
HAL Id: hal-01606578
https://hal.science/hal-01606578v1

Submitted on 26 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

SMOS-IC: an alternative SMOS soil moisture and
vegetation optical depth product

Roberto Fernandez Moran, Amen Al Yaari, Arnaud Mialon, Ali Mahmoodi,
Al Bitar Ahmad, Gabrielle de Lannoy, Nemesio Rodriguez-fernandez, Ernesto

Lopez-Baeza, Yann H. Kerr, Jean-Pierre Wigneron

To cite this version:
Roberto Fernandez Moran, Amen Al Yaari, Arnaud Mialon, Ali Mahmoodi, Al Bitar Ahmad, et al..
SMOS-IC: an alternative SMOS soil moisture and vegetation optical depth product. Remote Sensing,
2017, 9 (5), pp.1-21. �10.3390/rs9050457�. �hal-01606578�

https://hal.science/hal-01606578v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


remote sensing  

Article

SMOS-IC: An Alternative SMOS Soil Moisture and
Vegetation Optical Depth Product

Roberto Fernandez-Moran 1,2,*, Amen Al-Yaari 1, Arnaud Mialon 3, Ali Mahmoodi 3,
Ahmad Al Bitar 3, Gabrielle De Lannoy 4, Nemesio Rodriguez-Fernandez 3,
Ernesto Lopez-Baeza 2, Yann Kerr 3 and Jean-Pierre Wigneron 1

1 INRA, Centre INRA Bordeaux Aquitaine, URM1391 ISPA, F-33140 Villenave d’Ornon, France;
amen.alyaari@bordeaux.inra.fr (A.A.-Y.); jean-pierre.wigneron@inra.fr (J.-P.W.)

2 Climatology from Satellites Group, Faculty of Physics, Department of Earth Physics & Thermodynamics,
University of Valencia, 46100 Valencia, Spain; Ernesto.Lopez@uv.es

3 CESBIO, CNES/CNRS/IRD/UPS, UMR 5126, 31401 Toulouse CEDEX 9, France;
arnaud.mialon@cesbio.cnes.fr (A.M.); mahmoodi.ca@gmail.com (A.M.);
ahmad.albitar@cesbio.cnes.fr (A.A.B.); nemesio.rodriguez-fernandez@univ-tlse3.fr (N.R.-F.);
yann.kerr@cesbio.cnes.fr (Y.K.)

4 Department of Earth and Environmental Sciences, KU Leuven, Heverlee, B-3001, Belgium;
gabrielle.delannoy@kuleuven.be

* Correspondence: roberto.fernandez-moran@inra.fr; Tel.: +33-7-5204-3085

Academic Editors: Prashant K. Srivastava and Prasad S. Thenkabail
Received: 1 March 2017; Accepted: 3 May 2017; Published: 9 May 2017

Abstract: The main goal of the Soil Moisture and Ocean Salinity (SMOS) mission over land surfaces
is the production of global maps of soil moisture (SM) and vegetation optical depth (τ) based on
multi-angular brightness temperature (TB) measurements at L-band. The operational SMOS Level
2 and Level 3 soil moisture algorithms account for different surface effects, such as vegetation
opacity and soil roughness at 4 km resolution, in order to produce global retrievals of SM and
τ. In this study, we present an alternative SMOS product that was developed by INRA (Institut
National de la Recherche Agronomique) and CESBIO (Centre d’Etudes Spatiales de la BIOsphère).
One of the main goals of this SMOS-INRA-CESBIO (SMOS-IC) product is to be as independent as
possible from auxiliary data. The SMOS-IC product provides daily SM and τ at the global scale and
differs from the operational SMOS Level 3 (SMOSL3) product in the treatment of retrievals over
heterogeneous pixels. Specifically, SMOS-IC is much simpler and does not account for corrections
associated with the antenna pattern and the complex SMOS viewing angle geometry. It considers
pixels as homogeneous to avoid uncertainties and errors linked to inconsistent auxiliary datasets
which are used to characterize the pixel heterogeneity in the SMOS L3 algorithm. SMOS-IC also
differs from the current SMOSL3 product (Version 300, V300) in the values of the effective vegetation
scattering albedo (ω) and soil roughness parameters. An inter-comparison is presented in this study
based on the use of ECMWF (European Center for Medium range Weather Forecasting) SM outputs
and NDVI (Normalized Difference Vegetation Index) from MODIS (Moderate-Resolution Imaging
Spectroradiometer). A six-year (2010–2015) inter-comparison of the SMOS products SMOS-IC and
SMOSL3 SM (V300) with ECMWF SM yielded higher correlations and lower ubRMSD (unbiased
root mean square difference) for SMOS-IC over most of the pixels. In terms of τ, SMOS-IC τ was
found to be better correlated to MODIS NDVI in most regions of the globe, with the exception of the
Amazonian basin and the northern mid-latitudes.

Keywords: SMOS; L-band; Level 3; ECMWF; SMOS-IC; soil moisture; vegetation optical depth;
MODIS; NDVI
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1. Introduction

The estimation of surface soil moisture (SM) at global scale is a key objective for the recent
L-band microwave missions SMOS (Soil Moisture and Ocean Salinity) (Kerr et al., 2012 [1]) and
SMAP (Soil Moisture Active Passive) (Entekhabi et al., 2010 [2]). Measurements of soil moisture are
needed for applications related to the study of climate change or agriculture (droughts, floods, etc.) and
hydrological processes (Brocca et al., 2010 [3]) such as precipitation, infiltration, runoff and evaporation.
Moreover, SM is considered as an Essential Climate Variable (ECV) and it is included in in the Climate
Change Initiative (CCI) project (Hollmann et al., 2013 [4]). An ECV is defined as a physical, chemical
or biological variable that critically contributes to the characterization of the Earth’s climate.

The soil moisture of the first 2–3 cm soil layer is highly related to the soil emissivity at L-band
through the soil permittivity. SMOS uses an interferometric radiometer, which delivers multi-angular
brightness temperature measurements at L-band. Currently, various products are derived from the
SMOS data at Level 2 (Kerr et al., 2012 [1]) and at Level 3 (Al Bitar et al., 2017 [5]), such as the
SMOSL3 Brightness Temperature (SMOSL3 TB) and the SMOSL3 SM and τ products, with a 625 km2

sampling. The SMOS SM retrieval algorithm, which is common to both SMOS Level 2 (L2) and
Level 3 (L3) products, has been continuously improved since the launch of the satellite in 2009
(Kerr et al., 2001 [6]; Mialon et al., 2015 [7]; Al Bitar et al., 2017 [5]). It has been evaluated against several
datasets from various space-borne sensors such as SMAP, the active Advanced Scatterometer (ASCAT),
the Advanced Microwave Scanning Radiometer (AMSR-E) or different versions of the SMOS products
(Al-Yaari et al., 2014 [8]; Al-Yaari et al., 2015 [9], 2017 [10], Kerr et al., 2016 [11]). All versions of the
Level 2 (L2) and Level 3 (L3) products, are based on the inversion of the L-band Microwave Emission
of the Biosphere (L-MEB) radiative transfer model (Wigneron et al., 2017 [12], thus retrieving two main
parameters: soil moisture and vegetation optical depth at nadir (τ).

The SMOS τ is a measure of the attenuation of the microwave radiations by the vegetation canopy
at L-band. Vegetation is commonly studied at optical or infrared frequencies. However, the longer
wavelength of L-band sensors allows penetration of the radiations within the canopy. Thus, τ can be
related to different vegetation features such as forest height (Rahmoune et al., 2013 [13], 2014 [14]),
vegetation structure (Schwank et al., 2005 [15], 2012 [16]), water content (Jackson and Schmugge,
1991 [17], Mo et al., 1982 [18], Wigneron et al., 1995 [19]; Grant et al., 2012 [20]), sapflow (Schneebeli
et al., 2011 [21]) and leaf fall (Guglielmetti et al., 2008 [22]; Patton et al., 2012 [23]). Furthermore,
some vegetation indices can also be related to τ such as the Leaf Area Index (LAI) (Wigneron et al.,
2007 [24]) and the normalized difference vegetation index (NDVI) (Grant et al., 2016 [25]). Note that
some studies have also demonstrated the notable influence of soil roughness on the retrieved values
of the τ parameter at both local and regional scales (Patton et al., 2013 [23]; Fernandez-Moran et al.,
2015 [26]; Parrens et al., 2017 [27]).

The L-MEB model has been progressively refined and improved (Wigneron et al., 2011 [28],
2017 [12]). The SMOS L2 and L3 algorithms are based on a bottom-up approach where the TB
contributions of 4 x 4 km land cover surfaces are convoluted using the antenna pattern to upscale the
TB simulations to the sensor resolution. The use of such a bottom-up approach to retrieve SM and τ

presents two main drawbacks. First, this approach is impacted by the uncertainties associated with
the higher resolution auxiliary files, like the land cover maps, which are used to characterize the pixel
heterogeneity. Second, the approach is more time consuming as the exact antenna patterns have to be
applied for each view angle.

In this study, an alternative SMOS product is presented, hereinafter referred to as SMOS-IC
(SMOS-INRA-CESBIO). This product is based on a simplified approach developed by INRA (Institut
National de la Recherche Agronomique) and CESBIO (Centre d’Etudes Spatiales de la BIOsphère) and
differs from the operational SMOS Level 2 and Level 3 products in four main ways:

I The main objective of this product is to be as independent as possible from auxiliary data.
The SMOS-IC algorithm does not take into consideration pixel land use and assumes the pixel to
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be homogeneous as suggested by Wigneron et al., 2012 [29]. The SM and τ retrieval is performed
over the whole pixel rather than over the fraction designated as either low vegetation or forest.
Note that this approach is similar to the one considered in the development of the AMSR-E
and SMAP SM algorithms (O’Neill et al., 2012 [27]). By simplifying the retrieval approach, the
SMOS-IC product becomes independent of the ECMWF soil moisture information currently used
as auxiliary information to estimate TB in the subordinate pixel fractions of heterogeneous pixels
in the operational SMOS L2 and L3 algorithms (Kerr et al., 2012 [1]).

II In relation to the above point, in some cases, the Level 2 and Level 3 algorithms use values of
LAI derived from MODIS [30] to initialize the value of optical depth in the inversion algorithm
(Kerr et al., 2012 [1]). In SMOS-IC, this is not implemented, and the initialization of optical depth
in the inversion algorithm is based on a very simple approach (given in the following) and is
completely independent of the MODIS data.

III SMOS-IC uses as input SMOS Level 3 fixed angle bins Brightness Temperature (TB) data at the top
of the atmosphere and contains different flags allowing to filter SM retrievals accounting for the
quality of the input TB data and for the TB angular range in the L-MEB inversion. SMOS-IC does
not make use of the computationally expensive corrections based on angular antenna patterns to
account for pixel heterogeneity as in the L2 and L3 retrieval algorithms.

IV New values of the effective vegetation scattering albedo (ω) and soil roughness parameters (HR,
NRV, and NRH) are considered in the SMOS-IC product. This change is based on the results of
Fernandez-Moran et al. (2016) [31] who calibrated the L-MEB vegetation and soil parameters for
different land cover types based on the International Geosphere-Biosphere Programme (IGBP)
classes, as well as the findings of Parrens et al. (2016) [32] who computed a global map of the
soil roughness HR values. The calibration of Fernandez-Moran et al. (2016) [31] was obtained by
selecting the values of the parameters (HR, NRV, NRH, and ω) which optimized the SMOS SM
retrievals, with respect to the in situ SM values measured over numerous sites obtained from
ISMN (International Soil Moisture Network). The parameter values resulting from this new
calibration differ from those used in the current SMOS L2 and L3 products. Values currently
used in the SMOS L2 and L3 algorithms (Kerr et al., 2012 [1]) were defined before launch from
literature. Over forested areas, values were updated but not over low vegetation. Consequently,
in Version 620 of the L2 (and Version 300 for L3) algorithm, ω is still assumed to be zero over low
vegetation canopies and ω ~0.06–0.08 over forests. Similarly, HR is equal to 0.3 for forests and
HR = 0.1 for the rest of the cover types, whereas NRH and NRV are respectively set to 2 and 0 at
global scale.

An evaluation and calibration of SMOS-IC at local scale was performed in Fernandez-Moran et al.
(2016) [31]. The present study aims at presenting SMOS-IC and illustrating the main features of the
SMOS-IC SM and τ products at global scale, in comparison to the current SMOSL3 product. To achieve
this, the SMOS-IC and SMOSL3 SM products were compared against the ECMWF SM product for
ease of comparison. Furthermore, NDVI (Rouse et al., 1974 [33]) from the Moderate-Resolution
Imaging Spectroradiometer (MODIS) was used as a vegetation index to analyze the seasonal changes
in the τ products from both SMOS-IC and SMOSL3. The NDVI index which is derived from optical
observations cannot be directly compared to the τ product, which is derived from microwave
observations. It must be noted that the L-band TB observations are almost insensitive to green leaves
(Guglielmetti et al., 2007 [34], Santi et al., 2009 [35]), and τ is related to the vegetation water content
(VWC, kg/m2) of the whole vegetation layer. However, the NDVI index is a good indicator of the
vegetation density and it can be used to interpret the seasonal changes in the SMOS τ product at large
scale over low vegetation as found by Grant et al. (2016) [25], but with some caveats: saturation effects
at high levels of vegetation density, sensitivity to the effects of snow and soil reflectivity (Qi et al.,
1994 [36]), etc. It may be noted that NDVI is the proxy used for estimating τ in the current operational
algorithm of the SMAP mission (O’Neill et al., 2012 [37]).
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In Section 2, we present a description of both SMOS algorithms (SMOSL3 and SMOS-IC) and of
the MODIS NDVI and ECMWF SM datasets. The inter-comparison of the SMOS products in terms of
soil moisture and vegetation optical depth is given in Section 3. The inter-comparison covers almost
six years of data, from 2010 to 2015, excluding the commissioning phase (the first six months of 2010;
Corbella et al., 2011 [38]). Discussion and conclusions are presented in Section 4.

2. Materials and Methods

2.1. SMOSL3 Brightness Temperature, Soil Moisture and Vegetation Optical Depth

At Level 3, there are different SMOS products (Al Bitar et al., 2017 [5]). In this study, we used the
SMOS L3 products which include TB, τ and SM (version 300) data produced by the CATDS (Centre
Aval de Traitement des Données SMOS) (Al Bitar et al., 2017 [5]). These products are available in the
NetCDF format and on the Equal-Area Scalable Earth (EASE) 2.0 grid (Armstrong et. al, 1997 [39]) with
a 625 km2 sampling [40]. The SMOSL3 TB is measured at the top of the atmosphere and provided in
the surface reference frame (i.e., H and V polarizations) at angles ranging from 2.5 ± 2.5 to 62.5 ± 2.5.
Ascending (~06:00 LST at the equator) and descending (~18:00 LST) orbits are processed separately.
The Level 3 processor uses the same physically based forward model (L-MEB) as the ESA SMOS
Level 2 processor (Kerr et al., 2012 [1], Kerr et al., 2013 [41]) for the retrieval of both SM and τ from
dual polarization (H, V) and multi-angular SMOS measurements. The retrieval algorithm consists of
the minimization of the differences between observed and modeled Level 1 TB (through the L-MEB
forward model) in a Bayesian cost function, which accounts for the observation uncertainty, and also
contains a prior parameter constraint. One of the characteristics of the TB modeling is the consideration
of surface heterogeneity. The total modeled TB is simulated as the sum of TB contributions from several
fractions (nominal or low vegetation, forest, and others as urban, water, etc.). In most of the cases, the
SM retrieval is estimated from the TB contribution which corresponds to areas with low vegetation
(nominal fraction), while the TB forest contribution is computed using ancillary data such as ECMWF
SM. In other cases, the retrieval is performed entirely over the forest fraction. Dynamic changes as
freezing or rainfall events are considered through ancillary weather data from ECMWF.

The SMOSL3 τ and SM retrievals are provided at different temporal resolutions: daily, 3-days,
10-days, and monthly averaged (Kerr et al., 2013 [41]; Jacquette et al., 2010 [42]). The quality of the
SMOSL3 product containing SM and τ data is improved by the use of multi-orbit retrievals (Al Bitar et al.,
2017 [5]). The SMOS ascending (06:00 LST) and descending (18:00 LST) orbits are processed separately
in this product in order to better account for the diurnal effects (surface, total electron content which
drives Faraday rotation and sun corrections) and, in some areas, radio frequency interferences (RFI)
effects (Oliva et al., 2012 [43]) and sun glint impacts at L-band (Khazâal et al., 2016 [44]).

In SMOS-IC, we used the SMOS L3 TB product as input to the inversion algorithm. This product,
which includes many corrections, is very easy and convenient to use (conversely, the L2 and L3
algorithms are based on L1 C TB data, which include multi-incidence angle brightness temperatures at
the top of the atmosphere with a spatial resolution grid of 15 km).

2.2. SMOS-IC

2.2.1. Model Description

As for the L2 and L3 algorithms, in SMOS-IC, the retrieval of the soil moisture and vegetation
optical depth at nadir is based on the L-MEB model inversion (Wigneron et al., 2007 [24]). The retrieval
is performed over pixels which are considered as entirely homogeneous; in other words, a single
representative value of each input model parameter is used for the whole pixel.

In L-MEB, the simulation of the land surface emission is based on the τ-ω radiative transfer model
(Mo et al., 1982 [18]) using simplified (zero-order) radiative transfer equations. The model represents
the soil as a rough surface with a vegetation layer. The modeled TB from the soil vegetation medium is
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calculated as the sum of the direct vegetation emission, the soil emission attenuated by the canopy
and the vegetation emission reflected by the soil and attenuated by the canopy following Equation (1).
The atmospheric contribution is neglected.

TBP(θ) = (1 − ω)
[
1 − γP(θ)

][
1 + γP(θ)rGP(θ)

]
TC +

[
1 − rGP(θ)

]
γP(θ)TG (1)

where θ is the incidence angle, rGP is the soil reflectivity, TG and TC are the soil and canopy effective
temperatures (K), γp is the vegetation transmissivity (or vegetation attenuation factor) and ω is the
effective scattering albedo (polarization effects are not taken into account for this parameter).

Soil roughness effects are parameterized through a semi-empirical approach initially developed
by Wang and Choudhury (1981) [45] and refined in more recent studies (Escorihuela et al., 2007 [46];
Lawrence et al., 2013 [47]; Parrens et al., 2016 [27]). The roughness modeling in SMOS-IC is based on
three parameters (HR, NRH and NRV) and the calculation of the soil reflectivity rGP is given by:

rGP(θ) = r∗GP(θ)exp
[
−HR·cosNRP(θ)

]
(2)

where r∗GP (P = H, V) is the reflectivity of a plane (specular) surface, which is computed from the
Fresnel equations (Ulaby, 1982 [48]) as a function of θ and of the soil dielectric constant (ε), expressed
as a function of SM, soil clay fraction and soil temperature using the model developed by Mironov et al.
(2012) [49]. HR accounts for the decrease of rGP due to soil roughness effects and its value was estimated
from global maps computed by Parrens et al. (2016) [32]. The values of NRP (P = H, V) have been
calibrated in Fernandez-Moran et al. (2015, 2016) [31,50]. Optimized values of NRP = −1 (P = H, V)
were obtained over low vegetation and NRH = 1 and NRV = −1 over forests.

Under the assumption of isotropic conditions and no dependence of the vegetation optical depth
on polarization, the vegetation attenuation factor γP can be computed using the Beer’s law as:

γp = exp
[
−τ/cos(θ)

]
(3)

The retrieval of SM and τ involves the minimization of the following cost function x:

x =
∑N

i=1
(
TBp(θ)mes − TBp(θ)

)2

σ(TB)2 +
2

∑
i=1

(Pini
i − Pi)

2

σ(Pi)
2 (4)

where N is the number of observations for different viewing angles (θ) and both polarizations
(H, V), TBP(θ)mes is the measured value over the SMOS pixels from the SMOSL3 TB product
(presented in Section 2.2.2), σ(TB) is the standard deviation associated with the brightness temperature
measurements (this parameter was set to the constant value of 4 K in this study), TBP(θ) is the
brightness temperature calculated using Equation (1), Pi (i = 1, 2) is the value of the retrieved parameter
(SM, τ); Pini

i (i = 1, 2) is an a priori estimate of the parameter Pi; and σ(Pi) is the standard deviation
associated with this estimate. A constant initial value of 0.2 m3/m3 was considered for SM and σ(SM)

and the value of τNAD was set equal to a yearly average value (computed from previous runs) and
σ(τNAD) was computed as follows:

σ(τNAD) = min(0.1 + 0.3·τNAD, 0.3) (5)

2.2.2. Effective Vegetation Scattering Albedo, Soil Roughness and Soil Texture Parameters

One of the most important features of the SMOS-IC product is the ability to test new calibrated
values of ω (Fernandez-Moran et al, 2016 [31]) and HR (Parrens et al., 2016 [32]. Table 1 presents these
values for SMOS-IC and SMOSL3 V300 as a function of the IGBP land category classes. It must be
noted that SMOSL3 V300 uses the ECOCLIMAP classification (Masson et al., 2003 [51]) and that in
new versions of SMOSL3, IGBP land use maps could be used.
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In SMOS-IC, the retrieval of SM and τ is performed over the totality of each pixel and the input
parameters HR and ω are consequently constant values for the whole pixel. However, due to the
heterogeneity present in all pixels, the input HR and ω parameters used in the retrieval are calculated
by linear weighting the HR and ω contribution according to the percentage of each IGBP class within
the pixel based on the values provided in Table 1. For instance, if a pixel is covered by 60% of grasslands
and 40% of croplands, the effective vegetation scattering albedo considered for that pixel is calculated
as follows: ω = 0.60 × 0.10 + 0.40 × 0.12 = 0.108. The assumption of linearity, which is questionable,
was made here as it leads to a very simple correction, and as no other more physical and general
formulation was available.

The soil texture in terms of clay content is obtained in the SMOS-IC product from the Food and
Agriculture Organization map (FAO, 1988) [52]. This map is re-gridded in the same EASE 2.0 grid
used by SMOSL3.

Table 1. Calibrated Values of ω and HR as a Function of the IGBP Land Category Classes for SMOS-IC
and SMOSL3.

Class ω
(SMOS-IC)

ω
(SMOSL3 V300)

HR
(SMOS-IC)

HR
(SMOSL3 V300)

1—Evergreen needle leaf forest 0.06 0.06–0.08 * 0.30 0.30
2—Evergreen broadleaf forest 0.06 0.06–0.08 * 0.30 0.30
3—Deciduous needle leaf forest 0.06 0.06–0.08 * 0.30 0.30
4—Deciduous broadleaf forest 0.06 0.06–0.08 * 0.30 0.30
5—Mixed forests 0.06 0.06–0.08 * 0.30 0.30
6—Closed shrublands 0.10 0.00 0.27 0.10
7—Open shrublands 0.08 0.00 0.17 0.10
8—Woody savannas 0.06 0.00 0.30 0.10
9—Savannas 0.10 0.00 0.23 0.10
10—Grasslands 0.10 0.00 0.12 0.10
11—Permanent wetland 0.10 0.00 0.19 0.10
12—Croplands 0.12 0.00 0.17 0.10
13—Urban and built-up 0.10 0.00 0.21 0.10
14—Cropland/Natural Vegetation‘Mosaic 0.12 0.00 0.22 0.10
15—Snow and ice 0.10 0.00 0.12 0.10
16—Barren and sparsely vegetated 0.12 0.00 0.02 0.10

* ω = 0.08 over boreal forests, ω = 0.06 over other forest types.

2.2.3. Quality Flags

The data filtering of the SMOS-IC product can be done through different scene and processing
flags which are summarized in Tables 2 and 3. The scene flags indicate the presence of moderate and
strong topography, frozen soil or polluted scene. TB data for pixels where the sum of the water, urban
and ice fractions are higher than 10% are considered as polluted scene. For ECMWF soil temperatures
below 273 K, the soil is considered as frozen. The processing flags help to filter out all cases suspected
to give dubious results. Retrievals for which the RMSE values between the measured (L3 TB) and
the L-MEB modeled TB data are larger than 12 K can be filtered out as suggested in Wigneron et al.
(2012) [29]. These retrievals and the SM retrievals, which are out of the physical range (0–1 m3/m3),
are flagged using a processing flag (Table 3).

In order to extend the number of retrievals and the spatial coverage of the retrievals of SM and τ,
scene and processing flags were not all considered in this study. More details about the data filtering
used in this study are given in Section 2.4.1.
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Table 2. Description of the SMOS-IC Scene Flags.

Scene Flags Description

Presence of moderate topography Same filter as SMOSL3 V300
Presence of strong topography Same filter as SMOSL3 V300

Polluted scene Water, urban and ice fractions (according to the IGBP
classification) represent less than 10% of the pixel

Frozen scene Soil temperature < 273 K

Table 3. Description of the SMOS-IC Processing Flags.

Processing Flags Description

SM retrieved successfully
SM retrieved successfully but not recommended RMSE < 12 K

Failed retrieval SM < 0 or SM > 1 m3/m3

2.3. ECMWF and MODIS Data

The ECMWF dataset used in this study for the SM product inter-comparison was obtained from
the SMOSL3 SM pre-processor. This ECMWF product has a spatial resolution of 625 km2 and 1-day
temporal resolution, using the same EASE 2.0 grid and interpolated in time and space to fit the SMOSL3
sampling resolutions. It is based on the ERA-Interim dataset. ERA-Interim uses a numerical weather
prediction (NWP) system (IFS-Cy31r2) to produce reanalyzed data (Berrisford et al., 2011) [53].

The ECMWF soil surface (Level 1, top 0–7 cm soil layer) and soil deep temperature (Level 3,
28–100 cm) are used in the computation of the effective soil temperature for the SMOS-IC and SMOSL3
SM products following the parameterization of Wigneron et al. (2001) [54]. It is worth noting that,
unlike the SMOSL3 SM product, the SMOS-IC processor does not use the ECMWF SM product to
compute contributions from the fixed fractions (i.e., fraction of the scene over which the SM retrieval is
not performed), and is only considered for evaluation purpose in this study. The ECMWF SM product
represents the top 0–7 cm surface layer and it has been frequently compared to retrieved SM at global
scale (Al-Yaari et al., 2014 [55]; Albergel et al., 2013 [56]; Leroux et al., 2014) [57]. ECMWF SM was
found by Albergel et al. (2012) [58] to represent very well the SM variability at large scales. It is also
known to give erroneous values in some areas (Louvet et al., 2015 [59]; Kerr et al., 2016 [11]).

The NDVI product used in this study was obtained from the 16-day NDVI MODIS Aqua and
Terra data (MOD13A2), with a 1 km resolution. This product was re-gridded in the EASE 2.0 grid
in order to make it comparable with SMOS-IC and SMOSL3 SM. Different studies have shown that
τ at microwave frequencies has high spatial correspondences with MODIS NDVI (De Jeu and Owe,
2003 [60]; Andela et al., 2013 [61]) and also temporal correspondences regarding both seasonal and
inter-annual scales (Tian et al., 2016a [62], 2016b [63]) even though both products have shown sensitivity
to different aspects of the vegetation dynamics (Grant et al., 2016 [25]).

2.4. Inter-Comparison

The inter-comparison was made for both SMOS-IC and SMOSL3 products by direct comparison
between SM (m3/m3) and τ, respectively, the ECMWF SM and MODIS NDVI products. This section
explains the filtering, which was applied to the latter datasets and the metrics used in the
evaluation process.

2.4.1. Data Filtering

In the evaluation step, only ascending SMOS SM retrievals were selected (Al-Yaari et al.,
2014 [8,55]). For SMOS-IC retrievals, only TB values whose standard deviations were within radiometric
accuracy were kept (TB with a standard deviation exceeding 5 K plus the TB radiometric accuracy were
filtered out). Moreover, only retrievals meeting the following conditions were considered: (i) made
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in the range of incidence angles of 20◦ to 55◦; and (ii) with a range of angular values exceeding 10◦

(to ensure a sufficient sampling of the angular distribution).
For the SMOSL3 SM product, a quality index (DQX) estimates the retrieval quality. In this study,

data with DQX > 0.06 m3/m3 were excluded. In parallel, the Level 3 RFI probability flag was used
to filter out SM data contaminated by RFI. SM retrievals with an associated RFI probability higher
than 20% and frozen areas were removed (surface temperature < 273 K). The SMOS-IC and SMOSL3
retrievals of SM and τ used in the study were inter-compared for the same dates. This means that
all the Level 3 flags were implicitly applied to both the SMOS-IC and SMOSL3 data. For both SMOS
products (SMOSL3 and SMOS-IC), SM values out of the range 0–0.6 m3/m3 (Dorigo et al., 2013 [64])
and τ values out of the range 0–2 were filtered out. We only considered pixels with temporal series of
at least 15 values for the product inter-comparison.

In order to compare τ with MODIS NDVI, the daily τ values were re-gridded to 16-day mean
values produced every 8 days following the same methodology as described in Grant et al. (2016) [25].

2.4.2. Metrics

For evaluation purposes, the following metrics were used: Pearson correlation coefficient (R), bias,
root mean square difference (RMSD) and unbiased RMSD (ubRMSD). Equations for the calculation of
the SM metrics are the following:

R =
∑n

i=1

(
SMEC(i) − SMEC

)(
SMSMOS(i) − SMSMOS

)
√

∑n
i=1

(
SMEC(i) − SMEC

)2
∑n

i=1

(
SMSMOS(i) − SMSMOS

)2
(6)

bias = (SMSMOS − SMEC) (7)

RMSD =

√
(SMSMOS − SMEC)

2 (8)

ubRMSD =
√

RMSD2 − bias2 (9)

where n is the number of SM data pairs, SMSMOS is the SMOS SM product (SMOSL3 SM or SMOS-IC)
and SMEC is the ECMWF SM. The use of RMSD instead of root mean square error (RMSE) should
be noted as ECMWF SM contain errors and cannot be considered as the “true” ground SM value
(Al-Yaari et al., 2014 [55]). In this study, only significant correlations were considered by means of
a p-value filtering for SM retrievals, i.e., pixels where the p-value was above 0.05 were filtered out.

In order to evaluate τ, R was calculated as follows:

R =
∑n

i=1
(

NDVIi − NDVI
)(

τSMOS(i) − τSMOS

)
√

∑n
i=1
(

NDVIi − NDVI
)2

∑n
i=1

(
τSMOS(i) − τSMOS

)2
(10)

where τSMOS is the vegetation optical depth at nadir (τ) retrieved from the SMOSL3 or SMOS-IC product.

3. Results and Discussion

3.1. Soil Moisture

Figure 1 shows the values of the temporal mean SM over the globe and over the period 2010–2015
for the three SM datasets considered in this study: (a) SMOS-IC; (b) SMOSL3 SM; and (c) ECMWF.
It should be kept in mind that ECMWF SM is representative of the first 0–7 cm of the soil surface
(Albergel et al., 2012 [65]) and the inherent nature of the simulated soil moisture (Koster et al., 2009 [66])
is different to that measured by the SMOS satellite observations, which are sensitive to the first ~0–3
cm of the soil surface (Escorihuela et al., 2010 [67]; Njoku and Kong et al., 1977 [68]). In Figure 1,
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ECMWF SM must be analyzed in terms of spatial patterns rather than absolute values. Although the
images in Figure 1a,b, have many similarities, some spatial patterns shown by the ECMWF SM product
are in better agreement with SMOS-IC than with SMOS L3 SM. For instance, over the Appalachian
region in the Eastern US, SMOSL3 SM shows a dry area, whereas SMOS-IC SM is closer to ECMWF, as
these regions are known to be relatively wetter than the regions of west and midwest (Sheffied et al.,
2004 [69]; Fan et al., 2004 [70]). This was partly explained by differences between ECOCLIMAP and
IGBP and the use of ECMWF SM data in Mahmoodi et al., 2015 [71]. On the other hand, drier retrievals
were found for SMOS-IC in the intertropical regions of Africa, for instance over the savannas and
grasslands of Sahel. Over these regions SMOS-L3 SM is closer to ECMWF SM than SMOS-IC SM.Remote Sens. 2017, 9, 457  9 of 21 
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Figure 1. Temporal mean of soil moisture (m3/m3) during 2010–2015: (a) SMOS-IC
(SMOS-INRA-CESBIO); (b) SMOSL3 SM (Level 3 SMOS soil moisture); and (c) ECMWF (European
Center for Medium range Weather Forecasting) data. White values mean “no valid SMOS data”.

Figure 2 displays different time series metrics derived from the direct comparison between
SMOSL3 SM (Figure 2a) and SMOS-IC SM (Figure 2b) with ECMWF SM for 2010–2015. According to
correlation (R) results, lowest R values were found in forests for both products. A lower number of
negative R values were found between the SMOS-IC and ECMWF SM products. Conversely, SMOSL3
SM yielded negative correlations with ECMWF SM over several forest regions, namely the boreal
forests of Alaska, Canada and Russia, and the tropical forests of Amazon and Congo basins. Over the
non-forested biomes, R values were also found to be generally higher for SMOS-IC, when compared to
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SMOSL3 SM. Substantial differences were found in terms of RMSD and ubRMSD. In general, lower
values were obtained for the SMOS-IC product, especially over the intertropical regions of America
and Africa (in terms of ubRMSD) and the boreal forests of Eurasia (in terms of RMSD). On the other
hand, results do not show important differences in terms of bias between the two SMOS products.
Both SMOS-IC and SMOSL3 SM products are generally much drier than ECMWF SM, except over
some arid and semi-arid areas (deserts in central Asia and Australia, and Sahara in northern Africa)
and north of Canada. However, SMOS-IC shows a wet bias in Northern Europe, which cannot be
noted for SMOSL3. The general negative values of the bias can be partly explained by the difference
between the sampling depth of the SMOS observations (~0–3 cm top soil layer) and the top soil layer
considered in the modeled ECMWF SM (0–7 cm top soil layer). Considering this difference, the distinct
SM bias patterns shown in Figure 2 should be interpreted with care.Remote Sens. 2017, 9, 457  10 of 21 
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Figure 2. Pixel-based statistics during 2010–2015 computed between ECMWF SM simulations and:
SMOSL3 SM (left); and SMOS-IC (right) SM retrievals: (a,b) correlation coefficient; (c,d) Root Mean
Square Deviation (RMSD); (e,f) bias; and (g,h) unbiased Root Mean Square Deviation (ubRMSD).
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A seasonal statistical analysis that separates cold and warm seasons was carried out and led to
similar results to the ones presented above (Figure S1). Figure S1 shows that the ubRMSD is lower in
the cold season, i.e., January–March (JFM) in the Northern Hemisphere and July–September (JAS) in
the South Hemisphere.

Figure 3 is focused on the results in terms of correlation and ubRMSD, considered as first order
criteria. It displays a world map which shows where the best correlation coefficient (R) and ubRMSD
are obtained by comparing ECMWF SM with SMOS-IC SM (red) or SMOSL3 SM (blue) in the period
2010–2015. Areas where the result differs by less than 0.02 in terms of R values between SMOSL3 SM
and SMOS-IC are represented in green color. This threshold is different for the ubRMSD metric and it
was set to 0.005 m3/m3. It can be seen that the red color is dominant, meaning that SMOS-IC SM is
generally closer to ECMWF in terms of temporal dynamics but there are some exceptions. For instance,
regions colored in blue (SMOSL3 is closer to ECMWF than SMOS-IC) can be found for the ubRMSD
metric, in northeastern Europe and northern Asia. It should be noted here that only pixels with
significant correlations, i.e., p-value < 0.05 and a number of data >15 are presented.Remote Sens. 2017, 9, 457  11 of 21 
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Figure 4 shows the spatial differences between SMOSL3 and SMOS-IC SM in terms of bias and 
ubRMSD. It can be observed that the most significant differences for bias were found for forest 
regions (Amazon and Congo basins, Boreal forests, etc.), where SMOSL3 is drier. In these areas, 
ubRMSD is also higher, contrary to deserts or barren regions as the Sahara or Central Australia, where 
the ubRMSD is close to zero. 
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Figure 3. Comparison of the SMOS SM products with respect to ECMWF showing: (a) where SMOS-IC
SM (red) or SMOSL3 SM (blue) leads to the best correlation coefficient, or where the difference in
R < 0.02 (green) among both SMOS products; and (b) where SMOS-IC SM (red) or SMOSL3 SM (blue)
lead to the lowest ubRMSE or where the difference in ubRMSD < 0.005 (green).

Figure 4 shows the spatial differences between SMOSL3 and SMOS-IC SM in terms of bias and
ubRMSD. It can be observed that the most significant differences for bias were found for forest regions
(Amazon and Congo basins, Boreal forests, etc.), where SMOSL3 is drier. In these areas, ubRMSD
is also higher, contrary to deserts or barren regions as the Sahara or Central Australia, where the
ubRMSD is close to zero.
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Figure 4. Mean bias (SMOSL3 minus SMOS-IC SM) and ubRMSD between SMOSL3 and SMOS-IC SM
for 2010–2015.

In order to better assess the range of R and ubRMSD values, the dispersion diagrams displayed in
Figure 5 show the scatter plot of both metrics for all pixels and for both SMOS products (SMOS-IC and
SMOSL3 SM). In terms of correlation, the R values are generally larger for SMOS-IC. There are also
a number of pixels where SMOSL3 SM yields negative correlations, whereas R is positive for SMOS-IC.
In terms of ubRMSD, the largest number of pixels with lower ubRMSD corresponds to the SMOS-IC
SM product.
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3.2. Vegetation Optical Depth

The evaluation of the accuracy of the τ values retrieved from SMOS at global scale is not a simple
issue due to the absence of a consensus on the reference values to be considered at large scale coming
from models or in situ measurements. Some studies have been done at local scale. For instance, over
croplands and grasslands, τ values at L-band vary generally between 0 and 0.6 (Saleh et al., 2006 [72],
Wigneron et al., 2007 [24]). Over forests and from L-band radiometer measurements, Ferrazzoli et al.
(2002) [73] found maximum values of τ ~0.9, and Grant et al. (2008) [74] found values of τ ~0.6–0.7
for a mature pine forest stand in les Landes forest in France, and τ ~1 for a mature deciduous (beech)
canopy in Switzerland.

Figure 6 shows a global map of the temporal mean of the retrieved τ values for both SMOS-IC
and SMOSL3 products. Both products show τ values that are sensitive to vegetation, as the highest τ

values were found for the main boreal and tropical forests, and the minimum for dry areas, such as
Inner Asia or Australia. It must be noted that the τ values coming from the SMOSL3 product were
slightly larger than those obtained by the SMOS-IC product.Remote Sens. 2017, 9, 457  13 of 21 
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However, higher R values were obtained with SMOS-IC for some areas of the boreal forests and the 
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Figure 6. Temporal mean of τ during 2010–2015: (a) SMOS-IC; and (b) SMOSL3.

In order to identify possible patterns, Figure 7 shows a global map which illustrates the differences
of τ between both SMOS datasets (SMOSL3 minus SMOS-IC). This result shows that the greatest
differences between both τ datasets were found over some regions of the Northern Hemisphere, such
as the east of USA, the north of Europe and also in the Amazon basin.
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Figure 8 shows the correlations obtained by comparing the SMOSC-IC and SMOSL3 τ datasets to
MODIS NDVI. All correlations values are presented here including those not significant as done by
Grant et al. (2016) [25]. It can be noted that slightly higher correlation values are generally obtained
with SMOS-IC especially in the west of Mexico, the northeastern regions of Brazil and some parts of
the Sahel. Conversely, slightly higher R values were obtained in western and central Europe with
SMOSL3. The lowest correlations were found generally over forests for both SMOS products; a result
which can be partly related to the tendency of NDVI to saturate for high biomass and LAI values.
However, higher R values were obtained with SMOS-IC for some areas of the boreal forests and the
tropical forests of Africa.Remote Sens. 2017, 9, 457  14 of 21 

 

 
Figure 8. Correlation (R) values obtained between SMOS-IC τ and MODIS NDVI (a); and between 
SMOSL3 τ and MODIS NDVI (b). 

In order to evaluate how NDVI represents the spatial differences in vegetation density, Figure 9 
represents the spatial relation between NDVI and SMOS-IC and SMOSL3 τ. The results demonstrate 
that there is a general positive trend relating the spatial patterns of τ and NDVI. The latter saturates 
for values of τ larger than ~0.7. It can be seen that the positive trend relating τ and NDVI is more 
distinct for SMOS-IC than for SMOSL3. 

 
Figure 9. Scatter plot showing the spatial relationship between mean MODIS NDVI and mean SMOS-
IC τ (a); and mean SMOSL3 τ (b).  

Figure 10 presents a global map that shows for each pixel which τ dataset (SMOSL3 or SMOS-
IC) leads to the largest correlation (R) values with MODIS NDVI. Over northern mid-latitudes, larger 
correlations were generally obtained with SMOSL3. However, except for these regions, the highest R 
values were generally obtained with SMOS-IC while no clear patterns were found in terms of 
longitude. Figure 11 shows a dispersion diagram in order to assess the range of correlation values 
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correlations, although a non-negligible number of negative correlations can be noted for both SMOS 
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negative values were found in dense forest areas and can be related to the saturation of NDVI for 
large biomass values (Grant et al., 2016 [25]). 

Figure 8. Correlation (R) values obtained between SMOS-IC τ and MODIS NDVI (a); and between
SMOSL3 τ and MODIS NDVI (b).

In order to evaluate how NDVI represents the spatial differences in vegetation density, Figure 9
represents the spatial relation between NDVI and SMOS-IC and SMOSL3 τ. The results demonstrate
that there is a general positive trend relating the spatial patterns of τ and NDVI. The latter saturates for
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values of τ larger than ~0.7. It can be seen that the positive trend relating τ and NDVI is more distinct
for SMOS-IC than for SMOSL3.
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Figure 10 presents a global map that shows for each pixel which τ dataset (SMOSL3 or SMOS-IC)
leads to the largest correlation (R) values with MODIS NDVI. Over northern mid-latitudes, larger
correlations were generally obtained with SMOSL3. However, except for these regions, the highest R
values were generally obtained with SMOS-IC while no clear patterns were found in terms of longitude.
Figure 11 shows a dispersion diagram in order to assess the range of correlation values found for both
SMOS τ datasets against MODIS NDVI. The diagram generally yields positive correlations, although
a non-negligible number of negative correlations can be noted for both SMOS products. The negative
correlation values between τ and NDVI are difficult to explain. In some cases, negative values were
found in dense forest areas and can be related to the saturation of NDVI for large biomass values
(Grant et al., 2016 [25]).
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4. Summary and Conclusions 
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NDVI (blue) and where the difference in R < 0.02 (green).
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4. Summary and Conclusions

The main objective of this study is to present an alternative SMOS SM and τ product, referred
to as SMOS-IC, and compare it with model data. In terms of soil moisture, the presentation is based
on an inter-comparison between SMOS-IC, the official Level 3 SMOS SM product (SMOSL3, V300),
and a modeled SM product (ECMWF SM). The SMOS-IC product is based on the retrieval of SM and
τ over pixels treated as homogeneous by means of the L-MEB model inversion. SMOS-IC uses the
multi-angular and dual-polarization SMOSL3 TB product as the main input for the L-MEB model
inversion. The L-MEB model input parameters (effective vegetation scattering albedo ω and the
roughness parameter HR) are estimated as a function of IGBP land category classes which compose
the pixel. These parameter values are derived from previous analyses made by Fernandez-Moran et al.
(2016) [31] and global maps of the roughness HR parameter estimated by Parrens et al. (2016) [32].
Conversely, the SMOSL3 product considers different fractions over the pixel and performs SM and τ

retrievals over the main fraction of the pixel (usually low vegetation) or over forests in some cases.
In the SMOSL3 retrieval algorithm, the TB value of the pixel fraction, which is not considered in
the retrieval (the forest fraction in general), is estimated based on auxiliary ECMWF SM data. This
specific approach may lead to dry SM bias in forested regions, as noted by Wigneron et al. (2012) [29].
Currently, in the SMOSL3 V300 retrieval algorithm, the values of the vegetation and soil roughness
parameters differ mainly between forest and low vegetation categories.

The SMOSL3 and SMOS-IC soil moisture retrievals were compared globally against ECMWF SM
data for the period 2010–2015. This evaluation extends the work of Fernandez-Moran et al. (2016) [31]
who evaluated a preliminary version of the SMOS-IC product at local scale using numerous in situ SM
stations from ISMN and found higher R and lower ubRMSE with SMOS-IC than with the SMOSL3
V300 product. At global scale, both the SMOS-IC and SMOSL3 SM products were generally found
to be drier than the ECMWF SM product. However, the different layers considered in the modeled
ECMWF SM (top 0–7 cm soil layer) with respect to the remotely sensed SMOS SM (~top 0–3 cm soil
layer), as well as the inherently different nature of simulated soil moisture (Koster et al., 2009 [66]),
makes it difficult to truly assess the performance of the SMOS products in terms of bias at global scale.
In terms of temporal variations, higher correlation values and lower ubRMSD values were generally
found between SMOS-IC SM and ECMWF SM, than between SMOSL3 SM and ECMWF SM.

The ECMWF SM dataset is not “truth”, and a larger inter-comparison of SMOS-IC and SMOSL3
against other modeled SM products such as MERRA (Modern-Era Retrospective analysis for Research
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and Applications) (Reichle et al., 2011 [75]) or remotely sensed data (such as SMAP, AMSR-E, and
ASCAT) should be made in the future to confirm the very preliminary results found here. In terms
of τ values, the SMOS-IC and SMOSL3 τ products were compared to MODIS NDVI values over
2010–2015 in terms of correlation values. The SMOS-IC τ product presents a slightly lower range of
values (~0–1.3) than the one obtained with the SMOSL3 τ product (~0–1.5). These ranges of τ values
(obtained for both SMOSL3 and SMOS-IC) are in good agreement with the ranges of retrieved τ values
based on in situ L-band radiometric measurements (τ ~0.6–1.0) performed over mature coniferous and
deciduous forests in Europe. In general, higher correlation values were obtained between SMOS-IC τ

and MODIS NDVI, than between SMOSL3 τ and MODIS NDVI.
The τ results should also be interpreted with care: the NDVI index is derived from optical sensors

while the τ index is derived from L-band microwave measurements and therefore can sense deeper
through the vegetation canopy. Moreover, the NDVI index is used to monitor the green vegetation,
while the τ index is related to the whole vegetation water content (including stems, trunks, branches
and senescent vegetation elements). Thus, at L-band, the NDVI index (as the LAI index) is only a proxy,
which is used to provide an estimate of τ over rather low vegetation covers during the vegetation
growth (O’Neill et al, 2012 [37]; Wigneron et al., 2007 [24]; Lawrence et al., 2014 [76]; Grant et al.,
2016 [25]). A larger inter-comparison of the SMOS-IC and SMOSL3 τ products against different
vegetation datasets (remotely sensed products, LAI, forest biomass) should be made in the future to
confirm the results found in this study.

As for the Level 2 and 3 algorithms, based on rather complex and detailed concepts and auxiliary
datasets, the simple SMOS-IC algorithm will be improved regularly and will be used to improve the
L2 and L3 SMOS retrieval algorithms. These different approaches are complementary and a regular
inter-comparison analysis between them should be of great benefit to improve the L-MEB inversion,
and ultimately the SM and τ products retrieved from the SMOS observations.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/5/457/s1,
Figure S1: Pixel-based ubRMSD during 2010–2015 computed between ECMWF SM simulations and: SMOSL3 SM
(left); and SMOS-IC (right) SM retrievals: (a,b) January-March (JFM); (c,d) July-September (JAS).
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