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Résumé. L’objectif de cet article est de proposer un estimateur de la fonction in-
connue dans le Modèle Fonctionnel de Convolution (FCVM), qui étudie la relation entre
une covariable fonctionnelle X(t) et une sortie fonctionnelle Y (t) au travers de l’équation
suivante Y (t) =

∫ t
0
θ(s)X(t − s)ds + ε(t), où θ est la fonction à estimer et ε est un bruit

fonctionnel additif. Il permet d’étudier l’influence de l’historique de X sur Y (t).
Nous utilisons la Transformée de Fourier Continue (CFT) pour définir un estimateur

de θ. La transformation du modèle de convolution donne le Modèle Fonctionnel de Con-
currence (FCCM), dans le domaine des fréquences, à savoir Y(ξ) = β(ξ)X (ξ) + ε(ξ). Afin
d’estimer la fonction inconnue β, nous avons étendu la méthode ridge de régression clas-
sique au cadre de données fonctionnelles. Nous établissons des propriétés de consistence
des estimateurs proposés et illustrons nos résultats avec des simulations.

Mots-clés. Données Fonctionnelles, Modèle de Convolution; Modèle de Concurrence;
Transformée de Fourier.

Abstract. The aim of the paper is to propose an estimator of the unknown function
in the Functional Convolution Model (FCVM), which studies the relationship between a
functional covariate X(t) and a functional output Y (t) through the following equation
Y (t) =

∫ t
0
θ(s)X(t − s)ds + ε(t), where θ is the function to be estimated and ε is an

additional functional noise. It allows to study the influence of the history of X on Y (t).
We use the Continuous Fourier Transform (CFT) to define an estimator of θ. The

transformation of the convolution model results in the Functional Concurrent Model
(FCCM) associated, in the frequency domain, namely Y(ξ) = β(ξ)X (ξ) + ε(ξ). In order
to estimate the unknown function β, we extended the classical ridge regression method
to the functional data framework. We establish consistency properties of the proposed
estimators and illustrate our results with some simulations.

Keywords. Functional data; Convolution model; Concurrent model; Fourier trans-
form.

1 Introduction

Functional Data Analysis (FDA) proposes very good tools to handle data that are func-
tions of some covariate (e.g. time, when dealing with longitudinal data). These tools may
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allow a better modelling of complex relationships than classical multivariate data analysis
would do, as noticed by Ramsay and Silverman [2005, Ch. 1], Yao et al. [2005], among
others.

There are several models in FDA to study the relationship between two variables. In
particular in this paper we are interested in the Functional Convolution Model (FCVM)

Y (t) =

∫ t

0

θ(s)X(t− s)ds+ ε(t), (1)

where t ≥ 0, θ is the function to be estimated, X, Y are random functions and ε is a noise
random function. This model allows to study the influence of the history of X on Y (t).
It was derived from Malfait and Ramsay [2003] by requiring that the function θ remains
the same for each time t (i.e it only depends on s).

In this paper we propose an estimator of θ for a given i.i.d. sample (Xi, Yi)i∈{1,··· ,n} of
the random functions X and Y . This question has been poorly addressed in the literature.
Asencio et al. [2014] studies a similar problem. They proposed to estimate θ by approx-
imating its projection into finite-dimensional Spline subspaces. Another related problem
is the multichannel deconvolution problem (see e.g. Pensky and Sapatinas [2010]), where
the periodic case is studied.

The main idea of our approach is to use the Continuous Fourier Transform (CFT) to
transform the problem into its equivalent in the frequency domain. It yields the following
Functional Concurrent Model (FCCM):

Y(ξ) = β(ξ)X (ξ) + ε(ξ), (2)

where ξ ∈ R, β is an unknown function to be estimated, X := F(X), Y := F(Y ) are
Fourier transforms of X and Y , and ε := F(ε) is an additive functional noise. Once there,
we use an estimator of β for the FCCM, and then we come back to the time domain
through the Inverse Continuous Fourier Transform (ICFT).

Some related models to the FCCM have already been discussed by several authors. For
instance Hastie and Tibshirani [1993] has proposed a generalization of the FCCM called
‘varying coefficient model’. Until now many methods have been developed to estimate
the unknown smooth regression function β, for instance by local maximum likelihood
estimation (see e.g. Dreesman and Tutz [2001]), or by local polynomial smoothing (see
e.g. Fan et al. [2003]). These methods use techniques from multivariate data analysis, as
noticed by Ramsay and Silverman [2005, p. 259]. We propose an approach that avoids
projecting into a finite dimensional sub-space and allows to work with the entire Fourier
transforms in the Frequency domain. It is an extension of the Ridge Regression method
to the functional case.

We prove the consistency of our estimators and show some simulation results.
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2 Model and Estimator

2.1 Notations

For r = 1, 2, Lr := Lr(R,C), is the space of complex valued functions defined on R,

with the Lr-norm, ‖f‖Lr :=
[∫

R |f(x)|rdx
]1/r

. C0 := C0(R,C) is the space of complex
valued continuous functions which vanish at infinity, with the supremum norm ‖f‖C0 :=
supx∈R |f(x)|. Finally the support of the continuous function f : R → C is the set
supp(f) := {t ∈ R : |f(t)| 6= 0}. Besides we define the boundary of a set S, as ∂(S) :=
S \ int(S), where S is the closure of S and int(S) is its interior.

2.2 General Hypotheses of the FCVM

We consider general hypotheses that will be used along the paper.

(HA1FCVM) X, ε are independent L1 ∩ L2 valued random functions such that
E(ε) = E(X) = 0 and for every t < 0, ε(t) = X(t) ≡ 0.

(HA2FCVM) θ ∈ L2 and for every t < 0, θ(t) ≡ 0.
(HA3FCVM) E(‖ε‖2L1

),E(‖X‖2L1
) < +∞, E(‖ε‖2L2),E(‖X‖2L2) < +∞.

The Laplace convolution integrating between 0 and t is equivalent to the Fourier one
because for every t < 0, θ(t) = X(t) ≡ 0, (HA1FCVM) and (HA2FCVM).

2.3 Functional Fourier Deconvolution Estimator (FFDE)

Before defining the estimator of θ, we transform the problem to the frequency domain
(see (2)) and then we estimate β with the Functional Ridge Regression Estimator
(FRRE) which is an extension of the Ridge Regularization method (Hoerl [1962]) that
deals with ill-posed problems in the classical linear regression.

Let (Xi, Yi)i=1,··· ,n be an i.i.d sample of FCVM (1) and a regularization parameter
λn > 0. We define the estimator of β in the FCCM (2) as follows

β̂n :=
1
n

∑n
i=1 YiX ∗i

1
n

∑n
i=1 |Xi|2 + λn

n

, (3)

where ∗ is the complex conjugate. Then the estimator of θ in (1) is defined by

θ̂n := F−1(β̂n). (4)

3 Consistency of the FRRE and the FFDE

We prove the consistency of the estimators in the following theorem:
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Theorem 1 Let (Xi, Yi)i≥1 be i.i.d. realizations of FCVM which satisfies the general
hypotheses (HA1FCVM)-(HA3FCVM) and

(A1) supp(|β|) ⊆ supp(E[|X |]),

(A2) (λn)n≥1 ⊂ R+ is such that λn
n
→ 0 and

√
n

λn
→ 0 as n→ +∞.

Then
lim

n→+∞
‖θ̂n − θ‖L2 = lim

n→+∞
‖β̂n − β‖L2 = 0 in probability. (5)

Hypothesis (A1) is about the intervals where we can estimate β. If the curve X is
zero in some interval then we cannot estimate β in that interval because Y is equal to the
noise and does not contain any information about β. Hypothesis (A2) is classic in the
context of the Ridge regression.

Some convergence rates of both estimators have also been obtained under additional
assumptions. We now illustrate these results with simulations.

4 Simulations

4.1 Description of the Simulation

We consider samples of n = 150 and n = 500 realizations. The curves were simulated
over the interval [0, 1]. We have p = 200 equispaced observation times, that is for j ∈
{0, · · · , 199}, tj := j ∗ 0.005.

The output curves were generated from Yi(t) = θ ∗ Xi(t) + εi(t), where θ(t) =
1.63 sin((4 − 1/2)πt) when t ∈ [0, 0.5], and zero otherwise. Xi and εi are independent
Brownian Bridges over [0, 0.5] and zero function over [0.5, 1]. The noise εi is multiplied
by a factor in such a way that the signal-to-noise ratio (SNR) is equal to 4.

4.2 Graphical results

Figure 1 an example of simulated curves Xi and Yi. Figure 2 shows the estimation of θ
in the FCVM for n = 150 and n = 500. We use the Predictive Cross Validation (PCV)
to choose the regularization parameter λn. The computing times of the estimators are
respectively 0.677sec and 2.410sec for n = 150 and n = 500. This computation time
includes the optimization of the PCV criteria to choose λn.
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Figure 1: Simulated curves Xi and Yi.

Figure 2: Estimation of θ with n = 150 and n = 500 observations. The PCV optimal
parameters are λ150 = 757.25 and λ500 = 902.33 respectively.

5 Conclusions

In this paper we have shown the probability convergence of the FRRE and FFDE estima-
tors for the FCCM and FCVM. In this approach we do not need to use finite dimensional
subspaces to define the estimators, contrary to many other approaches. In applications
the Fast Fourier Transform allows us to compute the estimator quickly, faster than other
estimation methods.
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This work is a first step to handle high-throughput plant phenotyping data. Model
FCVM (1) may be used to finely model the influence of environmental variables (temper-
ature, light, etc.) on leaf elongation rate.
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