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Introduction

A major bottleneck in the use of constraint solvers is modelling. How does the user write down the constraints of a problem? Several techniques have been proposed to tackle this bottleneck. For example, the matchmaker agent [START_REF] Freuder | Suggestion strategies for constraint-based matchmaker agents[END_REF] interactively asks the user to provide one of the constraints of the target problem each time the system proposes an incorrect solution. In Conacq.1 [START_REF] Bessiere | Leveraging the learning power of examples in automated constraint acquisition[END_REF][START_REF] Bessiere | A SAT-based version space algorithm for acquiring constraint satisfaction problems[END_REF], the user provides examples of solutions and nonsolutions. Based on these examples, the system learns a set of constraints that correctly classifies all examples given so far. This is a form of passive learning. In [START_REF] Lallouet | On learning constraint problems[END_REF], a system based on inductive logic programming uses background knowledge on the structure of the problem to learn a representation of the problem correctly classifying the examples. A last passive learner is ModelSeeker [START_REF] Beldiceanu | A model seeker: Extracting global constraint models from positive examples[END_REF]. Positive examples are provided by the user to the system, which arranges each of them as a matrix and identifies constraints in the global constraints catalog ( [START_REF] Beldiceanu | Global constraint catalog[END_REF]) that are satisfied by particular subsets of variables in all the examples. Such particular subsets are for instance rows, columns, diagonals, etc.

An efficient ranking technique combined with a representation of solutions as matrices allows ModelSeeker to find quickly a good model when a problem has an underlying matrix structure.

By contrast, in an active learner like Conacq.2 [START_REF] Bessiere | Query-driven constraint acquisition[END_REF], the system proposes examples to the user to classify as solutions or non solutions. Such questions are called membership queries [START_REF] Angluin | Queries and concept learning[END_REF]. Such active learning has several advantages. It can decrease the number of examples necessary to converge to the target set of constraints. Another advantage is that the user needs not be a human. It might be a previous system developed to solve the problem. For instance, the Normind company has hired a constraint programming specialist to transform their expert system for detecting failures in electric circuits in Airbus airplanes into a constraint model in order to make it more efficient and easier to maintain. As another example, active learning is used to build a constraint model that encodes non-atomic actions of a robot (e.g., catch a ball) by asking queries of the simulator of the robot in [START_REF] Paulin | Automatic design of robot behaviors through constraint network acquisition[END_REF]. Such active learning introduces two computational challenges. First, how does the system generate a useful query? Second, how many queries are needed for the system to converge to the target set of constraints? It has been shown that the number of membership queries required to converge to the target set of constraints can be exponentially large [START_REF] Bessiere | Non learnability of constraint networks with membership queries[END_REF].

In this chapter, we propose QUACQ (for QuickAcquisition), an active learner that asks the user to classify partial queries. Given a negative example, QUACQ is able to learn a constraint of the target constraint network in a number of queries logarithmic in the number of variables. In fact, we identify information theoretic lower bounds on the complexity of learning constraint networks which show that QUACQ is optimal on some simple languages. However, even that good theoretical bounds can be hard to put in practice. For instance, QUACQ requires the user to classify more than 8000 examples to get the complete Sudoku model. We then propose a new technique to make constraint acquisition more efficient in practice by using variable types. In real problems, variables often represent components of the problem that can be classified in various types. For instance, in a school time-tabling problem, variables can represent teachers, students, rooms, courses, or time-slots. Such types are often known by the user. To deal with types of variables, we introduce a new kind of query, namely, generalization query. We expect the user to be able to decide if a learned constraint can be generalized to other scopes of variables of the same type as those in the learned constraint. We propose an algorithm, GENACQ for generalized acquisition, that asks such generalization queries each time a new constraint is learned. We propose several strategies and heuristics to select the good candidate generalization query. We plugged our generalization functionality into the QUACQ constraint acquisition system, leading to the G-QUACQ algorithm. We experimentally evaluate the benefits of our algorithms on several benchmark problems. The results show the polynomial behavior of QUACQ. They also show that G-QUACQ dramatically improves the basic QUACQ algorithm in terms of number of queries.

One application for QUACQ and G-QUACQ would be to learn a general purpose model. In constraint programming, a distinction is made between model and data. For example, in a sudoku puzzle, the model contains generic constraints like each subsquare contains a permutation of the numbers. The data, on the other hand, gives the pre-filled squares for a specific puzzle. As a second example, in a time-tabling problem, the model specifies generic constraints like no teacher can teach multiple classes at the same time. The data, on the other hand, specifies particular room sizes, and teacher availability for a particular time-tabling problem instance. The cost of learning the model can then be amortized over the lifetime of the model. Another advantage of this approach is that it provides less of a burden on the user. First, it often converges quicker than other methods. Second, partial queries will be easier to answer than complete queries. Third, as opposed to existing techniques, the user does not need to give positive examples. This might be useful if the problem has not yet been solved, so there are no examples of past solutions.

The rest of the paper is organized as follows. Section 2 gives the necessary definitions to understand the technical presentation. Section 3 presents QUACQ, the algorithm that learns constraint networks by asking partial queries. In Section 4, we show how QUACQ behaves on some simple languages. Section 5 describes the generalization algorithm G-QUACQ. In Section 5.5, several strategies are presented to make G-QUACQ more efficient. Section 6 presents the experimental results we obtained when comparing G-QUACQ to the basic QUACQ and when comparing the different strategies in G-QUACQ. Section 7 concludes the paper and gives some directions for future research.

Background

The learner and the user need to share some common knowledge to communicate. We suppose this common knowledge, called the vocabulary, is a (finite) set of n variables X and a domain D = {D(X 1 ), . . . , D(X n )}, where D(X i ) ⊂ Z is the finite set of values for X i . Given a sequence of variables S ⊆ X, a constraint is a pair (c, S) (also written c S ), where c is a relation over Z specifying which sequences of |S| values are allowed for the variables S. S is called the scope of c S . A constraint network is a set C of constraints on the vocabulary (X, D). An assignment e Y on a set of variables Y ⊆ X is rejected by a constraint c S if S ⊆ Y and the projection e Y [S] of e on the variables in S is not in c. An assignment on X is a solution of C iff it is not rejected by any constraint in C. We write sol(C) for the set of solutions of C, and C[Y ] for the set of constraints from C whose scope is included in Y .

In addition to the vocabulary, the learner owns a language Γ of bounded arity relations from which it can build constraints on specified sets of variables. To simplify the descriptions, we only consider languages closed by conjunction, that is, languages Γ such that if relations c 1 and c 2 belong to Γ , then relation c 1 ∩ c 2 also belongs to Γ . Adapting terms from machine learning, the constraint basis, denoted by B, is a set of constraints built from the constraint language Γ on the vocabulary (X, D) from which the learner builds the constraint network. Formally speaking,

B = {c S | (S ⊆ X) ∧ (c ∈ Γ ) ∧ arity(c) = |S|)}.
A concept is a Boolean function over D X = Π Xi∈X D(X i ), that is, a map that assigns to each e ∈ D X a value in {0, 1}. A target concept is a concept f T that returns 1 for e if and only if e is a solution of the problem the user has in mind. e is called a positive or negative example depending on whether f T (e) = 1 or f T (e) = 0. A membership query ASK(e) takes as input a complete assignment e in D X and asks the user to classify it. The answer to ASK(e) is "yes" if and only if f T (e) = 1.

To be able to use partial queries, we have an extra condition on the capabilities of the user. Even if she is not able to articulate the constraints of her problem, she is able to decide if partial assignments of X violate some requirements or not. More formally, we consider that the user has in mind her problem in the form of a target constraint network. A target constraint network is a network We now define convergence, which is the constraint acquisition problem we are interested in. We are given a set E of (partial) examples labelled by the user 0 or 1. We say that a constraint network C agrees with E if C accepts all examples labelled 1 in E and does not accept those labelled 0. The learning process has converged on the network C L ⊆ B if C L agrees with E and for every other network C ⊆ B agreeing with E, we have sol(C ) = sol(C L ). If there does not exist any C L ⊆ B such that C L agrees with E, we say that we have collapsed. This happens when C T ⊆ B.

C T such that sol(C T ) = {e ∈ D X | f T (e) = 1}. A partial query ASK(e Y ), with Y ⊆ X,
Finally, we define types of variables to be used to generalize constraints. A type T i is a subset of variables defined by the user as having a common property. A variable X i is of type T i iff X i ∈ T i . A scope S = (X 1 , . . . , X k ) of variables belongs to a sequence of types T = (T 1 , . . . , T k ) (denoted by S ∈ T ) if and only if X i ∈ T i for all i ∈ 1..k. Consider T = (T 1 , . . . , T k ) and T = (T 1 , . . . , T k ) two sequences of types. We say that T covers T (denoted by T T ) iff T i ⊆ T i for all i ∈ 1..k. A relation c holds on a sequence of types T if and only if c S ∈ C T for all S ∈ T . A sequence of types T is maximal with respect to a relation c if and only if c holds on T and there does not exist T covering T on which c holds.

Constraint Acquisition with Partial Queries

We propose QUACQ, a novel active learning algorithm. QUACQ takes as input a basis B on a vocabulary (X, D). It asks partial queries of the user until it has converged on a constraint network C L equivalent to the target network C T , or collapses. When a query is answered yes, constraints rejecting it are removed from B. When a query is answered no, QUACQ enters a loop (functions FindScope and FindC) that will end by the addition of a constraint to C L .

Description of QUACQ

QUACQ (see Algorithm 1) initializes the network C L it will learn to the empty set (line 1). If C L is unsatisfiable (line 3), the space of possible networks collapses because there does not exist any subset of the given basis B that is able to correctly classify the examples the user has already been asked. In line 4, QUACQ computes a complete assignment e satisfying C L but violating at least one constraint from B. (Observe that for this task, the constraint solver needs to be able to express the negation of the constraints in B. This is not a problem as we have only bounded arity constraints in B.) If such an example does not exist (line 5), then all constraints in B are implied by C L , and we have converged. If we have not converged, we propose the example e to the user, who will answer by yes or no. If the answer is yes, we can remove from B the set κ B (e) of all constraints in B that reject e (line 6). If the answer is no, we are sure that e violates at least one constraint of the target network C T . We then call the function FindScope to discover the scope S of one of these violated constraints (line 8). FindC will return a constraint of C T whose scope is in S (line 9). If no constraint is returned (line 10), this is again a condition for collapsing as we could not find in B a constraint rejecting one of the negative examples. Otherwise, the constraint returned by FindC is added to the learned network C L (line 11).

The recursive function FindScope (see Algorithm 2) takes as parameters an example e, two sets R and Y of variables, and a Boolean ask query. An invariant of FindScope is that e violates at least one constraint whose scope is a subset of R ∪ Y . A second invariant is that FindScope always returns a subset of Y that is also the subset of the scope of a constraint violated by e. When FindScope is called with ask query = false, we already know that R does not contain the scope of a constraint that rejects e (line 3). If ask qery = true we ask the user whether e[R] is positive or not (line 4). If yes, we can remove all the constraints that reject e[R] from the basis, otherwise we return the empty set because we have no guarantee that any variable of Y belongs to a scope (line 5). We reach line 6 only in case e[R] does not violate any constraint. We know that e[R ∪ Y ] violates a constraint. Hence, if Y is a singleton, the variable it contains necessarily belongs to the scope of a constraint that violates e[R ∪ Y ]. The function returns Y . If none of the return conditions are satisfied, the set Y is split in two balanced parts (line 7) and we apply a technique similar to QUICKXPLAIN ( [START_REF] Junker | Quickxplain: Preferred explanations and relaxations for over-constrained problems[END_REF]) to elucidate the variables of a constraint violating e[R ∪ Y ] in a logarithmic number of steps (lines 8-10). The rationale of lines 8 and 9 is to quickly find sets R and Y so that 

6 if |Y | = 1 then return Y; 7 split Y into < Y1, Y2 > such that |Y1| = |Y |/2 ; 8 S1 ← FindScope(e, R ∪ Y1, Y2, true); 9 S2 ← FindScope(e, R ∪ S1, Y1, (S1 = ∅)); 10 return S1 ∪ S2; e[R]
is positive and e[R∪Y ] is negative. If Y is a singleton this ensures that the variable in Y belongs to the scope of a constraint we are looking for. This variable is returned and forced to be in R in all subsequent calls to FindScope.

The function FindC (see Algorithm 3) takes as parameter Y , the scope on which FindScope has found that there is a constraint from the target network C T . FindC first removes from B all constraints with scope Y that are implied by C L because there is no need to learn them (line 3). 1 The set ∆ is initialized to all candidate constraints (line 4). In line 6, an example e is chosen in such a way that ∆ contains both constraints rejecting e and constraints satisfying e. If no such example exists (line 7), this means that all constraints in ∆ are equivalent wrt C L [Y ]. Any of them is returned except if ∆ is empty (lines 8-9). If a suitable example was found, it is proposed to the user for classification (line 10). If classified positive, all constraints rejecting it are removed from B and ∆ (line 11). Otherwise we test whether the example e does not violate constraints with scope strictly included in Y (line 13). If yes, we recursively call FindScope and FindC to find that smaller arity constraint before the one having scope Y (line 14). If no, we remove from ∆ all constraints accepting that example e (line 15) and we continue the loop of line 5.

Example

We illustrate the behavior of QUACQ on a simple example. Consider the set of variables X 1 , . . . , X 5 with domains {1..5}, a language Γ = {=, =}, a basis B = {= ij , = ij | i, j ∈ 1..5, i < j}, and a target network C T = {= 15 , = 34 }. Suppose the first example generated in line 4 of QUACQ is e 1 = (1, 1, 1, 1, 1). The trace of the execution of FindScope(e 1 , ∅, X 1 . . . X 5 , false) is in Table 1. Each line corresponds to a call to FindScope. Queries are always on the variables in R. '×' in the column ASK means that the previous call returned ∅, so the question is skipped. The initial call (call-0 in Table 1) does not ask the question because the initial call to FindScope has the Boolean ask query set to false. Y is split in two sets 

Y 1 = {X 1 , X 2 , X 3 } and Y 2 = Algorithm 3: Function FindC: returns a constraint of C T with scope Y 1 function FindC(in Y : scope): constraints; 2 begin 3 B ← B \ {cY | CL |= cY }; 4 ∆ ← {cY | (cY ∈ B[Y ]);
with R = {X 1 , X 2 , X 3 , X 4 } and Y = {X 5 }. As e 1 [R] is negative, the empty set is returned in line 5. Call-1.2 (line 9) is performed with R = {X 1 , X 2 , X 3 }, Y = {X
{X 3 }. In call-2.2, e 1 [R] is classified as negative with R = {X 4 , X 3 } and Y = {X 1 , X 2 }. This proves that {X 3 , X 4 } is the scope of a constraint rejecting e 1 .
Empty set is returned by call-2.2. As a result, call-2 returns {X 3 }, and call-0 returns {X 3 , X 4 }. Once the scope (X 3 , X 4 ) is returned, FindC requires a single example to return = 34 and prune = 34 from B. Suppose the next example generated by QUACQ is

Table 1. The example call R Y ASK return 0 ∅ X1, X2, X3, X4, X5 × X3, X4 1 X1, X2, X3 X4, X5 yes X4 1.1 X1, X2, X3, X4 X5 no ∅ 1.2 X1, X2, X3 X4 × X4 2 X4 X1, X2, X3 yes X3 2.1 X4, X1, X2 X3 yes X3 2.2 X4, X3 X1, X2
no ∅ e 2 = (1, 2, 3, 4, 5). FindScope will find the scope (X 1 , X 5 ) and FindC will return = 15 in a way similar to the processing of e 1 . The constraints = 12 , = 13 , = 14 , = 23 , = 24 are removed from B by a partial positive query on X 1 , . . . , X 4 and = 15 by FindC.

Finally, examples e 3 = (1, 1, 1, 2, 1) and e 4 = (3, 2, 2, 3, 3), both positive, will prune = 25 , = 35 , = 45 and = 25 , = 35 , = 45 from B respectively, leading to convergence.

Analysis

We analyse the complexity of QUACQ in terms of the number of queries it can ask of the user. Queries are proposed to the user in lines 6 of QUACQ, 4 of FindScope and 10 of FindC. Proof. FindScope is a recursive algorithm that asks at most one query per call (line 4). Hence, the number of queries is bounded above by the number of nodes of the tree of recursive calls to FindScope. We will show that a leaf node is either on a branch that leads to the elucidation of a variable in the scope S that will be returned, or is a child of a node of such a branch. When a branch does not lead to the elucidation of a variable in the scope S that will be returned, that branch necessarily only leads to leaves that correspond to calls to FindScope that returned the empty set. The only way for a leaf call to FindScope to return the empty set is to have received a no answer to its query (line 5). Let R child , Y child be the values of the parameters R and Y for a leaf call with a no answer, and R parent , Y parent be the values of the parameters R and Y for its parent call in the recursive tree. From the no answer to the query ASK(e[R child ]), we know that S ⊆ R child but S R parent because the parent call received a yes answer. Consider first the case where the leaf is the left child of the parent node. By construction,

R parent R child R parent ∪ Y parent .
As a result, Y parent intersects S, and the parent node is on a branch that leads to the elucidation of a variable in S. Consider now the case where the leaf is the right child of the parent node. As we are on a leaf, if the ask query Boolean is false, we have necessarily exited from FindScope through line 6, which means that this node is the end of a branch leading to a variable in S. Thus, we are guaranteed that the ask query Boolean is true, which means that the left child of the parent node returned a non empty set and that the parent node is on a branch to a leaf that elucidates a variable in S.

We have proved that every leaf is either on a branch that elucidates a variable in S or is a child of a node on such a branch. Hence the number of nodes in the tree is at most twice the number of nodes in branches that lead to the elucidation of a variable from S. Branches can be at most log |X| long. Therefore the total number of queries FindScope asks is at most 2 

• |S| • log |X|, which is in O(|S| • log |X|).

Learning Simple Languages

In order to gain a theoretical insight into the "efficiency" of QUACQ, we look at some simple languages, and analyze the number of queries required to learn networks on these languages. In some cases, we show that QUACQ will learn problems of a given language with an asymptotically optimal number of queries. However, for some other languages, a suboptimal number of queries can be necessary in the worst case. Our analysis assumes that when generating a complete example in line 4 of QUACQ, the solution of C L maximizing the number of violated constraints in the basis B is chosen.

Languages for which QUACQ is optimal

Theorem 2. QUACQ learns Boolean networks on the language {=, =} in an asymptotically optimal number of queries.

Proof. (Sketch.) First, we give a lower bound on the number of queries required to learn a constraint network in this language. Consider the restriction to equalities only. In an instance of this language, all variables of a connected component must be equal. This is isomorphic to the set of partitions of n objects, whose size is given by Bell's Number:

C(n + 1) = 1 if n = 0 n i=1 n i C(n -i) if n > 0 (1) 
By an information theoretic argument, at least log C(n) queries are required to learn such a problem. This entails a lower bound of Ω(n log n) since log C(n) ∈ Ω(n log n) (see [START_REF] De Bruijn | Asymptotic Methods in Analysis[END_REF] for the proof). The language {=, =} is richer and thus requires at least as many queries. Second, we consider the query submitted to the user in line 6 of QUACQ and count how many times it can receive the answer yes and no. The key observation is that an instance of this language contains at most O(n) non-redundant constraints. For each no answer in line 6 of QUACQ, a new constraint will eventually be added to C L . Only nonredundant constraints are discovered in this way because the query must satisfy C L . It follows that at most O(n) such queries are answered no, each one entailing O(log n) more queries through the procedure FindScope.

Now we bound the number of yes answers in line 6 of QUACQ. The same observation on the structure of this language is useful here as well. We show in the complete proof that a query maximizing the number of violations of constraints in the basis B while satisfying the constraints in C L violates at least |B|/2 constraints in B. Thus, each query answered yes at least halves the number of constraints in B. It follows that the query submitted in line 6 of QUACQ cannot receive more than O(log n) yes answers. The total number of queries is therefore bounded by O(n log n).

The same argument holds for simpler languages ({=} and { =} on Boolean domains). Moreover, this is still true for {=} on arbitrary domains.

Corollary 1. QUACQ can learn constraint networks with unbounded domains on the language {=} in an asymptotically optimal number of queries.

Languages for which QUACQ is not optimal

First, we show that a Boolean constraint network on the language {<} can be learnt with O(n) queries. Then, we show that QUACQ requires Ω(n log n) queries.

Theorem 3. Boolean constraint networks on the language {<} can be learned in O(n) queries.

Proof. Observe that in order to describe such a problem, the variables can be partionned into three sets, one for variables that must take the value 0 (i.e., on the left side of a < constraint), a second for variables that must take the value 1 (i.e., on the right side of a < constraint), and the third for unconstrained variables. In the first phase, we greedily partition variables into three sets, L, R, U initially empty and standing respectively for Left, Right and Unknown. During this phase, we have three invariants:

1. There is no x, y ∈ U such that x < y belongs to the target network 2. x ∈ L iff there exists y ∈ U and a constraint x < y in the target network 3. x ∈ R iff there exists y ∈ U and a constraint y < x in the target network

We go through all variables of the problem, one at a time. Let x be the last variable picked. We query the user with an assignment where x, as well as all variables in U are set to 0, and all variables in R are set to 1 (variables in L are left unassigned). If the answer is yes, then there is no constraints between x and any variable in y ∈ U , hence we add x to the set of undecided variables U without breaking any invariant. Otherwise we know that x is either involved in a constraint y < x with y ∈ U , or a constraint x < y with y ∈ U . In order to decide which way is correct, we make a second query, where the value of x is flipped to 1 and all other variables are left unchanged. If this second query receives a yes answer, then the former hypothesis is true and we add x to R, otherwise, we add it to L. Here again, the invariants still hold.

At the end of the first phase, we therefore know that variables in U have no constraints between them. However, they might be involved in constraints with variables in L or in R. In the second phase, we go over each undecided variable x ∈ U , and query the user with an assignment where all variables in L are set to 0, all variables in R are set to 1 and x is set to 0. If the answer is no, we conclude that there is a constraint y < x with y ∈ L and therefore x is added to R (and removed from U ). Otherwise, we ask the same query, but with the value of x flipped to 1. If the answer is no, there must exists y ∈ R such that x < y belongs to the network, hence x is added to R (and removed from U ). Last, if both queries get the answer yes, we conclude that x is not constrained. When every variable has been examined in this way, variables remaining in U are not constrained.

Theorem 4. QUACQ does not learn Boolean networks on the language {<} with a minimal number of queries.

Proof. By Theorem 3, we know that these networks can be learned in O(n) queries. Such networks can contain up to n -1 non redundant constraints. QUACQ learns constraints one at a time, and each call to FindScope takes Ω(log n) queries. Therefore, QUACQ requires Ω(n log n) queries.

Constraint Acquisition with Generalization Queries

In this section we present GENACQ, a generalized acquisition algorithm, The idea behind this algorithm is, given a constraint c S learned on S, to generalize this constraint to sequences of types T covering S by asking generalization queries AskGen(T, c). A generalization query AskGen(T, c) is answered yes by the user if and only if for every sequence S of variables covered by T the relation c holds on S in the target constraint network C T .

Description of GENACQ

The algorithm GENACQ (see Algorithm 4) takes as input a target constraint c S that has already been learned and a set N onT arget of constraints that are known not to belong to the target network. GENACQ returns the set of all sequences of scopes that are maximal with respect to the relation c. GENACQ uses the global data structure N egativeQ, which is a set of pairs (T, c) for which we know that c does not hold on all sequences of variables covered by T . c S and N onT arget can come from any constraint acquisition mechanism or as background knowledge. N egativeQ is built incrementally by each call to GENACQ. GENACQ also uses the set T able as local data structure. T able will contain all sequences of types that are candidates for generalizing c S .

In line 2, GENACQ initializes the set T able to all possible sequences T of types that contain the scope S of the constraint c S . In line 3, GENACQ initializes the set G to the sequence S. G will contain the output of GENACQ, that is, the set of maximal sequences from T able on which c holds. The counter #N oAnswers counts the number of consecutive times generalization queries have been classified negative by the user. It is initialized to zero (line 4). #N oAnswers is not used in the basic version of GENACQ The first loop in GENACQ (line 5) eliminates from T able all sequences T for which we already know the answer to the query AskGen(T, c). In line 6, GENACQ eliminates from T able all sequences T such that a relation c entailed by c is already known not to hold on a sequence T covered by T (i.e., (T , c ) is in N egativeQ). We can remove such sequences because the absence of c on some scope in T implies the absence of c on some scope in T (see Lemma 1). In line 7, GENACQ eliminates from T able all sequences T such that we know from N onT arget that there exists a scope S in T such that c S does not belong to C T .

In the main loop of GENACQ (line 8), we pick a sequence T from T able at each iteration and we ask a generalization query to the user (line 10). If the user says yes, T is a sequence on which c holds. We put T in G and remove from G all sequences covered by T , so as to keep only the maximal ones (line 11). We also remove from T able all sequences T covered by T (line 12) to avoid asking redundant questions later. If the user says no, we remove from T able all sequences T that cover T (line 15) because we know they are no longer candidate for generalization of c and we store in N egativeQ the fact that (T, c) has been answered no. The loop finishes when T able is empty and we return G (line 18).

Completeness and Complexity

We analyze the completeness and complexity of GENACQ in terms of number of generalization queries it ask of the user. Proof. All sequences covering S are put in T able. A sequence in T able is either asked for generalization or removed from T able in lines 6, 7, 12, or 15. We know from Lemma 1 that a sequence removed in line 6, 7, or 15 would necessarily lead to a no answer. We know from Lemma 2 that a sequence removed in line 12 is subsumed and less general than another one just added to G. Proof. For each query on T ∈ T able asked by GENACQ, the size of T able strictly decreases regardless of the answer. As a result, the total number of queries is bounded above by |T able|.

Illustrative Example

Let us take the Lewis Carroll's Zebra problem to illustrate our generalization approach. The problem is to find where the zebra lives, given five houses of five different colors, owned by five men of five different nationalities, having five different drinks, cigarets, and pets. (See for instance [START_REF] Bessiere | Arc-consistency and arc-consistency again[END_REF] for a complete description of the Zebra problem.) The Zebra problem has a single solution. The target network is formulated using 25 variables, partitioned in 5 types of 5 variables each. The ith variable of a given type represents the number of the house where the ith element of the given type is located. The types are color, nationality, drink, cigaret, pet, and the trivial type X of all variables. There is a clique of = constraints on all pairs of variables of the same non trivial type and 14 additional constraints given in the description of the problem.

Figure 1 shows the variables of the Zebra problem and their types. In this example, the constraint X 2 = X 5 has been learned between the two color variables X 2 and X 5 . This constraint is given as input of the GENACQ algorithm. GENACQ computes the T able of all sequences of types covering the scope (X 2 , X 5 ). T able = {(X 2 , color), (X 2 , X), (color, X 5 ), (color, color), (color, X), (X, X 5 ), (X, color), (X, X)}. Suppose we pick T = (X, X 5 ) at line 9 of GENACQ. According to the user's answer (no in this case), the T able is reduced to T able = {(X 2 , color), (X 2 , X), (color, X 5 ), (color, color), (color, X)}. As next iteration, let us pick T = (color, color). The user will answer yes because there is indeed a clique of = on the color variables. Hence, (color, color) is added to G and the T able is reduced to T able = {(X 2 , X), (color, X)}. If we pick (X 2 , X), the user answers no and we reduce the T able to the empty set and return G = {(color, color)}, which means that the constraint X 2 = X 5 can be generalized to all pairs of variables in the sequence (color, color), that is, (X i = X j ) ∈ C T for all (X i , X j ) ∈ (color, color).

Using Generalization in QUACQ

GENACQ is a generic technique that can be plugged into any constraint acquisition system. In this section we present G-QUACQ, a constraint acquisition algorithm obtained by plugging GENACQ into QUACQ, G-QUACQ is presented in Algorithm 5.

G-QUACQ has a structure very similar to QUACQ. It initializes the set N onT arget and the network C L it will learn to the empty set (line 1). If C L is unsatisfiable (line 3), the space of possible networks collapses because there does not exist any subset of the given basis B that is able to correctly classify the examples the user has already been asked. In line 4, QUACQ computes a complete assignment e satisfying C L but violating at least one constraint from B. If such an example does not exist (line 5), then all constraints in B are implied by C L , and we have converged. If we have not converged, we propose the example e to the user, who will answer by yes or no (line 6). If the answer is yes, we can remove from B the set κ B (e) of all constraints in B that reject e (line 7) and we add all these ruled out constraints to the set N onT arget to be used in GENACQ (line 8). If the answer is no, we are sure that e violates at least one constraint of the target network C T . We then call the function FindScope to discover the scope of one of these violated constraints. FindC will select which one with the given scope is violated by e (line 10). If no constraint is returned (line 11), this is again a condition for collapsing as we could not find in B a constraint rejecting one of the negative examples. Otherwise, we know that the constraint c S returned by FindC belongs to the target network C T . This is here that the algorithm differs from QUACQ as we call GENACQ to find all the maximal sequences of types covering S on which c holds. They are returned in G (line 13). Then, for every sequence of variables S belonging to one of these sequences in G, we add the constraint c S to the learned network C L (line 14).

Strategies

GENACQ learns the maximal sequences of types on which a constraint can be generalized. The order in which sequences are picked from T able in line 9 of Algorithm 4 is not specified by the algorithm. As shown on the following example, different orderings can lead more or less quickly to the good (maximal) sequences on which a relation c holds. Let us come back to our example on the Zebra problem (Section 5.3). In the way we developed the example, we needed only 3 generalization queries to empty the set T able and converge on the maximal sequence (color, color) on which = holds:

1. AskGen((X, X 5 ), =) = no 2. AskGen((color, color), =) = yes 3. AskGen((X 2 , X), =) = no Using another ordering, GENACQ needs 8 generalization queries:

1. AskGen((X, X), =) = no 2. AskGen((X, color), =) = no 3. AskGen((color, X), =) = no 4. AskGen((X, X 5 ), =) = no 5. AskGen((X 2 , X), =) = no 6. AskGen((X 2 , color), =) = yes 7. AskGen((color, X 5 ), =) = yes 8. AskGen((color, color), =) = yes If we want to reduce the number of generalization queries, we may wonder which strategy to use. In this section we propose two techniques. The first idea is to pick sequences in the set T able following an order given by a heuristic that will try to minimize the number of queries. The second idea is to put a cutoff on the number of consecutive negative queries we accept to face, leading to a non complete generalization startegy: the output of GENACQ will no longer be guaranteed to be the maximal sequences.

Query Selection Heuristics

We propose some query selection heuristics to decide which sequence to pick next from T able. We first propose optimistic heuristics, which try to take the best from positive answers:

max CST: This heuristic selects a sequence T maximizing the number of possible constraints c S in the basis such that S is in T and c is the relation we try to generalize. The intuition is that if the user answers yes, the generalization will be maximal in terms of number of constraints. max VAR: This heuristic selects a sequence T involving a maximum number of variables, that is, maximizing | S∈T S|. The intuition is that if the user answers yes, the generalization will involve many variables.

Dually, we propose pessimistic heuristics, which try to take the best from negative answers:

min CST: This heuristic selects a sequence T minimizing the number of possible constraints c S in the basis such that S is in T and c is the relation we try to generalize. The intuition is to maximize the chances to receive a yes answer. If, despite this, the user answers no, a great number of sequences are removed from T able (see Lemma 1). min VAR: This heuristic selects a sequence T involving a minimum number of variables, that is, minimizing | S∈T S|. The intuition is to maximize the chances of a yes answer while focusing on smaller sets of variables than min CST. Again, a no answer leads to a great number of sequences removed from T able.

As a baseline for comparison, we define a random selector.

random: It picks randomly a sequence T in T able.

Using Cutoffs

The idea here is to exit GENACQ before having proved the maximality of the sequences returned. We put a threshold cutoffNo on the number of consecutive negative answers to avoid using queries to check unpromising sequences. The hope is that GENACQ will return near-maximal sequences of types despite not proving maximality. This cutoff strategy is implemented by setting the variable cutoffNo to a predefined value. In lines 13 and 17 of GENACQ, a counter of consecutive negative answers is respectively reset and incremented depending on the answer from the user. In line 8, that counter is compared to cutoffNo to decide to exit or not.

Experimental Evaluation

We made some experiments to evaluate the behavior of active learning with partial queries (QUACQ) and to test the impact of using generalization (GENACQ). GENACQ was plugged in QUACQ, leading to G-QUACQ. All the experiments were done on an Intel Xeon E5462 @ 2.80GHz with 16 Gb of RAM. We first present the benchmark problems we used for our experiments. Then, we report the results of several experiments. The first experiment presents the performance of QUACQ to learn our benchmark problems. The second one compares the performance of G-QUACQ to the basic QUACQ. The third reports experiments evaluating the different strategies we proposed selection heuristics and cutoffs) on G-QUACQ. Finally, we evaluate the performance of when our knowledge of the types of variables is incomplete.

Benchmark Problems

Problems without types

Random. We generated binary random target networks with 50 variables, domains of size 10, and m binary constraints. The binary constraints are selected from the language Γ = {≥, ≤, <, >, =, =}. QUACQ is initialized with the basis B containing the complete graph of 7350 binary constraints taken from Γ . For densities m = 12 (underconstrained) and m = 122 (phase transition) we launched QUACQ on 100 instances and report averages.

Golomb rulers. (prob006 in [START_REF] Gent | Csplib: a benchmark library for constraints[END_REF]) A Golomb ruler is a set of m marks to put on a ruler so that the distances between marks are all distinct. This is encoded as a target network with m variables corresponding to the m marks, and constraints of varying arity. We learned the target network encoding the 8 mark ruler. We initialized QUACQ and G-QUACQ with a basis of 55,484 constraints taken from a language with 24 basic arithmetic and distance constraints with unary, binary, ternary and quaternary scopes.

Problems with types

Zebra problem. Lewis Carroll's zebra problem has a single solution. The target network is formulated using 25 variables of domain size of 5 with 5 cliques of = constraints and 11 additional constraints given in the description of the problem. We initialized QUACQ and G-QUACQ with a basis of 6,850 constraints taken from a language with 24 basic arithmetic and distance constraints with unary, binary, ternary and quaternary scopes. In G-QUACQ, the variables are given as the 5 types of 5 variables that naturally occur from the problem description (color, nationality, pet, cigaret, drink).

Sudoku. The Sudoku logic puzzle is a 9 × 9 grid pre-filled with some numbers. It must be completed in such a way that all the rows, all the columns and the 9 non overlapping 3 × 3 squares contain the numbers 1 to 9. The target network of the Sudoku has 81 variables with domains of size 9 and 810 binary = constraints on rows, columns and squares. QUACQ and G-QUACQ are initialized with a basis B of 6,480 binary constraints from the language Γ = {=, =}. In this problem, the types are the 9 rows, 9 columns and 9 squares, of 9 variables each.

Latin Square. The Latin square problem consists of an n × n table in which each element occurs once in every row and column. For this problem, we use 25 variables with domains of size 5 and 100 binary = constraints on rows and columns. Rows and columns are the types of variables (10 types). QUACQ and G-QUACQ are initialized with a basis of constraints based on the language Γ = {=, =}.

Radio Link Frequency Assignment Problem. The RLFAP problem is to provide communication channels from limited spectral resources [START_REF] Cabon | Radio link frequency assignment[END_REF]. The constraint model of the instance we selected has 25 variables with domains of size 25 and 125 binary constraints. We have five stations of five terminals (transmitters/receivers), which form five types. We initialized QUACQ and G-QUACQ with a basis of 1,800 binary constraints taken from a language of 6 arithmetic and distance constraints Purdey [START_REF] Mason | Purdey's general store[END_REF]. Like Zebra, this problem has a single solution. Four families have stopped by Purdeys general store, each to buy a different item and paying differently. Under a set of additional constraints given in the description, the problem is how can we match family with the item they bought and how they paid for it. The target network of Purdey has 12 variables with domains of size 4 and 30 binary constraints. Here we have three types of variables, which are family, bought and paid, each of them contains four variables. We initialized QUACQ and G-QUACQ with a basis of constraints based on the language Γ = {=, =}.

QUACQ evaluation

To ensure rapid converge, we want a query answered yes to prune B as much as possible. This is best achieved when the query generated in line 4 of QUACQ is an assignment violating a large number of constraints in B. We implemented the max heuristic to generate a solution of C L that violates a maximum number of constraints from B. However, this heuristic can be time consuming as it solves an optimization problem. We then added a cutoff of 1 or 10 seconds to the solver using max, which gives the two heuristics max-1 and max-10 respectively. We also implemented a cheaper heuristic that we call sol. It simply solves C L and stops at its first solution violating at least one constraint from B.

Our first experiment was to compare max-1 and max-10 on large problems. We observed that the performance when using max-1 is not significantly worse in number of queries than when using max-10. For instance, on the rand 50 10 122, #Ask = 1074 for max-1 and #Ask = 1005 for max-10. The average time for generating a query is 0.14 seconds for max-1 and 0.86 seconds for max-10 with a maximum of 1 and 10 seconds respectively. We then chose not to report results for max-10. Table 2 reports the results obtained with QUACQ to reach convergence using the heuristics max-1 and sol. We report the size |C L | of the learned network (which can be smaller than the target network due to redundant constraints), the total number #Ask of queries, the number #Ask c of complete queries (i.e., generated in line 6 of QUACQ), the average size Ask of all queries, and the average time needed to compute a query (in seconds). A first observation is that max-1 generally requires less queries than sol to reach convergence. This is especially true for rand 50 10 12, which is very sparse, and Golomb-8, which contains many redundant constraints. If we have a closer look, these differences are mainly explained by the fact that max-1 requires significantly less complete positive queries than sol to totally prune B and prove convergence (22 complete positive queries for max-1 and 121 for sol on rand 50 10 12). But in general, sol is not as bad as we could have expected. The reason is that, except on very sparse networks, the number of constraints from B violated 'by chance' with sol is large enough. The second observation is that when the network contains a lot of redundancies, max-1 converges on a smaller network than sol. We observed this on Golomb-8, and other problems not reported here. The third observation is that the average size of queries is always significantly smaller than the number of variables in the problem. A last observation is that sol is very fast for all its queries (see the time column). We can expect it to be usable on even larger problems.

As a second experiment we evaluated the effect of the size of the basis on the number of queries. On the zebra problem we initialized QUACQ with bases of different sizes and stored the number of queries for each run. Figure 2 shows that when |B| grows, the number of queries follows a logarithmic scale. This is very good news as it means that learning problems with expressive bases will scale well.

QUACQ has two main advantages over learning with membership queries, as in CONACQ. One is the small average size of queries Ask, which are probably easier to answer by the user. The second advantage is the time to generate queries. Conacq.2 needs to find examples that violate exactly one constraint of the basis to make progress Our first experiment compares QUACQ and G-QUACQ in its baseline version, G-QUACQ + random, on our benchmark problems. Table 3 reports the results. We observe that the number of queries asked by G-QUACQ is dramatically reduced compared to QUACQ. This is especially true on problems with many types involving many variables, such as Sudoku or Latin square. G-QUACQ acquires the Sudoku with 260 standard queries plus 166 generalization queries, when QUACQ acquires it in 8645 standard queries. Let us now focus on the behavior of our different heuristics in G-QUACQ. The upper part of Table 4 reports the results obtained with G-QUACQ using min VAR, min CST, max VAR, and max CST to acquire the Sudoku model. (Other problems showed similar trends.) The results clearly show that max VAR, and max CST are very bad heuristics. They are worse than the baseline random. On the contrary, min VAR and min CST significantly outperform random. They respectively require 90 and 132 generalization queries instead of 166 for random. Notice that they all ask the same number of standard queries (260) as they all find the same maximal sets of sequences for each learned constraint.

The lower part of Table 4 we compare the behavior of our two best heuristics (min VAR and min CST) when combined with the cutoff strategy. We tried all values of the cutoff from 1 to 3. A first observation is that min VAR remains the best whatever the value of the cutoff is. Interestingly, even with a cutoff equal to 1, min VAR requires the same number of standard queries as the versions of G-QUACQ without cutoff. This means that using min VAR as selection heuristic in T able, G-QUACQ is able to return the maximal sequences despite being stopped after the first negative generalization answer. We also observe that the number of generalization queries with min VAR decreases when the cutoff becomes smaller (from 90 to 39 when the cutoff goes from +∞ to 1). By looking at the last two columns we see that this is the number #no of negative answers which decreases. The good performance of min VAR + cutoff=1 can thus be explained by the fact that min VAR selects first queries that cover a minimum number of variables, which increases the chances to have a yes answer. Finally, we observe that the heuristic min CST does not have the same nice characteristics as min VAR. The smaller the cutoff, the more standard queries are needed, not compensating for the saving in number of generalization queries (from 260 to 837 standard queries for min CST when the cutoff goes from +∞ to 1). This means that with min CST, when the cutoff becomes too small, GENACQ does not return the maximal sequences of types where the learned constraint holds. In Table 5, we report the performance of G-QUACQ with random, min VAR and min VAR +cutoff=1 on all the other problems. We see that min VAR +cutoff=1 significantly improve the performance of G-QUACQ on all problems. As in the case of Sudoku, we observe that min VAR +cutoff=1 does not lead to an increase in the number of standard queries. This means that on all these problems min VAR +cutoff=1 always returns the maximal sequences while asking less generalization queries with negative answers.

From these experiments we see that G-QUACQ with min VAR +cutoff=1 leads to tremendous savings in number of queries compared to QUACQ: 257+23 instead of 764 on Zebra, 260+39 instead of 8645 on Sudoku, 117+20 instead of 1129 on Latin square, 151+22 instead of 1653 on RLFAP, 82+12 instead of 173 on Purdey.

In our last experiment, we show the effect on the performance of G-QUACQ of a lack of knowledge on some variable types. We took again our 5 benchmark problems in which we have varied the amount of types known by the algorithm. This simulates a situation where the user does not know that some variables are from the same type. For instance, in Sudoku, the user could not have noticed that variables are arranged in columns. Figure 3 shows the number of standard queries and generalization queries asked by G-QUACQ with min VAR +cutoff=1 to learn the RLFAP model when fed with an increasingly more accurate knowledge of types. We observe that as soon as a small percentage of types is known (20%), G-QUACQ reduces drastically its number of queries. Table 6 gives the same information for all other problems.

Conclusion

We have proposed QUACQ, an algorithm that learns constraint networks by asking the user to classify partial assignments as positive or negative. Each time it receives a negative example, the algorithm converges on a constraint of the target network in a logarithmic number of queries. We have shown that QUACQ is optimal on certain constraint languages. Asking the user to classify partial assignments allows to converge on the target constraint network in a polynomial number of queries. Furthermore, as opposed to existing techniques, the user does not need to provide positive examples to converge. This last feature can be very useful when the problem has not been previously solved. We have also proposed GENACQ, a technique to make constraint acquisition more efficient in practice by using information on the types of components the variables in the problem represent. We have introduced generalization queries. They are asked to the user to generalize a constraint to other scopes of variables of the same type where this constraint possibly applies. GENACQ can be called to generalize each new constraint that is learned. We have proposed several heuristics and strategies to select the good candidate generalization query. We have plugged GENACQ into the QUACQ constraint acquisition system, leading to the G-QUACQ version. Our experimental evaluation shows that generating good queries in QUACQ is not computationally difficult and that when the basis increases in size, the increase in number of queries follows a logarithmic shape. These results are promising for the use of QUACQ on real problems. However, problems with dense constraint networks require a number of queries that could be too large for a human user. We have then evaluated the benefit of generalization queries, with and without complete knowledge on the types of variables.

The results show that G-QUACQ dramatically improves the basic QUACQ algorithm in terms of number of queries.

Algorithm 1 : 7 else 8 S

 178 QUACQ: Acquiring a constraint network C T with partial queries 1 CL ← ∅; 2 while true do 3 if sol(CL) = ∅ then return "collapse"; 4 choose e in D X accepted by CL and rejected by B ; 5 if e = nil then return "convergence on CL"; 6 if ASK(e) = yes then B ← B \ κB(e) ; ← FindScope(e, ∅, X, false); 9 cS ← FindC(S); 10 if cS = nil then return "collapse"; 11 else CL ← CL ∪ {cS};

Algorithm 2 : 3 if ask query then 4 if

 234 Function FindScope: returns the scope of a constraint in C T 1 function FindScope(in e: example, R, Y : scopes, ask query: Boolean): scope; 2 begin ASK(e[R]) = yes then B ← B \ κB(e[R]) ; 5 else return ∅;

5 while true do 6 choose 7 if e = nil then 8 if 11 B

 67811 e in sol(CL[Y ]) such that ∃cY , c Y ∈ ∆, e |= cY and e |= c Y ; ∆ = ∅ then return nil; 9 else pick cY in ∆; return c; 10 if ASK(e) = yes then ← B \ κB(e); ∆ ← ∆ \ κB(e); 12 else 13 if ∃cS ∈ κB(e) | S Y then 14 return FindC(FindScope(e, ∅, S, false)); 15 else ∆ ← ∆ ∩ κB(e) ; {X 4 , X 5 } and the recursive call-1 is performed with R = Y 1 and Y = Y 2 . As e 1 [R] is classified as positive, line 4 of FindScope removes the constraints = 12 , = 13 and = 23 from B. A new split of Y leads to the call-1.1

4 }

 4 and ask query = true. It merely detects that Y is a singleton and thus returns {X 4 }. Call-1 finishes by returning {X 4 } one level above in the recursivity (line 10). Call-2 classifies e 1 [X 4 ] as positive and goes down to call-2.1 with R = {X 4 , X 1 , X 2 } and Y = {X 3 }. In call-2.1, e 1 [R] is classified positive. FindScope thus removes constraints = 14 and = 24 from B and returns the singleton

Proposition 1 .Proposition 2 .

 12 Given a basis B built from a language Γ , a target network C T , a scope Y , FindC uses O(|Γ |) queries to return a constraint c Y from C T if it exists. Proof. Each time FindC asks a query, whatever the answer of the user, the size of ∆ strictly decreases. Thus the total number of queries asked in FindC is bounded above by |∆|, which itself, by construction in line 4, is bounded above by the number of constraints from Γ of arity |Y |. Given a basis B, a target network C T , an example e ∈ D X \ sol(C T ), FindScope uses O(|S|•log |X|) queries to return the scope S of one of the constraints of C T violated by e.

Theorem 1 .

 1 Given a basis B built from a language Γ of bounded arity constraints, and a target network C T , QUACQ uses O(|C T | • (log |X| + |Γ |)) queries to find the target network or to collapse and O(|B|) queries to prove convergence. Proof. Each time line 6 of QUACQ classifies an example as negative, the scope of a constraint c S from C T is found in at most |S| • log |X| queries (Proposition 2). As Γ only contains constraints of bounded arity, either |S| is bounded and c S is found in O(|Γ |) or we collapse (Proposition 1). Hence, the number of queries necessary for finding C T or collapsing is in O(|C T | • (log |X| + |Γ |)). Convergence is obtained once B is wiped out thanks to the examples that are classified positive in line 6 of QUACQ. Each of these examples necessarily leads to at least one constraint removal from B because of the way the example is built in line 4. This gives a total in O(|B|).

Algorithm 4 : 9 pick T in T able ; 10 if 11 G; 12 T; 13 #N oAnswers ← 0; 14 else 15 T

 49101112131415 GENACQ: returns the maximum generalizations of a constraint c S 1 function GENACQ(in cS: constraint, N onT arget: set):Generalizations; 2 T able ← {T | S ∈ T } \ {S}; 3 G ← {S} ; 4 #N oAnswers ← 0 ; 5 foreach T ∈ T able do 6 if ∃(T , c ) ∈ N egativeQ | c ⊆ c ∧ T T then T able ← T able \ {T } ; 7 if ∃c S ∈ N onT arget | S ∈ T then T able ← T able \ {T } ; 8 while T able = ∅ ∧ #N oAnswers < cutoffNo do AskGen(T, c) = yes then ← G ∪ {T } \ {T ∈ G | T T }able ← T able \ {T ∈ T able | T T }able ← T able \ {T ∈ T able | T T } ;16 N egativeQ ← N egativeQ ∪ {(T, c)} ; 17 #N oAnswers + +; 18 return G; but it will be used in the version with cutoffs. (In other words, the basic version uses cutoffNo = +∞ in line 8).

Lemma 1 .Lemma 2 .

 12 If AskGen(T, c) = no then for any (T , c ) such that T T and c ⊆ c, we have AskGen(T , c ) = no. Proof. Assume that AskGen(T, c) = no. Hence, there exists a sequence S ∈ T such that c S / ∈ C T . As T T we have S ∈ T and then we know that c S / ∈ C T . As c ⊆ c, we also have c S / ∈ C T . As a result, AskGen(T , c ) = no. If AskGen(T, c) = yes then for any T such that T T , we have AskGen(T , c) = yes. Proof. Assume that AskGen(T, c) = yes. As T T , for all S ∈ T we have S ∈ T and then we know that c S ∈ C T . As a result, AskGen(T , c) = yes. Proposition 3 (Completeness). When called with constraint c S as input, the algorithm GENACQ returns all maximal sequences of types covering S on which the relation c holds.

Proposition 4 .

 4 Given a learned constraint c S and its associated T able, GENACQ uses O(|T able|) generalization queries to return all maximal sequences of types covering S on which the relation c holds.

Fig. 1 .

 1 Fig. 1. Variables and types for the Zebra problem.

Algorithm 5 : 6 if 7 B 8 N 9 else 10 cS 13 G

 567891013 G-QUACQ = QUACQ + GENACQ 1 CL ← ∅, N onT arget ← ∅; 2 while true do 3 if sol(CL) = ∅ then return"collapse"; 4 choose e in D X accepted by CL and rejected by B; 5 if e = nil then return "convergence on CL"; Ask(e) = yes then ← B \ κB(e); onT arget ← N onT arget ∪ κB(e); ← FindC(e, FindScope(e, ∅, X, false)); 11 if cS = nil then return "collapse"; 12 else ← GENACQ(cS, N onT arget); 14 foreach T ∈ G do CL ← CL ∪ {c S | S ∈ T } ;

Fig. 3 .

 3 Fig.3. G-QUACQ on RLFAP when the percentage of provided types increases.

  is a classification question asked of the user, where e Y is a partial assignment inD Y = Π Xi∈Y D(X i ). A setof constraints C accepts a partial query e Y if and only if there does not exist any constraint c S in C rejecting e Y [S]. The answer to ASK(e Y ) is "yes" if and only if C T accepts e Y . It is important to observe that "ASK(e Y ) = yes" does not mean that e Y extends to a solution of C T , which would put an NP-complete problem on the shoulders of the user. For any assignment e Y on Y , κ B (e Y ) denotes the set of all constraints in B rejecting e Y . A classified assignment e Y is called positive or negative example depending on whether ASK(e Y ) is "yes" or "no".

Table 2 .

 2 Results of QUACQ learning until convergence.

			|CL|	#Ask	#Askc	Ask	time
	rand 50 10 12	max-1 sol	12 12	196 286	34 133	24.04 33.22	0.23 0.09
	rand 50 10 122	max-1 sol	86 83	1074 1062	94 120	13.90 15.64	0.14 0.06
	Golomb-8	max-1 sol	83 127	438 645	83 132	5.12 5.34	0.85 0.46
	Zebra	max-1 sol	60 60	764 752	61 61	10.99 11.17	0.29 0.06
	Sudoku 9 × 9	max-1 sol	810 810	8645 9593	821 815	20.58 20.84	0.16 0.06

Table 4 .

 4 G-QUACQ with heuristics and cutoff strategy on Sudoku.

		cutoff	#Ask	#AskGen	#yes	#no
	random			166	42	124
	min VAR			90	21	69
	min CST	+∞	260	132	63	69
	max VAR			263	63	200
	max CST			247	21	226
		3		75	21	54
	min VAR	2	260	57	21	36
		1		39	21	18
		3	626	238	112	126
	min CST	2	679	231	132	99
		1	837	213	153	60

Table 5 .

 5 G-QUACQ with random, min VAR, and cutoff=1 on Zebra, Latin square, RLFAP, and Purdey.

			#Ask	#AskGen	#yes	#no
	Zebra	Random min VAR min VAR +cutoff=1	257	67 48 23	10 5 5	57 43 18
	L.Square	Random min VAR min VAR +cutoff=1	117	60 34 20	16 10 10	44 24 10
	RLFAP	Random min VAR min VAR +cutoff=1	151	37 41 22	16 14 14	21 27 8
	Purdey	Random min VAR min VAR +cutoff=1	82	31 24	5 3	26 21

This operation could proactively be done in QUACQ, just after line 11, but we preferred the lazy mode as this is a computationally expensive operation.

The whole work has been funded by the European Community project FP7-284715 ICON.

# A s k Fig. 2. QUACQ behavior on different basis sizes for Zebra towards convergence. This can be expensive to compute, preventing the use of Conacq.2 on large problems. QUACQ, on the other hand, can use cheap heuristics like max-1 and sol to generate queries.

Using Generalization Queries

For all our experiments we report, the total number #Ask of standard queries asked by the basic QUACQ, the total number #AskGen of generalization queries, and the numbers #no and #yes of negative and positive generalization queries, respectively, where #AskGen = #no + #yes. The time overhead of using G-QUACQ rather than QUACQ is not reported. Computing a generalization query takes a few milliseconds.