant over-expression on plasmodesmata permeability and PVX cell-to-cell movement.

DOI: 10.7554/eLife.26404.017
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Single-particle tracking localization microscopy reveals that REMORIN
C-terminal anchor mutants display a lower diffusion coefficient mobility
To better characterize the PM-localization of REM-CA mutants, we used single-particle tracking pho-

toactivated localization microscopy in variable angle epifluorescence microscopy mode (spt-PALM

VAEM [Manley et al., 2008]), Video 2. This super-resolution microscopy technique allows the recon-

struction of high-density super-resolved nanoscale maps of individual protein localization and trajec-

tories in the PM (Hosy et al., 2014). Different kinetic and organizational parameters, such as

individual diffusion coefficient (D), mean square displacement (MSD), nanodomain diameter and pro-

tein density can be calculated. We selected four REM-CA mutants that located at the PM but

showed impairment in both nanodomain clustering and biological functions, namely StREM1.3K183S,

StREM1.3K192A, StREM1.3K183S/K192A and StREM1.3K192A/K193A (Figure 5A–C). All EOS-StREM1.3

fusions exhibited a typically highly confined diffusion mode, but the four EOS-StREM1.3 mutants

show a lower mobility than the EOS-StREM1.3 WT (Figure 5B,C). Nevertheless, EOS-StREM1.3K183S

displayed a similar MSD than EOS-StREM1.3 WT whereas EOS-StREM1.3K192A, EOS-StREM1.3K183S/

K192A and EOS-StREM1.3K192A/K193A displayed a lower MSD (Figure 5D). Figure 5E depicts repre-

sentative trajectories of EOS-StREM1.3 WT and REM-CA-mutants.

Live PALM data reveals that REMORIN C-terminal anchor defines
protein segregation
To describe the supra-molecular organization of the proteins at PM level, we next analyzed live

PALM data using Voronoı̈ tessellation (Levet et al., 2015). This method subdivides a super-resolu-

tion image into polygons based on molecules local densities (Figure 6A, see online methods). For all

fusion proteins, we identified clusters and precisely computed their dimensions (Figure 6A,B). EOS-

StREM1.3 WT clustered in nanodomains with a mean diameter of ca. 80 nm, a result in good agree-

ment with previous studies using different methods of imagery (Raffaele et al., 2009; Demir et al.,

2013). For the WT protein fusion, nanodomains represented ca. 7% of the total PM surface

(Figure 6C) with ca. 37% of molecules in nanodomains (Figure 6D) and a density of ca. two nanodo-

mains per mm (Raffaele et al., 2009) (Figure 6E). Interestingly, the four REM-CA mutants showed a

decrease of the total surface occupied by nanodomains in the total PM surface (Figure 6C). EOS-

StREM1.3K183S and StREM1.3K183S/K192A display smaller nanodomains with a lower number of mole-

cules per cluster, whereas EOS-StREM1.3K192A, and EOS-StREM1.3K192A/K193A displayed larger nano-

domains with a decrease of overall nanodomain

density in the PM (Figure 6D,E). The study of

REM-CA mutants revealed that single protein

mobility behavior and protein supramolecular

organization are uncoupled, for example EOS-

StREM1.3K192A proteins displaying the lower

MSD but forms larger clusters.

Altogether, spt-PALM and live PALM data

analyses showed that mutations in REM-CA

affect the mobility and the organization of the

protein by altering the partition of StREM1.3

molecules into nanodomains (Figures 3–6), likely

causing the functional impairments observed.

These results can be discussed in view of in silico

spatial simulations of signaling events suggest-

ing that proper partition of proteins optimizes

signaling at PM (Mugler et al., 2013). In the

case of StREM1.3, an altered partition in nano-

domain is sufficient to inhibit the signaling

events involving StREM1.3 in the PM. StREM1.3

being a phosphorylated protein, one can

hypothesize that the REM-CA mutations alter

the partition with its unknown cognate kinase(s)

and/or interacting partners. Moreover, StREM1.3

Video 2. Live-cell single-particle tracking-

photoactivable localization microscopy in variable

angle epifluorescence microscopy mode. RAW DATA

spt-PALM VAEM was performed on N. benthamiana

leaf epidermal cells expressing EOS-StREM1.3.

DOI: 10.7554/eLife.26404.019
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locates to both the PM and in plasmodesmata, REM-CA mutations may also alter the partition

between these two PM sub-compartments. These hypotheses are currently investigated in our

laboratories.

Conclusions
Interaction between REM-CA and lipids mediates plant PM-nanodomain
organization
Plant and animal plasma membranes are dynamically sub-compartmentalized into membrane

domains (Lingwood and Simons, 2010). In plants, the REMORIN protein family represents the best-

studied PM-domain-associated proteins (Jarsch and Ott, 2011). Genetic, live cell imaging and bio-

chemical studies suggest that REM domains segregate into molecular platforms involved in hormone

signaling and plant-microbe interactions (Jarsch and Ott, 2011; Gui et al., 2016), but the functional

relevance of REM PM-nanodomain organization and the molecular mechanisms underlying PM-nano-

domain organization of REM are still unknown.

Here, we provide an unprecedented resolution of the molecular mechanisms that control protein

spatio-temporal segregation into membrane nanodomains. Our work reveals that the group 1 REM

StREM1.3 is targeted to inner-leaflet PM nanodomains from the cytosol by REM-CA, an unconven-

tional C-terminal structural lipid-binding motif that undergoes a conformational change in presence

of PI4P and sterols (Figures 1 and 2). These lipids seem to form the core components modulating

REM nanodomain organization. The precise cooperativity between each lipid in the inner-leaflet

remains to be determined (Vonkova et al., 2015), in particular the role of sterols, which do not

seem to be in direct interaction with REM-CA (Figures 2 and 3). It is well established that sterols

interact preferentially with saturated-fatty acid containing lipids to form highly ordered lipid phases

(Lorent and Levental, 2015). Interestingly, plant PM PI4P contain up to 30–60% of saturated acyl

chains (Furt et al., 2010; König et al., 2007), we may assume that this preferential interaction is one

of the driving force that allow the clustering REM-enriched domains (Figure 1). Following our model,

a dynamic ménage-à-trois between REM-CA, PI4P and sterols inside the inner-leaflet phospholipid

bilayer PM inner-leaflet could lead to a definition of what drives PM-nanodomain formation

(Figure 2).

REM-CA diversity and REM-CA-like moieties beyond the plant kingdom
Mutations of StREM1.3 REM-CA residues involved in the interaction with the polar heads of phos-

phoinositides modify PM lateral segregation and dynamics and consequently the protein’s function-

ality (Figures 4, 5 and 6). This reflects the importance of REM-CA in the definition of StREM1.3’s

lateral segregation and it shows that lateral segregation is determined by the primary sequence of

REM-CA. The six different phylogenetic groups of REMs label spatially distinct PM-domains

(Jarsch et al., 2014; Raffaele et al., 2007). It follows that the evolution of the REM-CA sequence

could be involved in the diversification of the different PM-domains marked by REMs

(Raffaele et al., 2007). A more in-depth analysis of REM-CAs from other groups and the involve-

ment of lipids in domain localization of REMs will provide crucial information about the determinants

of PM lateral organization of the REM protein family that could in fine allow the deciphering of criti-

cal PM-associated signaling events in plants. In addition, it is reasonable to think that the S-acylation

of REMs on their REM-CA moieties could modify the protein-lipid interaction that modulate their

dynamics (Hemsley et al., 2013) (Figure 1—figure supplement 1). Study of a prenylated K-Ras pro-

tein in mammalian cells showed a complex structural cross-talk between the primary sequence of the

protein and its prenyl moeity (Zhou et al., 2017). Therefore, the study of acylated REM-CAs could

provide another level of complexity in the establishment of REM-associated PM-nanodomains.

The structural conformation of REM-CA is original and does not fit with other membrane-anchor-

ing conformation already described in databases. The search for structural analogues of REM-CA in

publicly available structure databases identified analogous domains in bacteria, viruses and animals

(Raffaele et al., 2013). Thus, the understanding of the structural basis for REM-CA PM-binding and

lateral segregation may bring about knowledge of crucial importance, spanning beyond the plant

kingdom.
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PM nanodomains represent a functional unit for plant cell signaling
In plants, most membrane proteins are relatively immobile forming static membrane domains

(Jarsch et al., 2014; Hosy et al., 2015; Martinière et al., 2012). It was therefore postulated that

membrane domain formation and functionality are based on protein immobility. Unexpectedly, we

show in the present work that non-functional REM-CA mutants showing an altered PM-nanodomain

localization harbor an even lower diffusion coefficient than the WT (Figure 5). This observation

reveals that PM-protein function does not rely solely on their immobility but rather on their ability to

organize into supramolecular domains. In good agreement, REM-CA mutants show an altered ability

to partition into nanodomains (Figure 6). It thus appears that REM-CA-defined PM-nanodomains

may represent a functional unit for membrane-bound cell signaling in plants. The study of REM-CA

mutants also reveals that the mobility behavior of single molecules is not directly linked to the parti-

tioning of the resulting population. For example EOS-StREM1.3K192A proteins displaying a lower

MSD compared to the WT but form larger clusters. Similarly, a higher MSD is not necessarily cou-

pled to a higher diffusion coefficient as observed for EOS-StREM1.3K183S (Figure 5).
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Altogether, our data reveal an unsuspected complexity in the definition of molecule organization

and dynamics in the PM that we hope will pave the way for an exhaustive comprehension of the

mechanisms regulating membrane-bound protein organization and function.

Materials and methods

Online methods
Plant material, culture and transformation
Nicotiana benthamiana plants were cultivated in controlled conditions (16 hr photoperiod, 25˚C).
Proteins were transiently expressed via Agrobacterium tumefaciens as previously described in

(Perraki et al., 2012). For subcellular localization studies and biochemical purification, plants were

analyzed 2 days after infiltration using 0.2 OD agrobacterium suspension. For PVX:GFP spreading

assays and gating experiments, plants were observed 5 days after infiltration. The A. tumefaciens

GV3101 strain was cultured at 30˚C on appropriate selective medium depending on constructs car-

ried. For phosphoinositide homeostasis modulation, effects of phosphoinositide phosphatase

expression were observed 20–24 hr post-infiltration (Simon et al., 2016).

Treatment with Brefeldin A
Leaves transiently expressing each construct 48 hr post-agroinfiltration were infiltrated with a dH2O

solution of Brefeldin A at a concentration of 50 mg/mL (B7651 SIGMA); from a DMSO stock solution;

for 3 hr before observation. Mock conditions contain the same volume of DMSO alone. Leaves were

then observed with a Zeiss LSM 880 confocal fluorescence microscope with an oil-immersion 63x

lense using the appropriate excitation wavelengths for each fluorescent fusion proteins.
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Cloning, molecular constructs and peptides
All constructs were generated using either classical or 3-in-1 Gateway cloning strategies (www.life-

technologies.com) with pDONR P4-P1R, pDONRP2R-P3, pDONR211 and pDONR207 as entry vec-

tors, and pK7WGY2 (Karimi et al., 2002), pUBN-Dest::EosFP (Grefen et al., 2010) and pB7m34GW

(Karimi et al., 2007) as destination vectors. StREM1.3 mutants were generated by site-directed

mutagenesis as previously described in (Taton et al., 2000) with minor modifications. All constructs

were propagated using the NEB10 E.coli strain (New England Biolabs). Ultrapure

REM-CA peptides were obtained by de novo peptide synthesis, Purity >98% with acetylation at

the N-terminal (GenScript HK Limited).

Viral spreading and gating assays
Viral spreading of PVX:GFP in N. benthamiana leaves was assessed as described in (Perraki et al.,

2012) with some modifications: spreading of PVX:GFP was visualized by epifluorescence microscopy

(using GFP long pass filter on a Nikon Eclipse E800 with x4 objective coupled to a Coolsnap HQ2

camera) at 5 days post-infection and the areas of at least 30 of PVX:GFP infection foci per condition

and per experiment were measured using a custom made macro on ImageJ.

Epidermal cells live imaging and quantification
Live imaging was performed using a Leica SP5 confocal laser scanning microscopy system (Leica,

Wetzlar, Germany) equipped with Argon, DPSS and He-Ne lasers and hybrid detectors. N. ben-

thamiana leaf samples were gently transferred between a glass slide and a cover slip in a drop of

water. YFP and mCitrine (cYFP) fluorescence were observed with similar settings (i.e. excitation

wavelengths of 488 nm and emission wavelengths of 490 to 550 nm). In order to obtain quantitative

data, experiments were performed using strictly identical confocal acquisition parameters (e.g. laser

power, gain, zoom factor, resolution, and emission wavelengths reception), with detector settings

optimized for low background and no pixel saturation. Pseudo-colored images were obtained using

the ‘Red hot’ look-up-table (LUT) of Fiji software (http://www.fiji.sc/). All quantifications were per-

formed on raw images for at least min of 10 cells, at least two plants by condition with at least three

independent replicates.

For quantification of the PM Spatial Clustering Index (SCI), which reveals the degree of segrega-

tion of fluorescence signal on the surface plane of the PM (Figure 1—figure supplement 4), fluores-

cence intensity was plotted with a 10 mm line on raw images of cells PM surface view, three line

plots were randomly recorded per cell and at least 15 cells per experiments were analyzed. For each

plot, the Spatial Clustering Index was calculated by dividing the mean of the 5% highest values by

the mean of 5% lowest values. For fluorescence intensities quantification, the mean grey value was

recorded using a region of interest (ROI) of 5 mm x 5 mm on PM surface view raw images.

Confocal multispectral microscopy
di-4-ANEPPDHQ-labelled leaves were observed as described in (Gerbeau-Pissot et al., 2014) with a

Leica TCS SP2-AOBS laser scanning microscope (Leica Microsystems, Germany) and a HCPL Apo-

chromat CS 63x (N.A. 1.40) oil immersion objective. Images were excited with the 458 nm line and

the 488 nm line of an argon laser for CFP and di-4-ANEPPDHQ respectively as described in (Ger-

beau-Pissot et al., 2014). Fluorescence emissions were filtered between 465 and 500 nm for CFP.

For di-4-ANEPPDHQ, to obtain ratiometric images, we recorded green and red fluorescence

between 540 to 560 nm and 650 to 670 nm, respectively. The mean red/green ratio of pixels (RGM)

corresponding to either the global membrane, the 10%, the 5% or the 2% of the most intense CFP

pixels were compared on each image.

spt-PALM VAEM, single molecule localization and tracking
N. N. benthamiana epidermal cells were imaged at room temperature. Samples of leaves of 2 week-

old plants transiently expressing EOS-tagged constructs were mounted between a glass slide and a

cover slip in a drop of water to avoid dehydration. Acquisitions were done on an inverted motorized

microscope Nikon Ti Eclipse (Nikon France S.A.S., Champigny-sur-Marne, France) equipped with a

100� oil-immersion PL-APO objective (NA = 1.49), a Total Internal Reflection Fluorescence Micros-

copy (TIRF) arm, a Perfect Focus System (PFS) allowing long acquisition in oblique illumination
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mode, and a sensitive Evolve EMCCD camera (Photometrics, Tucson, USA), see Video 2. Images

acquisitions and processing were done as previously described by Hosy et al. (2015).

SR-Tesseler software was used to produce voronoı̈ diagrams, and subsequently quantify molecule

organization parameters as previously recommended (Levet et al., 2015). Taking in account fluoro-

phore photophysical parameters, localization accuracy and the first rank of local density of fluores-

cent molecules, correction for multiple detections occurring in a vicinity of space (w) and blinking

tolerance time interval (t) are identified as the same molecule, merged together and replaced by a

new detection at a location corresponding to their barycentre. Because first rank of local density of

fluorescent molecules was below 0.5 mol/mm2 (c.a ranking from 0.1 to 0.3 mol/mm2), we used a fixed

search radius w of 48 nm as recommended (Levet et al., 2015). To determine the correct time inter-

val t, the photophysics of the fluorophore namely the off-time, number of blinks per molecule and

on-time distributions are computed for each cell. For example, for a dataset composed of 618,502

localizations, the average number of blinks per molecule was 1.42, and the number of molecules

after cleaning was 315,929. As a control, the number of emission bursts (439,331), counted with

t = 0, divided by the average number of blinks per molecule (1.42) was only 2.15% different. After

correction for artefacts due to multiple single-molecule localization, we computed potential cluster

using a threshold d1i>2dN, where dN is the average localization density at PM level and d1i is the den-

sity in presumed protein-forming nanocluster, with a minimal area of 32 nm2 and with at least five

localization by cluster.

Coarse-grained molecular dynamics
Coarse-grained simulations have been carried out by using Gromacs v4.5.4 (Hess et al., 2008) on a

6-processor core i7 cluster. Coarse-graining reduces the complexity of the molecular system and is

widely used to study peptide- or protein-membrane interactions (Lindahl and Sansom, 2008). The

initial structures of REM-CA peptides have been modeled as all-atom a-helices using standard back-

bone angles (j = �90˚ and y = �45˚) and side chain conformers with the ribosome v1.0 software

(Crowet et al., 2012). These models were converted to a CG representation suitable for the MAR-

TINI 2.1 forcefield (Crowet et al., 2012) with the Martinize script and the coarse-grained peptide

was placed in a simulation box at least at 1 nm from a pre-equilibrated PLPC bilayer of 128 lipids or

a PLPC:Cholesterol:PIP (98:19:2) bilayer of 124 lipids (Marrink et al., 2008; López et al., 2009,

2013). The N- and C-terminal ends of the peptide are charged and a helical secondary structure

topology is maintained between residues 172–187. With Martini forcefield, secondary structures

have to be restrained and a rational a priori on the structure has to be made. In our case, the pep-

tide representation as two domains is based on in silico analyses and on the FTIR and NMR data

(see Figure 2—figure supplements 2, 3). Water particles were then added as well as ions to neutral-

ize the system. A 5000-steps steepest-descent energy minimization was performed to remove any

steric clashes. Five 2.5 ms simulations have been run for each peptide. Temperature and pressure

were coupled at 300 K and one bars using the weak coupling Berendsen algorithm (Crowet et al.,

2012) with t T = 1 ps and t p=0.5 ps. Pressure was coupled semi-isotropically in XY and Z. Non-

bonded interactions were computed up to 1.2 nm with the shift method. Electrostatics were treated

with e = 15. The compressibility was 105 (1/bars).

In silico analysis of REM-CA from StREM1.3
Sequence and predicted structure of the StREM1.3 REM-CA peptide predicted by different methods

(NPSA (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_seccons.html), hydro-

phobic cluster analysis (HCA) 15, the consensus secondary structure prediction is indicated: alpha

helix (h), random coil (c), beta sheet (e). In HCA plot of the StREM1.3 REM-CA sequence, V, F, W, Y,

M, L and I are hydrophobic residues. These amino acids are circled and hatched to form hydropho-

bic clusters.

Atomistic molecular dynamics
From the coarse-grained simulations, ending frames from one of the replicates have been taken to

carry atomistic simulations. The conversion has been carried out as described in Wassenaar et al.

(2013). Briefly, atomistic lipid fragments and amino acid are backmapped and the system is relaxed

through several energy minimizations and molecular dynamic simulations with position restraints.
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Cholesterol is reversed to sitosterol (Poger and Mark, 2013) and PIP to PI4P (Holdbrook et al.,

2010). Simulations have been performed with the GROMOS96 54a7 force field (Schmid et al.,

2011) with the Berger topology for PLPC (Poger et al., 2010; Poger and Mark, 2010). All the sys-

tems studied were first minimized by steepest descent for 5000 steps. Then NVT and NPT equilibra-

tions were carried on for 0.1 and 1 ns. The peptide was under position restraints and periodic

boundary conditions (PBC) were used with a two fs time step. Production runs were performed for

50 ns. All the systems were solvated with SPC water (Berendsen et al., 1981), and the dynamics

were carried out in the NPT conditions (300 K and 1 bar). Temperature was maintained by using the

v-rescale method (Bussi et al., 2007) with tT = 2.0 ps and a semiisotropic pressure was maintained

by using the Berendsen barostat (Berendsen et al., 1984) with a compressibility of 4.5 � 105 (1/bar)

and tp=1 ps. Electrostatic interactions were treated by using the particle mesh Ewald (PME) method

(Darden et al., 1993). Van der Waals and electrostatics were treated with a 1.0 nm cut-off. Bond

lengths were maintained with the LINCS algorithm (Hess et al., 1997). The trajectories were per-

formed and analysed with the GROMACS 4.5.4 tools as well as with homemade scripts and soft-

wares, and 3D structures were analyzed with both PYMOL (DeLano Scientific, http://www.PyMOL.

org) and VMD softwares (Humphrey et al., 1996).

TLC analysis of phosphoinositides mix (PIPs)
Phosphoinositides mix (PIPs), #P6023 SIGMA, was separated by HP-TLC plate along with authentic

standards: Phosphatidylserine (PS) Phosphatidylinositol (PI), Phosphatidylinositol-4-phosphate (PI4P)

and Phosphatidylinositol-4,5-bisphosphate PI(4,5)P2) (Furt et al., 2010). HP-TLC were stained with

Primulin and relative amounts of each lipid species present in the PIPs mix quantified by densitome-

try scanning (Macala et al., 1983)

Fourier transformed-infrared (FTIR) spectroscopy
MLV were prepared by rehydrating the resulting films with D2O or Tris-HCl buffer (10 mM pH 7.0)

for FT-IR experiments as described previously (Nasir et al., 2016). Lipids were co-dissolved in chlo-

roform/methanol (2:1, v/v) without or with peptides at a 10-to-1, lipid-to-peptide molar ratio. FTIR

spectra of lipid-peptide MLV were recorded on Bruker Equinox 55 spectrometer (Karlsruhe, Ger-

many) equipped with a liquid nitrogen-cooled Deuterated Triglycine Sulfate (DTGS) detector. The

spectra were measured with a spectral resolution of 4 cm�1 and are an average of 128 scans. All the

experiments were performed with a demountable cell (Bruker) equipped with CaF2 windows

(Nasir et al., 2013). During the experiments, the spectrophotometer was continuously purged with

filtered dry air. MLV solution containing or not peptides was deposited into the CaF2 window-

equipped cell. All FTIR spectra were representative of at least two independent measurements. The

attribution of different peaks was carried out according to the literature (Arrondo and Goñi, 1998;

Kong and Yu, 2007).

Adsorption experiments at constant surface area
Peptide adsorption into lipid monolayer was recorded on an automated Langmuir film system (KSV

Minitrough 7.5 � 20 cm, Biolin Scientific, Stockholm, Sweden). The lipid monolayers (1-Palmitoyl-2-

linoleyl-sn-glycerol-3-phosphocholine (PLPC) alone, PLPC-Sitosterol (80–20 molar ratio) or PLPC-

sitosterol-phosphoinositides sodium salt from bovine brain (P6023 SIGMA, see Figure 2—figure

supplement 1B), 70-20-10 molar ratio, were formed by spreading a precise volume of lipid solutions

prepared in chloroform/methanol (2:1 v/v). After stabilization of the lipid monolayer at a defined ini-

tial surface pressure, peptides (solubilized Tris-HCl, 10 mM pH7.0 22 ± 1˚C) were injected in the sub-

phase (Tris-HCl, 10mM pH7.0, 22 ± 1˚C) to a final concentration of 0.16 mM. The surface pressure

variation is recorded over time. Experiments at different initial surface pressures were performed in

order to plot the maximal surface pressure increase (pmax) as a function of the initial surface pressure

(pi) and to determine the maximal insertion pressure (MIP) as previously described (Eeman et al.,

2009; Deleu et al., 2014; Nasir and Besson, 2011).

Sample preparation for NMR
To prepare multilamellar vesicles (MLV), REM-CA peptides were solubilised in chloroform/methanol

(2:1, v:v) and mixed with the appropriate amount of lipid powder (DMPC, PIPs and sitosterol)
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adjusting the REM-CA-to-lipid ratio (1:25). Solvent was evaporated under N2 airflow to obtain a thin

lipid film. Lipids were rehydrated with ultrapure water before lyophilisation. The lyophilized powder

was then hydrated with appropriate amount of deuterium depleted water and homogenized by

three cycles of shaking in a vortex mixer, freezing (liquid nitrogen, �196˚C, 1 min) and thawing (40˚C
in a water bath, 10 min). This protocol leads to a milky suspension of micrometer-sized MLVs.

Solid-state NMR spectroscopy
2H NMR experiments were carried out on Bruker Avance III 400 MHz (9.4 T) and Bruker Avance III

500 MHz (11.75 T) spectrometer. Samples were equilibrated 30 min at a given temperature before

data acquisition. 2H NMR experiments on 2H-labeled DMPC were performed at 76 MHz with a

phase-cycled quadrupolar echo pulse sequence (90˚x-t�90˚y-t-acq). 31P NMR spectra were acquired

at 202 MHz using a phase-cycled Hahn-echo pulse sequence (90˚x-t�180˚x/y-t-acq). Acquisition

parameters were set as follows: spectral window of 50 kHz for 31P NMR, 250 kHz for 2H NMR, p/2

pulse widths of 15 ms for 31P and 2.62 ms for 2H, interpulse delays t were of 40 ms, recycle delays

ranged from 1.1 to 5 s. 2 k to 4 k scans were used for 2H and 31P NMR experiments, depending on

the sample. The spectra were processed using Lorentzian line-broadening of 100 to 200 Hz for 2H

spectra.
13C experiments were recorded on a Bruker Avance III 800 MHz (18.8 T) at 11 kHz magic angle

spinning (MAS) frequency. Sample temperature was held constant at �12˚C with the internal refer-

ence DSS (Böckmann et al., 2009). The two dimensional proton-driven spin diffusion 13C-13C

(PDSD) spectra were recorded with an initial 1H-13C cross-polarization and a mixing time of 50 ms.

Acquisition times were set to 8 ms and 20 ms in the indirect and direct dimension, respectively, and

the interscan delay was chosen to 2 s. Proton decoupling during acquisition with a frequency of 90

kHz was applied, using the SPINAL-64 decoupling sequence (Fung et al., 2000). All the spectra

were processed and analyzed using Bruker Topspin 3.2 software and the Ccpnmr Analysis software

(Vranken et al., 2005).

Statistics
For all statistical analyses, ANOVA and Tukey’s honestly significant difference tests were performed

with Graphpad Prism, in order to find means that are significantly different from each other. Box-

plots were drawn using Graphpad Prism (horizontal bars in the boxes represent the median, boxes

the interquartile range, whiskers extend out 1.5 times the interquartile range, and individual points

are outliers), and other graphs were drawn using excel software (Microsoft, https://products.office.

com/).
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Lefebvre B, Timmers T, Mbengue M, Moreau S, Hervé C, Tóth K, Bittencourt-Silvestre J, Klaus D, Deslandes L,
Godiard L, Murray JD, Udvardi MK, Raffaele S, Mongrand S, Cullimore J, Gamas P, Niebel A, Ott T. 2010. A
remorin protein interacts with symbiotic receptors and regulates bacterial infection. PNAS 107:2343–2348.
doi: 10.1073/pnas.0913320107, PMID: 20133878

Levet F, Hosy E, Kechkar A, Butler C, Beghin A, Choquet D, Sibarita JB. 2015. SR-Tesseler: a method to segment
and quantify localization-based super-resolution microscopy data. Nature Methods 12:1065–1071. doi: 10.
1038/nmeth.3579, PMID: 26344046

Lin Q, London E. 2013. Altering hydrophobic sequence lengths shows that hydrophobic mismatch controls
affinity for ordered lipid domains (rafts) in the multitransmembrane strand protein perfringolysin O. The Journal
of Biological Chemistry 288:1340–1352. doi: 10.1074/jbc.M112.415596, PMID: 23150664

Lindahl E, Sansom MS. 2008. Membrane proteins: molecular dynamics simulations. Current Opinion in Structural
Biology 18:425–431. doi: 10.1016/j.sbi.2008.02.003, PMID: 18406600

Lingwood D, Simons K. 2010. Lipid rafts as a membrane-organizing principle. Science 327:46–50. doi: 10.1126/
science.1174621, PMID: 20044567

Lorent JH, Levental I. 2015. Structural determinants of protein partitioning into ordered membrane domains and
lipid rafts. Chemistry and Physics of Lipids 192:23–32. doi: 10.1016/j.chemphyslip.2015.07.022, PMID: 26241
883
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