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ABSTRACT Salmonella genomic island 1 (SGI1) is a multidrug resistance integrative
mobilizable element that harbors a great diversity of antimicrobial resistance gene
clusters described in numerous Salmonella enterica serovars and also in Proteus mira-
bilis. A serious threat to public health was revealed in the recent description in
P. mirabilis of a SGI1-derivative multidrug resistance island named PGI1 (Proteus
genomic island 1) carrying extended-spectrum-�-lactamase (ESBL) and metallo-�-
lactamase resistance genes, blaVEB-6 and blaNDM-1, respectively. Here, we report the
first description of Salmonella genomic island 1 (SGI1) in a multidrug-resistant clini-
cal Morganella morganii subsp. morganii strain isolated from a patient in France in
2013. Complete-genome sequencing of the strain revealed SGI1 variant SGI1-L carrying
resistance genes dfrA15, floR, tetA(G), blaPSE-1 (now referred to as blaCARB-2), and sul1,
conferring resistance to trimethoprim, phenicols, tetracyclines, amoxicillin, and sulfon-
amides, respectively. The SGI1-L variant was integrated into the usual chromosome-
specific integration site at the 3= end of the trmE gene. Beyond Salmonella enterica and
Proteus mirabilis, the SGI1 integrative mobilizable element may thus also disseminate
its multidrug resistance phenotype in another genus belonging to the Proteae tribe
of the family Enterobacteriaceae.

IMPORTANCE Since its initial identification in epidemic multidrug-resistant Salmonella
enterica serovar Typhimurium DT104 strains, several SGI1 variants, SGI1 lineages, and
SGI1-related elements (SGI2, PGI1, and AGI1) have been described in many bacterial
genera (Salmonella, Proteus, Morganella, Vibrio, Shewanella, etc.). They constitute a
family of multidrug resistance site-specific integrative elements acquired by horizon-
tal gene transfer, SGI1 being the best-characterized element. The horizontal transfer
of SGI1/PGI1 elements into other genera is of public health concern, notably with re-
gard to the spread of critically important resistance genes such as ESBL and carbap-
enemase genes. The identification of SGI1 in Morganella morganii raises the issue of
(i) the potential for SGI1 to emerge in other human pathogens and (ii) its bacterial
host range. Further surveillance and research are needed to understand the epide-
miology, the spread, and the importance of the members of this SGI1 family of inte-
grative elements in contributing to antibiotic resistance development.

KEYWORDS Salmonella genomic island 1, integrative mobilizable element, integrons,
multidrug resistance

Salmonella genomic island 1 (SGI1) is a multidrug resistance (MDR) site-specific
integrative mobilizable element (IME) initially described in Salmonella that inte-

grates into the last 18 bp of the conserved chromosomal trmE gene (formerly thdF) (1,
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2). Among the most prevalent incompatibility groups of plasmids, only the conjugative
plasmids of the IncA/C family have been shown to specifically mobilize SGI1 in trans (3).
Recently, the major IncA/C-encoded transcriptional activator complex, AcaCD, was
shown to trigger SGI1 excision and in trans conjugative mobilization (4). SGI1 contains
a complex class 1 integron, named In104 in accordance with its initial host strain (1, 5,
6). Since the identification of SGI1 in Salmonella enterica serovar Typhimurium DT104,
the high genetic plasticity of its MDR region, highlighted by the diversity of the class
1 integron resistance gene cassettes and by the presence of recombination and
insertion sequence (IS) element-mediated rearrangements, has led to the description of
more than 30 different MDR regions of SGI1 in many S. enterica serovars (7–14). In
addition, genetic variations are observed also in the backbone of the island, i.e.,
IS-mediated insertion/deletion, single nucleotide polymorphism (SNP), and transpositional
insertion of the complex class 1 integron structure at another position (8, 10, 12, 14).

In 2006, SGI1 was identified in a clinical Proteus mirabilis strain from a diabetic
patient from Palestine (15). Since then, the number of reported cases of SGI1 variants
of this bacterial species in isolates from humans, food-producing animals, foodstuffs,
and companion animals in China and France has been increasing (16–23). Recently, a
novel SGI1 derivative MDR genomic island named Proteus genomic island 1 (PGI1) has
been described in human and animal P. mirabilis strains in France (20, 21, 24, 25). PGI1
showed gene synteny similar to that of SGI1 and was also found integrated into the last
18 bp of the conserved chromosomal trmE gene. The recent emergence of P. mirabilis
strains carrying SGI1 or PGI1 islands with extended-spectrum-�-lactamase and/or
metallo-�-lactamase resistance genes, blaVEB-6 and blaNDM-1, respectively, representing
the first description of the latter gene in an MDR genomic island, is a serious threat to
public health (25). In this study, we analyzed the first SGI1-positive Morganella morganii
subsp. morganii (here M. morganii) strain isolated from a human case in France.

A hepatitis C virus (HCV)- and human immunodeficiency virus (HIV)-positive 52-year-
old man was hospitalized with high blood pressure and cirrhosis complicated by a
hepatocellular carcinoma in January 2013 at the Limoges University Hospital center in
France. The patient mentioned having had prostatitis in December 2012. MDR M. mor-
ganii strain LIM90 was isolated from urine sample during his stay at the hospital in
January 2013. The strain was screened for antibiotic susceptibility by the disc diffusion
method according to the guidelines of the EUCAST committee (26). Besides intrinsic
resistance to several �-lactam antibiotics (amoxicillin � clavulanic acid, cephalotin,
cefuroxim), tetracycline, nitrofurantoin, fosfomycin, and colistin, M. morganii strain
LIM90 was resistant to chloramphenicol, florfenicol, streptomycin, spectinomycin, sul-
fonamides, trimethoprim, and ticarcillin, which suggested the possible presence of
SGI1. The result of PCR performed using primers corresponding to the integrase genes
of SGI1 and related islands (FwintSGI1HR [5=-ATGTTGCGTCAGGCYGAGGC-3=] and
RvintSGI1HR [5=-GAGTGYCCAAGAAGSCGAGAG-3=]) was positive, suggesting the pres-
ence of a SGI1-related island in M. morganii strain LIM90.

To identify the SGI1-related island, its chromosomal location, and its resistance gene
content, the whole genome of LIM90 was sequenced using an IonProton system
(99-fold average read depth). The reads were assembled using MIRA software. The
ResFinder and PlasmidFinder tools available at the Center for Genomic Epidemiology
were used for identification of acquired resistance genes and plasmid detection,
respectively (27). The complete sequence of SGI1 was assembled using the relevant
contigs detected by BLAST searches, PCR gap closure, and PCR product sequencing.
The sequence of SGI1 was annotated using the Microbial Genome Annotation and
Analysis Platform MicroScope (Genoscope, France) and deposited in the European
Nucleotide Archive (ENA) under accession number LT630458 (28).

M. morganii strain LIM90 harbored the SGI1-L variant shown in Fig. 1. SGI1-L-related
islands have been previously described in S. enterica serovars and P. mirabilis strains but
were never fully sequenced (10, 14). This SGI1-L variant carried the dfrA15 and blaCARB-2

(previously named blaPSE-1) resistance gene cassettes inserted at the two SGI1 integron
attI recombination sites, conferring resistance to trimethoprim and ticarcillin, respec-
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tively (Fig. 1). The floR gene, which confers resistance to chloramphenicol and florfeni-
col, and tetracycline resistance genes tetR(G) and tetA(G) were found to be flanked by
these two integron structures (Fig. 1). The presence of ISVch4 (also called IS1359) at
position 6227 to position 7484 of the SGI1 backbone sequence (ENA accession number
LT630458) was found as previously described in a few SGI1 variants (SGI1-H, SGI1-K, and
SGI1-L derivatives) in S. enterica serovars and P. mirabilis. An adjacent 2,779-bp deletion
removed the region extending from within open reading frame (ORF) S005 to within
ORF S009 (Fig. 1). The absence of target site duplication created upon ISVch4 insertion
suggested that additional recombinational events may have occurred after the trans-
position of this ISVch4 copy, i.e., replicative transposition of ISVch4 into ORF S009 and
subsequent recombination between the two copies of ISVch4 creating the 2,779-bp
deletion.

The backbone of SGI1-L (24,093 bp, excluding mobile elements like ISVch4 and the
complex class 1 integron structure) was identical to that of SGI1 variants harboring the
insertion/deletion of ISVch4 and previously described in P. mirabilis and S. Kentucky
ST198 (Table 1) (13, 18). In addition to the ISVch4 insertion/deletion, the backbone of
this group of SGI1 variants showed two single-base differences from other fully
sequenced variants (29). One SNP was identified compared with ISVch4-negative SGI1
of epidemic S. Typhimurium DT104 strains, resulting in an amino acid (AA) change in
toxin SgiT (ORF S025) of the sgiAT toxin-antitoxin addiction system (Table 1) (28, 29).
The putative role of this AA change in the SgiAT toxin-antitoxin system and in the
stability of SGI1 remains to be determined. Concomitantly with the first SNP position
described above, a second one was found in antitoxin SgiA (ORF S026, no AA change)
of ISVch4-negative variants described in other S. enterica serovars and P. mirabilis strains
(Table 1) (29, 30). Interestingly, the original SGI1 sequence of S. Typhimurium (GenBank
accession number AF261825), the recently released SGI1-F sequence of S. Cerro
(GenBank accession no. KU847976), and the SGI2 sequence of S. Emek showed 7, 7, and
95 different base pair substitutions relative to the ISVch4-positive SGI1 backbone,
respectively (Table 1). All these SGI1 backbone characteristics suggest different lineages
that evolve and horizontally spread among Enterobacteriaceae.

The whole-genome sequence analysis of M. morganii LIM90 revealed the presence
of other antibiotic resistance determinants in the chromosome: (i) chromosomal AmpC
�-lactamase gene blaDHA-17, conferring resistance to amoxicillin � clavulanic acid,
cephalotin, and cefuroxim (further confirmed by the phenotypic cloxacillin disk diffu-
sion test; data not shown), and (ii) a class 2 integron carrying the sat2 and aadA1 gene
cassettes, conferring resistance to streptothricin and streptomycin/spectinomycin, re-
spectively. No plasmid of Enterobacteriaceae was detected by the PlasmidFinder tool,
indicating that M. morganii LIM90 did not carry a conjugative IncA/C plasmid known to

FIG 1 Schematic view of SGI1-L and its specific features encountered in Morganella morganii strain LIM90. The gray arrow corresponds
to chromosomal gene trmE into which SGI1 is integrated into the last 18 bp. DR-L and DR-R are the 18-bp left and right direct repeats,
respectively, bracketing SGI1. The insertion points of complex class 1 integron InSGI1-L between the res gene and ORF S044 of the SGI1
backbone and the 5-bp target site duplication are indicated. IRi and IRt are 25-bp imperfect inverted repeats defining the left and right
end of the complex class 1 integron. Black arrows correspond to SGI1 antibiotic resistance genes. IS elements are indicated by boxes
containing black hatched arrows representing the transposase genes. Base pair coordinates are from the complete SGI1-L sequence of
M. morganii strain LIM90 (ENA accession no. LT630458).
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specifically mobilize SGI1 (2, 3). This observation is in accordance with the recently
described incompatibility between SGI1 and members of the IncA/C plasmid family
(30).

The identification of SGI1 in a M. morganii clinical isolate is of great interest, as the
spread of this multidrug-resistant genomic island, especially in a naturally �-lactam-
resistant species such as M. morganii, is a nonnegligible threat to public health. The
important role of the horizontal transfer of SGI1 is crucial in the dissemination of
multidrug resistance and may increase through pathogenic or nonpathogenic bacterial
genera as well.

Accession number(s). The sequence of SGI1 was deposited in the European Nu-
cleotide Archive (ENA) under accession number LT630458.
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TABLE 1 Characteristics of complete SGI1 sequences and backbone SNP analysis

Host strain SGI1 variant
ISVch4
indel

SNP positiona

GenBank
accession no.

22001
(in sgiT)

24286
(in sgiA)

M. morganii SGI1-L � C G LT630458
S. Kentucky SGI1-K � C G AY463797
P. mirabilis SGI1-PmMAT �b C G JX089583
P. mirabilis SGI1-PmABB � C G KP313760
P. mirabilis SGI1-PmGUE � C G JX121641
P. mirabilis SGI1-PmVER � C G JX121640
P. mirabilis SGI1-PmSCO � C G JX121639
P. mirabilis SGI1-PmABB � C G JX121638
S. Typhimurium SGI1 � A G KU499918
S. Typhimurium SGI1 � A G CP014979
S. Typhimurium SGI1 � A G CP014975
S. Typhimurium SGI1 � A G CP014969
S. Typhimurium SGI1 � A G CP014967
S. Typhimurium SGI1 � A G CP012985
S. Typhimurium SGI1 � A G CP014358
S. Typhimurium SGI1 � A G CP007581
S. Typhimurium SGI1 � A G HF937208
S. Infantis SGI1-D � A G KU854986
S. Derby SGI1-I � A T KU563154
S. Rissen SGI1-I � A T KM234279
P. mirabilis SGI1-B0616 � A T KU987432
P. mirabilis SGI1-O � A T KU987431
P. mirabilis SGI1-B � A T KU987430
P. mirabilis SGI1-Z � A T KP662516
P. mirabilis SGI1-X � A T KJ186154
P. mirabilis SGI1 � A T KJ186153
P. mirabilis SGI1-I � A T KJ186152
P. mirabilis SGI1-W � A T KJ186151
P. mirabilis SGI1-O � A T KJ186150
P. mirabilis SGI1-Y � A T KJ186149
P. mirabilis SGI1-PmBRI � A T JX089582
P. mirabilis SGI1-PmCAU � A T JX089581
P. mirabilis SGI1-B2 � A T KP116299
S. Typhimurium SGI1c � A G AF261825
S. Cerro SGI1-Fd � A T KU847976
S. Emek SGI2e � A G AY963803
aSNP positions in the ORF of the TA system sgiAT are given according to ENA accession no. LT630458.
bThe SGI1-PmMAT variant harbored the deletion created by ISVch4 and extending from within ORF S005 to
within ORF S009 but without the presence of ISVch4 (18).

cThe original SGI1 sequence (AF261825) showed 6 other specific SNP positions.
dThe SGI1-F variant showed 5 other specific SNP positions.
eThe SGI2 variant harbored 93 additional SNP positions and the transpositional insertion of the complex class
1 integron structure at a position different that in from all other variants (7, 8, 11, 14).
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