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Abstract

Background: Fungal plant pathogens belonging to the genus Venturia cause damaging scab diseases of members of
the Rosaceae. In terms of economic impact, the most important of these are V. inaequalis, which infects apple, and V.
pirina, which is a pathogen of European pear. Given that Venturia fungi colonise the sub-cuticular space without
penetrating plant cells, it is assumed that effectors that contribute to virulence and determination of host range will be
secreted into this plant-pathogen interface. Thus the predicted secretomes of a range of isolates of Venturia with
distinct host-ranges were interrogated to reveal putative proteins involved in virulence and pathogenicity.

Results: Genomes of Venturia pirina (one European pear scab isolate) and Venturia inaequalis (three apple scab, and
one loquat scab, isolates) were sequenced and the predicted secretomes of each isolate identified. RNA-Seq was
conducted on the apple-specific V. inaequalis isolate Vi1 (in vitro and infected apple leaves) to highlight virulence and
pathogenicity components of the secretome. Genes encoding over 600 small secreted proteins (candidate effectors)
were identified, most of which are novel to Venturia, with expansion of putative effector families a feature of the genus.
Numerous genes with similarity to Leptosphaeria maculans AvrLm6 and the Verticillium spp. Ave1 were identified.
Candidates for avirulence effectors with cognate resistance genes involved in race-cultivar specificity were identified, as
were putative proteins involved in host-species determination. Candidate effectors were found, on average, to be in
regions of relatively low gene-density and in closer proximity to repeats (e.g. transposable elements), compared with
core eukaryotic genes.

Conclusions: Comparative secretomics has revealed candidate effectors from Venturia fungal plant pathogens that
attack pome fruit. Effectors that are putative determinants of host range were identified; both those that may be
involved in race-cultivar and host-species specificity. Since many of the effector candidates are in close proximity to
repetitive sequences this may point to a possible mechanism for the effector gene family expansion observed and a
route to diversification via transposition and repeat-induced point mutation.
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Background
Plant-pathogen interactions are a fine interplay between
prospective host and pathogen, involving the exchange
of molecular signals that determine the outcome of the
interaction. The plant endeavours to detect invaders by
deploying, as a first line of defence, pattern recognition
receptors that recognise pathogen-associated molecular
patterns (PAMPs) shared by a wide range of non-
specialised microbes, with a resulting induction of a
low-level defence response termed PAMP-triggered im-
munity (PTI). In response, pathogens evolve effectors
that enhance a pathogen’s ability to cause disease, often
by blocking or suppressing PTI [1–4]. Plants in turn
evolve resistance (R) proteins that recognise a subset of
these effectors either directly or by their actions on plant
host targets. Thus the respective effector and R protein
complements can contribute to the determination of
host-range for any given pathogen.
The genus Venturia belongs to the order Venturiales,

which is assigned to the class Dothideomycetes [5]. The
Dothideomycetes include many highly destructive plant
pathogens, the Venturiales being no exception. Venturia
pathogens are relatively host-specific and infect selected
members of the family Rosaceae, perhaps the best
known and most widely researched of which is V. inae-
qualis Cooke (Wint.) that causes the economically
important disease apple scab [6, 7]. Related species, for
example V. pirina, V. nashicola, V. carpophila and V.
cerasi, cause scab diseases of other Rosaceae hosts:
European pear, Asian pear, peach and cherry respectively
[8–11]. Venturia species cause similar symptoms by
adopting analogous biotrophic parasitic strategies [8–10].
During infection they penetrate the host cuticle directly
and then develop stromata (laterally dividing, pseudopar-
enchymatous cells) in the cuticle and sub-cuticular space
without penetrating host cells. Ultimately conidiophores
and conidia differentiate from stromata and erupt through
the cuticle resulting in the formation of dark, crusty, dry
lesions (scabs) on leaves and fruit. A fundamental question
arises as to what determines the host range of these path-
ogens, especially given that they have similar modes of
biotrophic parasitism and infect closely related host
species.
A further level of complexity underlies pathogen/host

species specificity in scab fungi, for example, certain iso-
lates classified as V. inaequalis on the basis of morpho-
logical and molecular criteria, as well as their ability to
mate, are unable to infect Malus, but instead infect dif-
ferent Rosaceous hosts, such as Eriobotrya (loquat) and
Pyracantha (firethorn) [12, 13]. Whether these isolates
should be considered as separate species or formae spe-
ciales is still open to debate. Gladieux and associates
[13] suggested that there should be no sub-species delin-
eation based on analysis of six nuclear loci. These
isolates are therefore very closely related phylogenetic-
ally, but have distinct host specificities. Host cultivar
specificity has long been demonstrated in isolates of V.
inaequalis that infect Malus [14]; 17 gene-for-gene pair-
ings have been identified to date between races of V.
inaequalis and cultivars of Malus. Only two scab R gene
loci in apple (Rvi6 and Rvi15) have been fully charac-
terised [15–18]; however, no effectors of V. inaequalis
have been characterised to date. Work to identify the V.
inaequalis effector repertoire that determines cultivar
specificity, and most probably host specificity, has been
impeded by the lack of a whole genome sequence for
this species.
Genome estimates for V. inaequalis range from 38 Mb

[19] to 100 Mb [20]. The de novo transcriptome of a sin-
gle isolate of V. inaequalis has been published [21], with
analysis of both in vitro and in planta transcripts. In our
study the whole genome sequences of four isolates of V.
inaequalis (three physiological races, differing in their
ability to infect apple accessions carrying different R
genes, and a loquat-infecting isolate) were sequenced
using Illumina sequencing technologies. The V. inaequa-
lis genomes were compared to a single V. pirina genome
[22]. Given the extracellular in planta niche the Venturia
fungi occupy during parasitism it can be assumed that the
majority of the factors that enable successful parasitism
are first secreted into the sub-cuticular plant-pathogen
interface. Therefore the secretomes of these isolates are of
utmost relevance and so were compared to identify puta-
tive pathogencity or virulence factors that may have a role
in host determination, with special emphasis on secreted
enzymes and putative proteinaceous effectors.

Results
Whole genome assemblies and gene predictions
A total of 40 Mb (Vi1.2.8.9) to 61 Mb (Vi1.10) was as-
sembled for Malus-infecting V. inaequalis isolates. The
assembled genome size for the loquat scab pathogen
(ViL) was 62 and 41 Mb for the pear scab pathogen
(Vp). Lack of sequencing of mate-pair libraries with long
inserts contributed to the Vi1.2.8.9 assembly having the
lowest N50 value (~49 kb) among the five isolates, while
Vp had the largest N50 (332 kb, Table 1, Additional file 1).
A summary of the repeat content masked for each genome
assembly is presented in Table 1 and Additional file 2.
Gene models were predicted with AUGUSTUS gene pre-

diction software (Table 1 and Additional file 3) [23, 24].
The number of gene models in the V. inaequalis isolates
ranged from 12,234 to 13,333 whereas there were 11,960
identified in V. pirina. To estimate the completeness of the
assembled genomes, the assemblies were scanned for the
248 most highly conserved core eukaryotic genes using the
Core Eukaryotic Genes Mapping Approach (CEGMA;
Table 1 and Additional file 4) [25]. Comparisons of partial



Table 1 The whole genome assemblies of isolates of Venturia inaequalis and V. pirina

Species Venturia inaequalis Venturia pirina

Isolate (race) Vi1 (race 1) =
ICMP13258 = MNH120

Vi1.10 (race 1,10) =
EU-B04d

Vi1.2.8.9
(race 1,2,8,9) = 1639

ViL = 1389 Vp = ICMP11032

Host range Malus × domestica Malus × domestica Malus × domestica Eriobotrya japonica Pyrus communis

Estimated genome coverage 120x 90x 89x 89x 74x

Package used for assembly Velvet ALLPATHS -LG Velvet ALLPATHS -LG Velvet

Number of scaffolds 1012 1415 1680 1040 364

Size (Mb) 55 61 40 62 41

N50 233760 136376 48770 213378 332167

N90 16289 23736 11843 37088 81548

Repeats in total genome (%) 4.11% 33.41% 0.74% 35.60% 7.28%

Number of predicted genesa 13333/12546 12234 12868 12258 11960

Percentage completeness: partial (full)b 99.60 (99.19) 98.79 (95.16) 98.39 (94.76) 97.58 (94.76) 98.39 (95.16)

Percentage completeness: partial (full)c 99.51 (96.45) 99.37 (97.01) 99.37 (96.94) 99.51 (97.22) 99.65 (97.01)
aHybrid with hints/ab initio gene predictions for Vi1
bCEGMA analysis using both partial and full gene sequences [25]
cBUSCO analysis using both partial and full gene sequences [26]
dNote the recent race designation change reported for EU-B04 [187], previously reported as race (1,14) by Bus et al. [14]
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or complete predicted translated proteins demonstrated
that the V. inaequalis Vi1 genome is the most complete,
with only one or two core eukaryotic genes missing re-
spectively. The lowest representation of the 248 core
eukaryotic genes in any genome was still high, 235
complete and another seven partial predicted proteins for
V. inaequalis ViL, indicating a reasonably complete whole
genome sequence for all isolates. In addition, a Bench-
marking Universal Single-Copy Orthologs (BUSCO) ana-
lysis was also conducted using BUSCO_v1.1b [26]. This
analysis indicated that the V. pirina genome is the most
complete and of the V. inaequalis genomes Vi1 and ViL
are the most complete when partial predicted proteins are
considered, although on comparison of complete pre-
dicted proteins the ViL genome is the most complete
(Table 1 and Additional file 5). Since Vi1 was the most
comprehensive V. inaequalis genome in terms of coverage
when CEGMA and BUSCO analyses were taken together,
and is predicted to have the most complete set of
avirulence effectors (due to the avirulent phenotype of
this isolate on all but one of the set of resistant apple
host differentials following inoculation in glasshouse
trials; Vincent Bus, personal communication), this iso-
late was selected for preliminary expression (RNA-
Seq) analyses.

The predicted secretomes of Venturia inaequalis and V. pirina
To predict the secretome of each isolate, gene models
were analysed with a pipeline of programmes (Additional
file 6). The total number of genes encoding the predicted
secretome for each genome is as follows: 1622 in Vi1;
1158 in Vi1.10; 1324 in Vi1.2.8.9; 1131 in ViL and 1139 in
Vp. The number of predicted proteins in the Vi1
secretome is greater than that for the other genomes due
to use of both ab initio (based on the trained species
model) and hybrid (evidence informed) gene predictions
in the analysis. Thakur et al. [21] reported a lower pre-
dicted secretome number of 946, however this was based
on transcriptome data alone and, as such, direct compari-
son is problematic. Gene ontology analysis through an in-
house annotation pipeline (BioView; Ross Crowhurst,
Marcus Davy and Cecilia Deng, unpublished) was used to
annotate predicted genes in each secretome; however, the
majority of the predicted proteins had no gene ontology
classification. Hence, for this reason, the Carbohydrate
Active Enzyme (CAZyme) Analysis Toolkit (CAT) [27],
and similarity searches utilising BLASTp [28] against the
NCBI non-redundant (nr) database [29] were used in
addition to gene ontology. Where conflicting designations
occurred, CAT, then gene ontology took precedence over
similarity search designations. The secretome repertoire,
in terms of diversity and abundance of protein classes,
was similar between all Venturia isolates, with small, se-
creted, non-enzymatic proteins (SSPs) dominating (Fig. 1).
For comparative purposes the secretomes of three plant
pathogenic fungi, Parastagonospora nodorum (synonym:
Stagonospora nodorum), Cladosporium fulvum and Pucci-
nia graminis f. sp tritici were also identified using the
same pipeline of programmes using predicted proteins
downloaded from the Joint Genome Institute (JGI;
Additional files 6 and 7). The size of the P. graminis
f. sp tritici secretome (1820 predicted proteins) was
significantly larger than that recorded for C. fulvum
and P. nodorum (1170 and 1122 predicted proteins
respectively). The size of the Vi1 secretome was simi-
lar to that of P. graminis f. sp. tritici, whereas the



Fig. 1 The secretomes of four isolates of V. inaequalis and one isolate of V. pirina. Annotations were based on gene ontology analysis including
interrogation of NCBI RefSeq [168], InterPro [169], UniRef [170], ExPASy UniProtKB/Swiss-Prot [171] and ExPASy Prosite [172], CAZyme identification
using the CAT server [27] and BLASTp searches against the NCBI non-redundant database [29]. Small secreted proteins (SSPs) include predicted
proteins with similarity to known effectors and proteins with no known function, either with or without putative conserved motifs identified by
PfamScan [36–38]
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remaining Venturia secretomes were of a similar size
to those of P. nodorum and C. fulvum.
OrthoMCL was conducted to assess similarity between

the predicted Venturia secretomes (Fig. 2 and Additional
file 8) [30]. A total of 898 isolate-specific singletons were
identified (310 in Vi1; 37 in Vi1.10; 118 in Vi1.2.8.9; 88
in ViL, and 345 in Vp) but are not included in the
OrthoMCL clustering figure (Fig. 2). The Venturia core
secretome (those predicted secreted proteins represented
in all Venturia isolates) consisted of 514 orthologous
clusters, with CAZymes (163) and non-enzymatic SSPs
(225) being the predominant classes (Additional file 8).
The Venturia pan secretome (the sum of all predicted
secreted proteins from all Venturia isolates) totalled
5474 representing 2238 individual proteins (1340 clus-
ters, plus 898 isolate-specific singletons), with many
lineage-specific and host-specificity candidates identified,
most of which were predicted to encode non-enzymatic
SSPs. The majority of these SSPs had no significant simi-
larity to proteins in the public domain. The V. inaequa-
lis-unique (including both apple- and loquat-infecting
strains) pan secretome totalled 2033 representing 1156
individual proteins (603 clusters and 553 singletons),
with a total of 929 representing 672 individual proteins
(207 clusters plus 465 singletons) specific to apple-
infecting isolates, with 85 of the clusters (mostly with a
single protein from each isolate) found in all three iso-
lates. There were 88 singletons, but no unique clusters
specific to the loquat-infecting isolate ViL. The V.
pirina-specific secretome totalled 480 representing 387
individual proteins, with 16 unique protein clusters and
345 singletons.
Two sets of RNA-Seq data, from libraries made with

RNA harvested from V. inaequalis Vi1 grown in vitro
(in cellophane membranes) and Vi1-infected apple seed-
ling leaves (two and seven days post inoculation; dpi),
provided evidence of transcription for 93.4% of the Vi1
secretome. The RNA-Seq data were also used to select a
smaller subgroup of the Vi1 secretome to analyse in
greater detail (sequences are deposited under the Bio-
Project ID PRJNA261633: in vitro: SRR1586226, two dpi
in planta: SRR1586224, seven dpi in planta:
SRR15862230). These data were used as indicators of in-
volvement in virulence or pathogenicity. Figure 3 shows
representative stages of this material (no signs of micro-
bial contamination were evident in the sterile distilled
water (SDW)-inoculated apple leaves, as assessed by
microscopic evaluation). Two approaches were used:



Fig. 2 Proteins in the secretomes of four isolates of Venturia inaequalis and one of V. pirina. Similar proteins in each of the secretomes were
identified by OrthoMCL-2.0.3 [30] together with the Markov clustering algorithm mcl-09-149 [173]. Similarity levels were calculated based on
reciprocal BLASTp similarity searches between the protein sequences with an e value threshold of 1e-10. Figures within the boxes represent the
number of proteins in each cluster, whereas figures outside the wheel are the number of clusters in each sector. Those proteins that are
singletons within each secretome are not represented
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first, overall Vi1 gene expression levels were estimated
by analysing fragments per kilobase of exon per million
reads mapped (FPKM) values. This enabled a ranking of
the genes in terms of overall expression during infection
to be calculated at both two and seven dpi and the most
Fig. 3 Microscopic evaluation of Venturia inaequalis Vi1 infection of suscep
c in vitro (in cellophane) showing stromatic growth habit
highly expressed genes at either time point were selected
to give the top 5% data set. Of the 82 genes identified,
48 were expressed at two and seven dpi, 17 at two only
and 17 at seven dpi only. In addition, a differential ex-
pression analysis detected 268 of the 1622 genes that
tible apple leaves. a Two, and b seven days post inoculation, and
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were up-regulated during growth in planta, compared
with in vitro growth (log2 fold change not smaller than
two with a false discovery rate of less than 0.05). Thirty-
seven genes were in both the top 5% data set and up-
regulated during infection gene sets, giving a total of 313
individual genes (which will be referred to henceforth as
the Venturia Infection Secretome or ‘VIS’ gene set;
Fig. 4).

Carbohydrate-Active Enzymes (CAZymes) and putative non-
CAZyme cell wall degrading enzymes
The CAZyme repertoire (216 to 240 proteins, depending
on the isolate) was similar between all Venturia secretomes,
with 167 belonging to the core secretome (Additional
files 8, 9 and 10). Of these, all isolates have between
16 and 25 proteins with multiple CAZyme domains.
Proteins were identified as being associated with

carbohydrate-binding motif (CBM), carbohydrate esterase
(CE), glycoside hydrolase (GH), polysaccharide lyase (PL)
and glycosyl transferase (GT) domains. Of these, the clas-
ses with the greatest number of protein members across
each genome were those with: CBM2, CBM1 and CBM13
domains, with specificity for cell wall carbohydrates, and
in terms of the latter two, plant cell wall specifically; CE5
domains with specificity for cutin; GH28 with specificity
for plant cell wall pectin; GH3 and GH5 with specificity
for β-glycans; and GH43 with specificity for pectin and
hemicelluloses. Also identified, although not as numerous,
were CAZyme domain-containing proteins predicted to
interact with fungal cell wall components including: GHs
associated with β-glycans, α-glucan, chitin, and CBM do-
mains specific for chitin [31, 32].
Fig. 4 Predicted proteins present in the VIS set from the secretome of Ven
analysis including interrogation of NCBI RefSeq [168], InterPro [169], UniRef
CAZyme identification using the CAT server [27] and BLASTp searches agai
(SSPs) include predicted proteins with similarity to known effectors and pro
conserved motifs identified by PfamScan [36–38]. The order of the categor
The majority of the CAZymes were either present in
OrthoMCL clusters that had a single enzyme from each
isolate and were thus members of the core secretome
set, or in clusters comprised of enzymes from only the
four isolates of V. inaequalis, not V. pirina (Additional
files 7 and 9).
Similar numbers of predicted proteins (17 to 24) were

identified in the secretome sets, which were similar to
enzymes that degrade non-carbohydrate cell-wall com-
ponents, e.g. ligninases (Fig. 1 and Additional file 8).

Peptidases and lipases
Depending on the isolate, 31 to 38 predicted proteins were
identified in the Venturia secretomes with similarity to
peptidases (Figs. 1 and 4, Additional files 2 and 11). The
majority of these were conserved in the core secretome or
in isolates of V. inaequalis rather than V. pirina. There
were proteins predicted in the secretomes of only the V.
inaequalis isolates that were similar to AVR-Pita, the
avirulence protein from Magnaporthe with zinc metallo-
protease features that binds directly to its cognate R pro-
tein [33, 34], albeit with a relatively high similarity score of
8e-16 recorded when the Pathogen Host Interactions
database (PHI-base) [35] was interrogated. In addition, a
further similar protein was also encoded by the genome of
V. pirina but was not predicted to be secreted. There were
also between eight and 11 proteins, depending on secre-
tome, with similarity to proteases from Candida and Coc-
cidioides following interrogation of protein sequences
against PHI-base. Predicted proteins with similarity to
lipases were also identified in each secretome (15 to 20,
depending on the secretome).
turia inaequalis isolate Vi1. Annotations were based on gene ontology
[170], ExPASy UniProtKB/Swiss-Prot [171] and ExPASy Prosite [172],
nst the NCBI non-redundant database [29]. Small secreted proteins
teins with no known function, either with or without putative
ies in the legend is the same as that in the chart
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Primary metabolism and putative proteins involved in
redox reactions
Proteins with a wide range of functionality in primary
metabolism, e.g. proteins involved in amino acid (aa) or
nucleotide metabolism; phosphatases and nitrilases, and
unclassified enzymes with an alpha/beta hydrolase fold
were identified. Depending on the isolate, there were
between 88 and 123 proteins in this category in each
secretome, most of which were in the core Venturia
secretome. Numerous (51 to 68) proteins with putative
functions in redox reactions were identified in the
Venturia secretomes.

Putative proteins associated with the cell wall, transport,
signalling and secondary metabolism
As expected there were few proteins in the secre-
tomes associated with the cell wall, transport, signal-
ling and secondary metabolism, since these proteins
would be eliminated in the secretome prediction pipe-
line (Additional file 6). The majority of these proteins
were members of the core secretome set (Additional
file 8).

Small secreted proteins
Proteins classified as SSPs (i.e. mature predicted pro-
tein ≤500 aa in length, including proteins with similar-
ity to known effectors, but excluding proteins with
similarity to lytic enzymes) made up between 55 and
66% of each secretome (Fig. 1 and Additional file 8).
For comparative purposes, three secretomes derived
from publicly available genomes (housed at the JGI)
were also screened for SSPs using the same pipeline of
programmes as those used to analyse the Venturia
secretomes. SSPs (less than 500 aa in length) made up
79% of the secretome of P. graminis f. sp. tritici, and
43 and 28% of the secretomes of P. nodorum and C.
fulvum respectively. Smaller SSPs less than 200 aa in
length predominated in the Venturia and P. graminis
f. sp. tritici secretomes, especially those with a pre-
dicted signal peptide. In contrast, SSPs of less than
200 aa in length in the predicted SSP repertoires of C.
fulvum and P. nodorum were dominated by those pre-
dicted to be secreted by a non-classical mechanism
(Additional file 7). The majority of genes encoding
SSPs in Vi1 were supported with evidence of tran-
scription (95%). Most SSPs are novel to Venturia (i.e.
had BLASTp similarity of ≥1e-10 to any non-Venturia
proteins in public databases) and most of these novel
SSPs were ≤200 aa in length. The vast majority of VIS
genes, 245/313, were predicted to encode SSPs (≤500
aa in length), 195 of which were ≤200 aa in length
(Fig. 4). Of these smaller SSPs, 165 have two or more
cysteines in the mature predicted protein. Larger se-
creted proteins (>500 aa in length) with no similarity
to known proteins were also represented in each of
the secretomes (25 to 38 putative proteins; Fig. 1).

Candidate effectors from the SSP set
The secretomes of Venturia have several proteins with a
putative role in binding hydrophobic surfaces including
between 12 and 15 proteins with hydrophobic surface
binding (HsbA) domains (Pfam: PF12296.3) as identified
by PfamScan [36–38], with similarity to the Aspergillus
oryzae HsbA, Hydrophobic Surface Binding, cell wall
galactomannoprotein. Five putative HsbA-like genes
were identified amongst the Vi1 VIS gene set. Another
gene up-regulated at seven dpi encodes a small predicted
mature protein of 120 aa with four cysteines and shares
predicted aa sequence identity (e value: 1e-17) to bacter-
ial chaplins, which are membrane-associated proteins
known to have similar functions to hydrophobins [39].
Predicted proteins with similarity to bacterial chaplins
are also present in Vi1.10, ViL and Vp, but not Vi1.2.8.9.
Two or three proteins with similarity to fungal hydro-

phobins were identified in the secretomes of V. inaequa-
lis isolates and four in the V. pirina secretome, on the
basis of conserved cysteine patterns [40, 41]. None were
included in the VIS gene set.
The Venturia secretomes included predicted SSPs with

similarity to known effectors from other fungi, including
Ecp6 (GenBank: ACF19427.1) from C. fulvum [42],
AvrLm6 (CAJ90695.1) from Leptosphaeria maculans
[43] and Ave1 (AFB18185.1) from Verticillium spp. [44].
The Venturia candidate effectors were most similar to
these effectors in a reciprocal BLAST of the Cladospor-
ium, Leptosphaeria and Verticillium genomes. In addition
to the OrthoMCL clustering analysis, further similarity
searches within genomes were employed with a more re-
laxed threshold of 1e-5, to ascertain whether putative
paralogues (multigene families) were present. Single
orthologues of Ecp6 were identified in each of the Ven-
turia genomes analysed, corroborating the data of Thakur
et al. [21] who reported an orthologue of Ecp6 in the tran-
scriptome of a single apple-specific isolate of V. inaequa-
lis. A search of the Pfam database [36] with the Vi1
orthologue of Ecp6 revealed three peptidoglycan-binding,
lysin motif (LysM) domains. At the aa level there is 42%
identity between Ecp6 and the V. inaequalis orthologues,
whereas the V. pirina orthologue has slightly higher iden-
tity at 44%. The Vi1 and ViL predicted proteins are identi-
cal, whereas that from Vi1.2.8.9 has one aa substitution
compared with the Vi1/ViL sequence and that from
Vi1.10 has four aa substitutions. The Vi1 Ecp6 orthologue
was expressed during growth in planta and in vitro,
although expression was not sufficiently high to be in the
VIS set.
Orthologues of AvrLm6 [45] and Ave1 are present as

large gene families in all of the Venturia genomes
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examined. The copy number of full length AvrLm6-like
genes varied among V. inaequalis isolates (24–29 cop-
ies), while the V. pirina isolate had 16 copies. Further
characterisation of the Venturia AvrLm6-like gene fam-
ilies is reported in Shiller et al. [45]. Three AvrLm6-like
genes are present in the VIS gene set.
Ten full-length Ave1-like genes and seven Ave1-like

pseudogenes, were identified in the whole genome se-
quence of V. inaequalis Vi1, with similar numbers in all
other Venturia genomes. The V. inaequalis Ave1-like
full length, predicted proteins range in similarity from
37 to 57% identity to V. dahliae Ave1. All but one of the
Vi1 Ave1-like proteins have transcript evidence, with ex-
pression at all growth stages, including in vitro (on cello-
phane), with some very highly expressed during both
infection time points. Two Ave1-like gene loci are repre-
sented in the VIS gene set.
Loci of all 16 of the previously identified V. inaequalis

candidate effector (VICE) genes [46] from Vi1 were
identified in the Vi1 WGS. However, the majority of the
predicted gene models associated with these loci were
longer than those identified using ESTs [46]. One VICE
gene (VICE 13) did not correspond with any AUGUS-
TUS gene prediction. Only six VICE predicted proteins
were included in the secretome of Vi1 (corresponding to
VICE 4, 5, 6, 9, 10 and 11), five of which were in
OrthoMCL clusters in the core secretome, with a single
predicted protein from each isolate in each cluster. The
sixth predicted protein (corresponding to VICE 4) be-
longs to a cluster with members from only Vi1 (19) and
Vp (four). Genes encoding four of these proteins were in
the VIS set, including the VICE 4 gene. The remaining
nine VICE gene models, assigned by AUGUSTUS, did
not encode proteins that were predicted to be secreted.
Inspection of these loci revealed that, in the majority of
these cases, the N-terminus predicted by AUGUSTUS
was upstream of the translation start site predicted by
Bowen and associates [46]. Thus the gene predictions at
these loci need further validation by sequencing full
length cDNAs. Most of the VICE gene transcripts were
also detected by Thakur et al. [21], in a single transcrip-
tome of V. inaequalis; however, these authors did not
confirm whether these transcripts encoded predicted
secreted proteins.
Two cellophane-induced (Cin) genes, Cin1 and Cin3,

that encode proteins with internal repeats, have been
previously identified as being highly expressed during
both in vitro growth in cellophane membranes (10 dpi)
and infection of Vi1 on apple (five and 10 dpi) [47]. The
RNA-Seq data supported the expression levels reported
in the previous study for both of these genes. There were
Cin1 orthologues in each of the isolates examined form-
ing a single OrthoMCL cluster, whereas Cin3 ortholo-
gues were only in V. inaequalis isolates, again forming a
single OrthoMCL cluster. Cin1 was one of the most highly
expressed genes in the VIS gene set, with very high ex-
pression in vitro as well as at both infection time points.
Two additional genes, which encode smaller cysteine-

rich Cin1-like proteins, Cin1L1 and Cin1L2 (106 and
169 aa) [48, 49], are also found in each of the isolates.
However, their sequence is more variable since a single
cluster with representative proteins from each isolate
was not observed. The proteins similar to Cin1L1 from
each V. inaequalis isolate clustered together, but that
from the V. pirina isolate was classified as a singleton.
There are proteins similar to Cin1L2 in each isolate;
however, those proteins encoded by the Vi1.10 and
Vi1.2.8.9 genomes, although having a signal peptide,
were classified as being targeted to the mitochondria by
both ProtComp and WoLF PSORT, and the proteins
from the remaining isolates formed a single cluster.
Cin1L1 and Cin1L2 are in the VIS gene set.
Of those proteins originally classified as SSPs in the

Venturia secretomes four shared similarity to proteins in
PHI-base [35]: the hydrophobin MHP1 from Magna-
porthe oryzae [50]; NPP1 from Hyaloperonospora arabi-
dopsidis [51–53]; GAS1 from Magnaporthe oryzae [54];
BEC1019 from Blumeria graminis f. sp. hordei [55, 56].
None of these proteins were members of the VIS set,
although all had evidence of transcription in vitro and in
planta (Additional file 12).

SSP families in the VIS set
Of the 195 VIS SSPs ≤200 aa in length in the Vi1 secre-
tome, 64 appear to be single proteins following spectral
clustering analysis [57], 121 belong to 38 different families,
having between two and 86 members. The families in-
clude predicted proteins without in planta up-regulated
expression of their corresponding genes and putative pro-
teins that were not predicted by the original gene predic-
tion software (Figs. 5 and 6). The remaining 10 SSPs were
not retained in the dataset since, although initially classi-
fied as an SSP ≤200 aa in length, they belong to families
where the majority of members have a robust annotation
to an enzyme based on gene ontology analysis and similar-
ity searches, or are larger than 200 aa in length. Family 4,
6 and 35 are very closely related and as an indication of
this these families share members (four are in both family
4 and 6 and one is in both family 6 and 35). A representa-
tive sequence logo for family seven is shown in Additional
file 13. Although sequence diverse, the families have a
putative conserved structure based on conservation of
cysteines.
Thirty families of predicted SSPs, and 31 single pro-

teins, have similar proteins present in all of the Venturia
isolates analysed. All, except five, of the single proteins
(from the Vi1 isolate) are also single proteins in all of
the isolates studied. Seven families are unique to and



Fig. 5 Small secreted proteins (SSPs) in the Venturia inaequalis Vi1 secretome encoded by single genes. Only SSPs ≤200 amino acids in length are
included. The number of similar proteins in the Venturia and related Dothideomycete proteomes are indicated by numbers: black indicates a
gene predicted by AUGUSTUS, white indicates a putative coding sequence identified by tBLASTn using the protein sequence as query, followed
by manual curation. Percentage identity is represented by: red = 100%; orange = 90–99%; yellow = 70–89%; green = 50–69; blue = 30–49%

Fig. 6 Small secreted protein (SSP) families in four Venturia inaequalis and one V. pirina secretomes. Only SSPs ≤200 amino acids in length are
included. Red = proteins in the same family from Vi1; yellow = protein families from Vi1.10; green = families from Vi1.2.8.9; blue = families from ViL;
purple = families from Vp. Families f1-f28, and f34-f38 are cysteine rich i.e. two or more cysteines per protein; f29-f33 are those with one or no
cysteines. ★ = families with predicted similar proteins in related Dothideomycete genomes
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conserved within the isolates of V. inaequalis, whereas
there are 20 single proteins in Vi1 with similar pro-
teins present in all V. inaequalis isolates and absent
from V. pirina. There is one family, and two single
proteins, restricted to isolates that only infect apple
(Figs. 5 and 6).
In addition, there are four single SSP proteins, and

one family, that are putative candidates for the effector/s
that contribute to the race profile of isolate Vi1.2.8.9, i.e.
present in Vi1 and Vi1.10, but absent from Vi1.2.8.9
(Table 2 and Additional file 14). There is one family and
three single proteins that are candidates for effector
AvrRvi10, given their presence (in Vi1 and Vi1.2.8.9) and
absence (in Vi1.10) in the Venturia isolates.
To ascertain whether any of the 195 SSPs of the VIS

set were conserved across the Dothideomycetes, similar-
ity searches (BLASTp) were made against selected
Dothideomycete predicted proteomes curated at the JGI
(Additional file 15) [58, 59]; this curation includes clus-
tering information pertaining to proteins from each or-
ganism. Only SSPs predicted for the Vi1 secretome,
which were present in all the Venturia isolates, had
putative similar members in related Dothideomycete
predicted proteomes (Table 2 and Additional file 14,
Figs. 5, 6 and 7).
Putative host range determinants in the SSP set
In addition to those candidate effectors that are specific
to either V. inaequalis, or those isolates able to infect
apple described above, SSPs ≤200 aa in length specific to
the loquat-infecting isolate of V. inaequalis or to V. pir-
ina were identified by OrthoMCL analysis (Additional
file 16). In addition to the 62 candidate effectors specific
to ViL, only four of which had any similarity to proteins
in the NCBI nr database, 6 were found in both the ViL
Table 2 Small secreted proteins (SSPs) in the Venturia infection secr

Similar proteins ina:

Vi1 Vi1.10 Vi1.2.8.9 ViL Vp

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓

✓ ✓

✓ ✓

✓

Both families and single genes encoding small secreted proteins ≤200 amino acids
by manual curation and analysis of non-predicted putative genes
aTicks in columns indicate presence of a similar protein or proteins in that secretom
and Vp secretomes. A further 238 candidate effectors
were found to be specific to V. pirina.
Gene density and proximity of genes to transposable
elements (or transposable element remnants)
Most genes in the Vi1 genome have intergenic regions
between 200 bp and 3 kb (Fig. 8), with a mean intergenic
distance of 1677 bp. A subset of core eukaryotic genes
[25] had a slightly shorter mean intergenic distance of
1289 bp, whereas the SSP genes in the VIS set
(highlighted as pink data points in Fig. 8), display a sig-
nificantly (P < 0.005) longer average intergenic distance
at 2560 bp. Genes located on scaffold ends, hence lack-
ing neighbouring genes, were excluded from this ana-
lysis. This excluded 17/440 (3.6%) from the core
eukaryotic gene set and 21/245 (8.6%) from the SSPs in
the VIS set. The greater proportion of SSP genes located
on the ends of scaffolds suggests a bias for association
with complex repeat regions that cause problems with
sequencing and assembly, resulting in broken genomic
scaffolds.
Concordantly, SSP genes also appear to be more

closely associated with transposable elements (TEs) or
TE-like features than core eukaryotic genes and all
remaining genes in the Vi1 genome. The mean gene to
TE distance was 9024 bp for all genes predicted in the
genome (Fig. 9). The core eukaryotic gene set had a sig-
nificantly (P < 0.005) greater mean distance to the near-
est TE of 10,528 bp, whereas the SSPs in the VIS set had
a mean distance to the nearest TE (or TE-like features)
of only 5401 bp. Twenty-two SSPs in the VIS set were
nested within predicted TE-like features. Fourteen of the
core eukaryotic genes and six of the VIS set SSP genes
were excluded from this analysis as they lacked a neigh-
bouring TE feature on the same scaffold.
etome (VIS) set and related fungi

Families
in Vi1

Single
proteins in Vi1Related Dothideomycete

✓ 7 5

23 26

6 20

1 0

0 2

0 3

0 1

1 2

0 2

0 3

in length are included. Families were analysed by Spectral Clustering followed

e



Fig. 7 Similar small secreted proteins (SSPs) in Dothideomycete proteomes and the Venturia inaequalis Vi1 secretome. Only SSPs ≤200 amino
acids in length are included. Shades of blue, purple and pink = Pleosporales: Cochliobolus sativus, C. heterostrophus C4, C. heterostrophus C5, C.
lunatus, C. miyabeanus, C. victoriae, Pyrenophora tritici-repentis, P. teres f. teres, Leptosphaeria maculans, Parastagonospora nodorum; shades of
orange, yellow and red = Capnodiales: Septoria populicola (teleomorph Mycosphaerella populicola), S. musiva (teleomorph M. populorum), M. fijiensis,
Cladosporium fulvum (syn: Passalora fulva), Dothistroma septosporum, Zymoseptoria tritici, Baudoinia compniacensis; green = Dothideales:
Aureobasidium pullulans var. pullulans
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Discussion
Comparisons of whole genome assemblies and gene
predictions
This paper reports the first analysis of whole genome
sequences from multiple isolates of V. inaequalis (V.
pirina being released in 2014) [22]. The sizes of all five
Venturia genomes are comparable to those of other
Dothideomycetes [60]; however, these may be an under-
estimate since the majority of the sequencing was car-
ried out on the Illumina platform. Assembling repeat
regions using short reads is notoriously difficult [61–64],
and hinders genome assembly using de Bruijn graph-
based genome assemblers like Velvet and ALLPATHS-
LG [62, 64, 65].
In addition, there is an apparent wide range of genome

size that can be largely attributed to additional repetitive
content, with the assembled genic regions being similar
in size for all five Venturia isolates. Whilst variation in
genome size between isolates from the same species is
not unprecedented; for example, genome size in three
isolates of the Dothideomycete Zymoseptoria tritici
(synonym Mycosphaerella graminicola) ranged from 31
to 40 Mb as estimated by pulsed field gel electrophoresis
[66], this apparent variation in the Venturia genomes
may be attributable to the different strategies, and soft-
ware, used for sequencing. The genomes (Vi1.10 and
ViL) assembled using ALLPATHS-LG software, have
much larger genome sizes and higher percentages of re-
peats, than those assembled using Velvet (Vi1, Vi1.2.8.9,
and Vp). The major difference between the sequencing
of these five isolates is that Vi1.10 and ViL paired-end
(PE) libraries were specifically constructed with an insert
size of 180 bp so that paired reads overlapped at the end
(which is required by ALLPATHS-LG), to produce lon-
ger super-reads. For the other three isolates, the PE li-
braries were constructed with a typical insert size of
400 bp, and paired reads did not overlap and could not
be assembled using ALLPATHS-LG. The super-reads
generated by ALLPATHS-LG result in repeats being
better assembled [67, 68]. As a trial, in addition to
ALLPATHS-LG, the Vi1.10 and ViL sequences were also
assembled using Velvet. The percentage of repeats in the
Velvet scaffolds for each isolate was lower than that for
the ALLPATHS-LG assembly, but was still very high
compared with the remaining three isolates, with 21.5
and 25% for Vi1.10 and ViL respectively. Additional in-
vestigation is required to determine whether the larger
genome sizes and higher percentages of repeats in
Vi1.10 and ViL are a biological reality.
The number of predicted genes in the Venturia

genomes (11,960–13,333) is significantly less than the
24,571 unique fungal genes reported for V. inaequalis by
Thakur et al. [21]. Just over half of the reported
sequences had no significant similarity to sequences in



Fig. 8 Flanking distance (3′ and 5′) between predicted genes of
Venturia inaequalis Vi1. Intergenic distances for all predicted genes
are represented in the underlying heatmap, with the number of
genes in each bin shown as a colour-coded heat map (on orthogonal
projection) generated as in Saunders et al. [185]. Genes were sorted
into two-dimensional bins on the basis of the lengths of flanking
intergenic distances to neighbouring genes at their 5′ and 3′ ends;
overlying this are scatterplots of a 423 Core Eukaryotic Genes (white
dots) or b Venturia infection secretome (VIS) gene set, plus AvrLm6-
and Ave1-like genes (coloured dots: dark pink = SSPs with two or more
cysteines (≤500 amino acids); light pink= SSPs with one or no cysteines
(≤500 amino acids); blue = peptidases; dark green = CAZymes; light
green = putative cell wall-degrading enzymes (non-CAZyme);
white = cell wall associated and miscellaneous proteins >500 amino
acids). Note that the axes are not linear. Genes at the scaffold end were
excluded from this analysis

Fig. 9 Distance between predicted genes and transposable element
(TE)-like features of Venturia inaequalis Vi1. Flanking distances (3′ and
5′) to TE-like features for all predicted genes are represented in the
underlying heat map, with the number of genes in each bin shown
as a colour-coded heat map on orthogonal projection (generated as
in Saunders et al. [185]). Genes were sorted into two dimensional
bins on the basis of the lengths of flanking distances. a 423 Core
Eukaryotic Genes (white dots) are similar to all genes in that they are
not closely associated with TE-like features; whereas b Venturia
infection secretome (VIS) gene set, plus AvrLm6- and Ave1-like genes
(coloured dots: dark pink = SSPs with two or more cysteines (≤500
amino acid); light pink = SSPs with one or no cysteines or less (≤500
amino acids); blue = enzymes (peptidases/redox/primary metabolism);
dark green=CAZymes; light green= putative cell wall-degrading enzymes
(non-CAZyme); white = cell wall associated and miscellaneous
proteins >500 amino acids in length). Note that the axes are not
linear. Genes at the scaffold end were excluded from
this analysis
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other species. The Thakur et al. [21] estimate was based
on in vitro and in planta transcriptome data only, with
multiple gene splice variants likely to account for the
higher gene number. Our estimate of predicted gene
number is comparable to related Dothideomycete ge-
nomes which range from 9739 in S. populicola [60] to
14,127 in C. fulvum [69]. Gene number variation could
be due to difference in coverage of the various genomes;
however, variation in gene number between isolates is
also not unprecedented. For example, Xue and associates
[70] found that in the rice blast fungus M. oryzae, gene
number varied, with hundreds of isolate-specific
genes present in genomes of field isolates. Similar
gene number variation was reported in isolates of C.
heterostrophus [71].
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Venturia pathogens: lifestyle and host determination
Focussing on the secretome of the Venturia pathogens
has revealed repertoires of proteins that reflect aspects
of their adopted mode of parasitism, with secretion of
compounds to adhere to the waxy, water-proof cuticle
on leaves and fruit and to enable direct penetration and
colonisation of the cuticle and sub-cuticular space. In
addition, effectors that are predicted to effect evasion of
recognition and suppression of host defence will be
secreted to the extracellular plant-pathogen interface,
including those that may be directed to be taken up by
the host cells.

Attachment and penetration
Several Venturia proteins were identified in the secre-
tomes that may be involved in attachment and penetra-
tion of the cuticle. A predicted protein present in all the
Dothideomycete genomes analysed has similarity to a M.
oryzae fasciclin protein. Fasciclins have been implicated
in cell adhesion in diverse organisms including both pro-
karyotes and eukaryotes [72–75]. The M. oryzae fasciclin
has an important role in development and pathogenicity,
involved in conidiation and conidial adhesion [76]. A
similar role for fasciclins in cell adhesion for all the
Venturia isolates analysed is easily envisaged.
Hydrophobins are small, secreted, cysteine-rich, amphi-

pathic proteins that are usually found on the cell walls of
fungi [77, 78]. They provide a water-repellent coat and are
well characterized for their role in morphogenesis and
virulence in plant pathogenic fungi, promoting interac-
tions with hydrophobic surfaces [40, 41, 79, 80]. It is
thought that these proteins may also assist in avoiding de-
tection by the host during infection [77]. Hydrophobins
are usually highly variable in sequence; however, they have
a conserved structure due to conserved cysteine residues.
Venturia secretomes have fewer hydrophobin genes (two-
to-four) than C. fulvum (11) but have a similar number to
D. septosporum (four) [69].
The Venturia secretomes also have a high number of

genes (11–14) encoding putative HsbA proteins. HsbA
proteins are found in entomopathogenic fungi as well as
pathogens of higher animals; with cuticle colonisation
being a possible common link. HsbAs are not commonly
reported to be encoded by plant pathogen genomes
(although genes with low similarity to V. inaequalis
HsbA-like genes were identified in genome sequences of
members within Colletotrichum, Magnaporthe and
Verticillium genera). One sequence with similarity to an
HsbA was identified in the genome of the mesophyll
apoplast-dwelling C. fulvum and the pine pathogen D.
septosporum [69]. HsbAs are not hydrophobins, but they
have been reported [81] to have an analagous role in A.
oryzae in binding to hydrophobic surfaces and recruiting
the CutL1 polyesterase/cutinase to degrade the polyester
substrate, poly(butylene succinate-co-adipate) (PBSA).
Takahashi and associates [82] also reported that the A.
oryzae hydrophobin, RolA, also recruits CutL1, to aid
degradation of PBSA surfaces. Thus, A. oryzae appears
to use several types of proteins to recruit lytic enzymes
to the surface of hydrophobic solid materials and pro-
mote their degradation. Proteins similar to the A. oryzae
CutL1 polyesterase/cutinase and HsbA were well repre-
sented in the VIS set. Extracellular cutinase has been
implicated in penetration by V. inaequalis, as cutinase is
produced by germinating conidia, and a cutinase inhibitor
can prevent penetration [83, 84]. In addition, esterase-like
activity has been reported during the germination of
conidia and in appressoria [85]. The presence of high
numbers of CEs in the Venturia secretomes supports
the experimental evidence of enzymatic penetration of
the cuticle by V. inaequalis and the inference that V.
pirina also may act similarly. We propose that Venturia,
like A. oryzae, uses multiple proteins (e.g. hydrophobins
and HsbA proteins) to recruit cutinases/esterases to facili-
tate appressorial adhesion and direct penetration, as well
as degradation and digestion of cuticle. This hypothesis
fits observations of the cuticular degradation that occurs
during colonisation by Venturia fungi potentially drawing
nutrition from the cuticle or cuticle precursors [7].

Nutrition
Exploitation of the cuticle may be insufficient to satisfy
pathogen nutritional requirements throughout the infec-
tion cycle. During biotrophic infection Venturia remains
in the cuticle and sub-cuticular space causing relatively
little damage to the host. Most damage is due to breach-
ing of the cuticle upon sporulation [6, 7]. At this time
the epidermal cells underlying the stroma undergo a
progressive depletion of plastids and cytoplasm, accom-
panied by increasing vacuolation, leading ultimately to
cell death. It has been proposed that this damage late in
the infection cycle is caused by partial cell wall degrad-
ation [86, 87]. Indeed, cellulase and pectinase activities
have all been reported for V. inaequalis growing
in vitro [6, 88, 89]. However, it has been suggested
that the timing of this host cell degradation precludes
a significant role for these enzymes in nutrient acqui-
sition [89, 90].
The predominant polysaccharide in apple fruit skin is

pectin at 65%, compared with a level of 3% for cellulose
[91], with pear fruit also having higher levels of pectin
than cellulose [92]. Venturia appears to have tailored its
CAZyme repertoire to suit the composition of the host
cell wall with pectin-specific CAZymes predominating;
the two most numerous classes of CAZymes found in
the Venturia secretomes, after those with cutinase activ-
ity, are GH28 and GH43 that have pectin as a substrate.
A single GH28 enzyme and two putative PLs, that also



Deng et al. BMC Genomics  (2017) 18:339 Page 14 of 25
have pectin as target substrate [31, 93], are up-regulated
during infection and are present in the VIS set. Signifi-
cantly, this lytic activity may therefore not be limited to
late in the infection cycle as previously thought, but
contribute to nutrition via degrading the surface polysac-
charides of the epidermal cells beneath stromata, this
damage only becoming evident macroscopically late in
infection. In addition, those CAZymes present in the
secretomes of the Venturia fungi may also benefit the
fungus during saprobic growth and sexual fruiting body
development during winter.

Evasion of host defence
The putative proteases present in the secretomes of the
Venturia fungi may aid in the evasion of host defense
since proteases have been implicated in plant defence
avoidance in many plant-pathogen interactions [94]. For
example, fungal proteases can target plant chitinases, as
in the interaction between Fusarium oxysporum f. sp
lycopersici and tomato where both a serine protease and
a metalloprotease are required for the inactivation of a
chitin-binding domain (CBD)-containing chitinase thus
contributing to virulence [95].
As a possible alternative strategy to counteract host

chitinases the Venturia strains, in common with many
other fungi, all have a homologue of the C. fulvum LysM
domain effector, Ecp6. These are likely to either have a
similar function to C. fulvum Ecp6 [42, 96] in preventing
recognition of chitin fragments capable of initiating a
defence response, or to the LysM effectors from Z. tritici
that protect hyphae from the action of chitinases, thus
preventing the release of chitin-derived PAMPs [97, 98].
In addition, there are single proteins in each secretome
similar to the Blumeria effector BEC1019 [55, 56]. The
putative Venturia BEC1019 orthologues all have the
conserved ETVIC motif that is required for suppression
of the hypersensitive response (HR) in barley. A similar
function for these proteins during the pathogenicity of
Venturia is therefore easily envisaged.
Although single proteins similar to the NPP1 protein

from H. arabidopsidis are present in each of the Venturia
secretomes [51, 52] the sequence of these from two apple-
infecting isolates are truncated. In the remaining secre-
tomes (Vi1, ViL and Vp) the NPP1-similar proteins appear
to belong to the type I Nep-1-like protein (NLP) family,
with the two conserved cysteines [99]. All three proteins
also have two additional C-terminal cysteines, however
these are not characteristic of type 2 NLPs [100]. The ma-
jority of NLPs induce necrosis in a wide-range of dicotyle-
donous plants, although whether this necrosis is a direct
result of cytotoxicity via dispruption of the plasma mem-
brane or initiation of a defence response remains open to
debate [100]. However, the requirement for a functional
necrosis-inducing protein in the biotrophic Venturia
pathogens is unlikely. Indeed, each of the Venturia
proteins has mutations in the critical H residue in the loop
region required for necrosis in the NLP from V. dahliae
[101], whilst the two V. inaequalis proteins also have a
mutation in the heptapeptide domain (GHRHDWE mu-
tated to GHRHEWE) required for necrosis in NLPs from
diverse taxa [52, 100, 102]. These mutations may therefore
prevent unwanted pathogen-induced necrosis, but the re-
tention of these NLP-like proteins by Venturia may indi-
cate a virulence function that remains to be elucidated.
Venturia predicted proteins with similarity to the

Magnaporthe GAS1 protein, required for appressorial
penetration and lesion development, may play a similar
role in apple and pear scab diseases to that observed in
rice. Whether GAS1 is translocated to the host cyto-
plasm with a role in defence suppression remains
equivocal, however; weak fluorescence of fluorescent
protein constructs in infectious hyphae in onion epider-
mal cells was observed [54], as was translocation to rice
cytoplasm, albeit under, presumably, the heterologous
protomoter from the Magnaporthe gene PWL2 [103].
The Venturia proteins may therefore be translocated to
the host cell cytoplasm where they may have a role in
re-directing host metabolism during scab disease, how-
ever this remains conjecture.

Initiation of host resistance: an avirulence function
The comparative approach undertaken here has enabled
preliminary identification of candidates for V. inaequalis
avirulence effectors AvrRvi2, AvrRvi8, AvrRvi9 and
AvrRvi10, which have an avirulence function and are
recognised by cognate R proteins. All candidates have
cysteine residues but no recognisable protein motifs, ex-
cept a single candidate for AvrRvi2, AvrRvi8 or AvrRvi9
that is similar to a bacterial chaplin with a domain of
unknown function, that may play a role in the Venturia
lifecycle similar to that of hydrophobins. In addition to
SSPs that may be involved in race/cultivar specificity on
apple within V. inaequalis, further SSPs were identified
that are specific to the loquat-specific isolate of V. inae-
qualis or to V. pirina. The majority of these SSPs were
either similar to hypothetical proteins available in the
public domain or had no similarity with known proteins.
However, of interest is a protein with ankyrin repeats
that may be involved in the specificity of V. pirina, since
it is dissimilar to proteins found in the other secretomes.
Ankyrin repeat-containing proteins are involved in
protein-protein interactions and are present in effectors
from both prokaryotes and eukaryotes, and as such this
protein may play a role in the interaction with European
pear [104]. In addition, a single protein specific to the
ViL isolate has a SnoaL-like domain. SnoaL-like domains
are found in proteins from diverse taxa, including
filamentous fungal phytopathogens. For example, the
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protein PEP2 from Nectria haematococca MPVI has
such a domain and contributes to virulence on pea;
complementing an isolate of N. haematococca lacking a
supernumerary chromosome bearing pathogenicity
genes with PEP2 results in a small, but significant, in-
crease in virulence [105]. How these candidate effectors
may be contributing to host range determination is
unknown. They may be acting as avirulence proteins
during attempted infection of a nonhost, with a recogni-
tion event triggering resistance, and a concomitant lack
of recognition in a compatible host. Indeed, since the
hosts are closely related [106], the contribution of R
protein-triggered immunity towards nonhost resistance
has been postulated to be greater than for host plants
that are more distantly related [3]. The variability of the
closely related genomes of the Venturiaceae with respect
to SSPs reinforces the utility of a comparative genomic
approach.
In each of the V. inaequalis secretomes the predicted

proteins with similarity to AVR-Pita1 from M. oryzae
may play a similar role to that adopted by both AVR-
Pita1, and its paralogue AVR-Pita2, in the rice blast
interaction [107, 108]. Although the virulence function
of AVR-Pita1, a putative zinc metalloprotease, has not
been verified it is directly recognised by the cognate R
gene product Pi-ta. An avirulence function for the simi-
lar proteins in the Venturia pathogens remains to be
elucidated.

Effectors with unknown function
In addition to those proteins with similarity to known
effectors with roles partially or fully confirmed, the
Venturia secretomes comprise a large repertoire of puta-
tive effector SSPs with no obvious hints as to function
from similarity searches. The paradigm for the role of
SSPs is that they are lineage-specific effectors that con-
tribute to the maintenance and evolution of parasitism
and that obligate biotrophy is associated with expanded
effector repertoires [109, 110]. It is thought that
biotrophs require a more extensive and nuanced effector
inventory than that required by necrotrophs, that rely
more prominently on cell-wall degrading enzymes and
toxins [111]. Although this précis of fungal pathogen
lifestyles is highly simplistic, it seems to be reflected in
the fewer number of SSPs recorded for necrotrophic
fungal phytopathogens. For example Parastagonospora
nodorum has a suite of only 209 SSPs [60], and a recent
analysis of the secretome of Sclerotinia sclerotiorum re-
vealed only 78 effector candidates, albeit using different
criteria for selection [112]. This contrasts with the num-
bers of SSPs reported for the obligate biotrophs: B. gra-
minis (490) [113], although these are up to 400 aa in
length; P. graminis f. sp. tritici (540); and Melampsora
larici-populina (305) [60]. These studies use different
criteria for SSP identification, hampering valid compar-
sions. In the current study, SSPs from P. nodorum, C.
fulvum and P. graminis f. sp. tritici were predicted using
the same pipeline as that used for SSP analysis from the
Venturia pathogens. The number of SSPs in the Ven-
turia pathogens were between that recorded for the obli-
gate biotroph P. graminis f. sp. tritici and the necrotroph
P. nodorum or the facultative biotroph C. fulvum. For
those SSPs predicted to be less than 200 aa in length, the
proportion predicted to be classically secreted predomi-
nated. This profile resembled that of P. graminis f. sp. tri-
tici. Thus overall the repertoire of SSPs from the Venturia
pathogens more closely resembles that of an obligate bio-
troph rather than a necrotroph or facultative biotroph.
Evidence of high expression or up-regulation during

infection (compared with in vitro growth) was used to
prioritise a smaller set of Venturia SSPs [114]. The smal-
lest of these uncharacterised SSPs were analysed in more
detail and of those with similarity to predicted proteins
in related Dothideomycete genomes, only four were
found in the majority of genomes investigated. These
Dothideomycete genomes are from organisms with di-
verse lifestyles. Up until recently this broad conservation
would indicate a core metabolic role, rather than a role
in pathogenicity, especially for those proteins also found
in the extremophilic sooty mould saprobe, Baudoinia
compniacensis, with its compact genome of 21.88 Mb
[60]. However, the recent research of Whigham and as-
sociates [56] showing that the broadly conserved effector
BEC1019 from the pathogen Blumeria, that can suppress
HR, may be repurposed to fulfil particular roles in fungi
with diverse lifestyles, challenges this view.
A small family of proteins in V. inaequalis with simi-

larity to Bys1 from M. oryzae also has representatives in
other diverse Dothideomycetes. The function of the
Bys1 domain is unknown, but in Blastomyces dermatiti-
dis the expression of a Bys1-encoding gene is associated
with pathogenesis [115, 116], thus a similar role in
Dothideomycete pathogens cannot be ruled out.
One of the most highly expressed genes in the VIS

gene set, with expression in vitro and in planta, encodes
a protein with similarity to the Alternaria alternata
major allergen Alt a 1 (GenBank: AAM90320.1). This V.
inaequalis protein was identified previously [117] in an
analysis of semi-purified secreted proteins that elicited a
response from specific resistant apple hosts. Single genes
encoding proteins with similarity to the Alt a 1 allergen
were identified in all Venturia genomes and a single
gene was also identified in some (but not all), related
Dothideomycetes (P. nodorum; S. populicola, S. musiva,
C. fulvum, Z. tritici). Alt a 1 is well known in clinical set-
tings as a human allergen. It has a structure unique to
fungi; however, its role in pathogenesis has not as yet
been determined [118].
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A large number of SSPs in the VIS set with similar
proteins across Dothideomycete spp. have an internal
repeat structure. Repeat structures in fungal effectors
have been reported previously [104]. For example the
SP7 effector from Glomus intraradices, an arbuscular
mycorrhizal biotroph, has nine hydrophilic tandem re-
peats. SP7 re-programmes plant expression to reduce
the defence response thus enabling establishment of the
fungus within the roots of plants [119]. In addition, a
double knock-out mutant of U. maydis lacking the
repeat-containing protein effectors, Hum3/Rsp1, has
arrested growth in planta, shortly after penetration
[120]. The roles of the previously identified repeat-
containing proteins, Cin1 and Cin3, which are expressed
very highly in the stromata and runner hyphae of Ven-
turia, are yet to be determined [48].

Expanded SSP effector families
Intriguingly, Venturia strains have multiple genes pre-
dicted to encode proteins with similarity to AvrLm6
from the Dothideomycete L. maculans and Ave1 from
the Sordariomycete Verticillium spp. These effectors are
encoded by a single gene (Ave1) in Verticillium spp.
[44], or a single gene plus a paralogue (AvrLm6) in L.
maculans [121].
The Venturia Ave1-like genes were generally not found

in clusters on contigs and both effector families have sig-
nificant numbers of pseudogenes (lacking a start and/or
a stop codon). The role of these Ave1-like proteins is yet
to be determined; however, the multiple gene members
in the AvrLm6 and Ave1 effector families will present a
challenge for functional analyses. AvrLm6-like genes are
not found in most of the sequenced Dothideomycete rel-
atives of L. maculans. The same is true for Ave1 from
the Sordariomycete,Verticillium. This discontinuous dis-
tribution of Ave1 and AvrLm6 suggests that these effec-
tors are either ancient effector ancestors that have been
lost or diversified beyond recognition during coevolution
and host specialisation, or that there may have been
horizontal gene transfer events involving the Ave1- and
the AvrLm6-containing species. None of these species
share a common host, however, and so mechanisms for
gene transfer are not obvious.
Many of these Venturia effector Ave1 and AvrLm6

orthologues were not identified by the secretome predic-
tion pipeline as their N-terminus was incorrectly desig-
nated by the automated gene calling software packages.
Ave1-like proteins have also been detected by Mass Spec-
trometry in an analysis of V. pirina proteins expressed
in vitro [22]. The presence of a signal peptide, mature N
terminus, cleavage site and presence of a conserved intron
in the 5′ UTR of the gene, was confirmed for several of
the V. pirina Vp Ave1-like genes in this proteogenomic
analysis. The conserved intron in the 5′ UTR of Ave1-like
genes appears to have caused difficulties in accurate gene
prediction for all genes in this family. Rigorous interroga-
tion of the whole set of SSPs, with a size of 200 aa or less,
also highlighted the challenges of gene prediction. On ini-
tial comparison of gene predictions, via comparison of
their encoded proteins, genes encoding SSPs similar to
those in the Vi1 secretome were not predicted in the other
genomes. To verify this absence, comparison of aa
sequence against a six-frame translation of the genomes
was undertaken and revealed the presence of identical or
near-identical loci. The use of RNA-seq data to inform
gene prediction in the Vi1 genome appeared to be more
efficient than using a model based upon these data for
gene prediction in the other genomes, highlighting the
importance of RNA-seq data for individual genomes for
accurate gene prediction.
With the exception of the families comprising Ave1-

and AvrLm6–like genes, the majority of families of SSP
genes in Venturia do not have similar genes in the other
Dothideomycete genomes analysed. These families
appear to be lineage-specific. Lineage-specific genes are
common features of fungal genomes sequenced to date
[122]. In the Venturia pathogens many of the lineage-
specific SSPs appear to belong to expanded families, for
example, eight SSP families with members of less than
200 aa have more than 10 members, and up to 86 mem-
bers, and are restricted to the Venturia genus. Gene gain
and also expansion of these lineage-specific families is ob-
viously associated with host range determination and spe-
cificity, and the converse, reduction or loss of gene
families can likewise be associated with evolution of viru-
lence on a particular host [122]. Expansion of lineage-
specific effector families has recently been reported in B.
graminis [123], with the 1350 paralogous copies of AVRk1
and AVRa10, that contribute to the establishment of the
haustorium, being an extreme example [124, 125].
Whether the members of the SSP gene families ob-

served in the Venturia genomes are derived from a com-
mon ancestor remains equivocal since their overall
sequence conservation is low. However, de Guillen et al.
[126] identified a family of sequence-unrelated, but
structurally conserved effectors (termed MAX-effectors)
in Magnaporthe, accounting for 5–10% of the effector
repertoire. These effectors have been presumed to have
evolved via diversifying selection rather than convergent
evolution [126]. In addition, hydrophobins, with their
patchy distribution and low level of sequence conserva-
tion, contrasting with a highly conserved structure, re-
lated to function, appear to evolve by a birth-and-death
mechanism and to be phylogenetically related [127, 128].
The families of Venturia SSPs with retention of presum-
ably critical cysteines, in terms of structure and stability,
may have also arisen under similar evolutionary con-
straints and thus also be related phylogenetically.
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Evolution of protein families involves the duplication of
an ancestral gene followed by mutation of the duplicated
gene to enable novel functionality to emerge [129, 130].
In the case of effectors, expansion and diversification
within a family may enable modification of function to
prevent alerting a guarding resistance gene product, or
structural modification to avoid a direct recognition
event that would otherwise elicit a defense response.
Thus having expanded families of effectors may offer an
evolutionary selective advantage to a pathogen, enabling
recognition of an effector to be overcome with evolution
of a novel paralogue and deletion or pseudogenization of
the previously recognised effector. The processes involved
in how these families expand is still open to debate. The
presence of large numbers of presumably structurally re-
lated, but sequence diverse, proteins poses problems for
the delineation of families. Indeed, three families were
delineated in this study that shared common members.
Although an unorthodox compromise, these families were
deemed to be too diverse to be amalgamated using the
thresholds adopted for this analysis, but the members are
sufficiently closely related to form a single family if the
thresholds were to be slightly relaxed, thereby highlighting
the pitfalls of depending on arbitrary thresholds for either
separating or grouping proteins.
In many pathogens, effector genes are associated with

TEs. Association of TEs is evident with the co-evolution of
the B. graminis AVRk1 effector family with a class of LINE-
1 retrotransposons [124], the B. graminis AvrPm3a2/f2 ef-
fector family with various TEs [123] and the association of
miniature impala transposons (mimps) in the pro-
moters of effectors in F. oxysporum [131]. TEs have
also been implicated in horizontal gene transfer [132].
The analyses of gene density, and association of effector
candidates with repeat elements in Vi1, suggests that ef-
fectors and TEs may be similarly associated in Venturia.
In addition, most of the AvrLm6- and Ave1-like genes are
closely associated with repeats, i.e. TEs and TE-like rem-
nants, as identified by REPET [45]. Oliver [133] outlined
the mutagenic potential of transposons and their, at first,
seemingly unlikely contribution to the evolution of a suc-
cessful pathogen: transposons contribute to diversity gen-
eration by insertion either in or near a gene, affecting
either structure of the resulting encoded protein or the ex-
pression pattern, respectively. Transposons may facilitate
gene family expansion through capture and translocation
of host genes [134], such expansions can become targets
for repeat induced point mutation (RIP), with muta-
tions occuring not only in the duplicated transposons
but the associated genes [133, 135, 136]. This is an
ongoing area of interest and analysis of repeat regions
is currently underway in cross progeny of V. inaequa-
lis. Further analyses are required in the Venturia spp.
to reveal if TEs and indeed RIP are involved in
diversity generation, and expansion of gene families
as suggested by this initial analysis.

Conclusions
The comparative analysis of whole secreteomes of
multiple races of V. inaequalis with the related scab
pathogen, V. pirina, has provided novel insights into the
unusual, biotrophic lifestyle niche that these pathogens
occupy. It has also yielded significant leads in the hunt
for cultivar- and host-specificity determinants of scab
fungi. The challenge now will be to prioritise leads, from
the expanded arrays of putative effectors, for futher
investigation with a mind to delivering durable, scab
control.

Methods
Fungal material and culture conditions
All V. inaequalis and V. pirina isolates used in this study
(Table 1; Additional file 17) have been reported previ-
ously [12, 22, 46, 137, 138] and morphology, pathology
as well as DNA sequence comparisons (ribosomal RNA
ITS1-5.8-ITS2 and TEF1) have been used to validate the
classifications of these isolates as V. inaequalis or V.
pirina. All isolates were grown on cellophane (Waugh
Rubber Bands, Wellington, New Zealand) [139] overly-
ing potato dextrose agar (PDA) at 20 °C for 18 h to
14 days (16 h light period/day) under white fluorescent
lights (4300 K) for the production of conidia for plant
inoculation (Vi1 only) and biomass for genomic DNA
(gDNA; all isolates) and RNA extraction (Vi1 only).
Cellophane was used, as it induces the formation of
spores and stromata-like tissues in Venturia spp. similar
to those formed during infection [47].

Plant material and infection assays
Four- to six-week-old seedlings originating from open-
pollinated Malus x domestica ‘Royal Gala’ (Hawke’s Bay,
New Zealand) were used to produce infected plant
material. A detached leaf assay was used for generating
tissue for RNA sequencing [117], except that 5 μl drop-
lets of conidial suspension (1 × 105 ml−1) were used to
cover the entire leaf surface. V. inaequalis Vi1-infected
and SDW-inoculated leaves were harvested at two or
seven dpi and used for RNA extraction and microscopic
evaluation of infection.

gDNA extraction and whole genome sequencing
Extraction of V. inaequalis gDNA was carried out as
reported in Kucheryava and associates [47]. Two PE
libraries and two mate-pair (MP) libraries (with 5 kb and
10 kb insert sizes) were constructed for Vi1. These
libraries were sequenced on the HiSeq2000 platform at
the Allan Wilson Centre Genome Service (AWCGS),
Massey University, New Zealand, and the Australian
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Genome Research Facility (AGRF). One plate of a whole
genome library was also sequenced by the AWCGS on
the Roche 454 Life Sciences Genome Sequencer with
read length ranging from 18 to 634 bases. One PE and
one MP library were constructed for each of the isolates,
Vi1.10 and ViL. The PE libraries were specially built
with a fragment size of 180 bp so that read 1 and 2 over-
lapped at the end. All four libraries were sequenced on
the Illumina HiSeq2000 platform at Macrogen, Korea.
The Vi.1.2.8.9 PE library was sequenced in one lane on
the Illumina HiSeq2000 at the AGRF. Genome sequen-
cing details for Vp were reported in Cooke et al. [22].
The majority of the genomes were sequenced using the
Illumina platform, apart from Vi1 which is a hybrid as-
sembly of reads from both Illumina HiSeq and Roche
454 platforms.

RNA extraction and transcriptome sequencing
Total RNA was extracted by the method of Chang et al.
[140] and concentration quantified using a Nanodrop,
ND-1000 Spectrophotometer (NanoDrop Technologies,
Rockland, DE). For RNA sequencing cellophane mem-
branes were harvested as follows and combined for a
single RNA extraction: three cellophanes 18 h post in-
oculation (hpi), four cellophanes four dpi, four cello-
phanes six dpi and one quarter of a cellophane 14 dpi,
stripped of aerial hyphae (to enrich for stromatic tissues
inside the cellophane sheet). For in planta material three
detached leaves inoculated with V. inaequalis conidia
(detached leaf assay) were harvested at two and seven
dpi and snap frozen in liquid nitrogen. RNA was ex-
tracted as above, a single sample being derived from the
three leaves. Genomic DNA contamination was excluded
by visualisation of RNA on a 0.8% agarose gel and ab-
sence of an amplification product using primers specific
for glyceraldehyde 3-phosphate dehydrogenase genes
from V. inaequalis and apple [47]. The RNA from
in vitro and in planta extractions (5 μg), from the two
different time points, was sequenced on the Illumina
HiSeq2000 platform in PE mode AGRF, giving between
17 and 33 million pairs of reads per sample.

Bioinformatic analyses
Genome assembly
For each Venturia isolate, a quality check (QC) on gen-
ome sequencing data was carried out utilising PIQA v1.0
[141], the FASTX toolkit v0.0.13 [142] and FastQC
[143]. Reads were trimmed using in-house PERL tools
and adaptor sequences were removed using fastq-mcf
[144] based on data QC reports. De novo genome as-
sembly was performed using Velvet [61] and SOAPde-
novo with a range of Kmer values for Vi1 and Vi1.2.8.9
[145]. For each isolate, the top three assemblies that pro-
duced the best statistics in terms of size of contigs and
scaffolds, and N50 and N90 metrics, were chosen for
futher analysis. CEGMA [25] and BUSCO [26] tests
were performed on various genome assemblies to check
their completeness; utilising the 248 most conserved
core genes for the former [146]. Known Venturia ESTs
(ABEA, ABEB, IAAA, MAAB and MAAD libraries
deposited as ESTs at NCBI) [46] were aligned to the gen-
ome assemblies for quality evaluation i.e. to ensure correct
assembly of the corresponding sequences in the genome
using a BLASTn similarity threshold of <1e-05. The as-
sembly with the highest percentage completeness mea-
sured by the CEGMA analysis and the best-mapping ESTs
was selected as the genome to release for the isolate. Iso-
lates Vi1.10, and ViL, were assembled with three genome
assemblers, Velvet, SOAPdenovo, and the ALLPATHS-LG
programme since their PE libraries were constructed spe-
cifically with overlapping pairs and satisfied the require-
ments for ALLPATHS-LG [62, 64]. As for the other
isolates, the assembly with the best statistics was chosen
for further improvement. The best genome assembly for
each isolate was gapfilled using GapCloser with PE reads
(GapCloser in SOAPdenovo version 1.12) [145] then scaf-
folded using SSPACE with MP reads (SSPACE version 2)
[147]. The gapfilling and scaffolding steps were performed
iteratively until there was no obvious gap size decrease or
reduction in scaffold number.

Gene prediction
The assembled genomes were masked before gene pre-
diction using a customized pipeline which included
RepeatMasker-open-3-3-0, RepBase [148], RepeatScout
[149], trf [150] and TEClass [151]. Fungal genes down-
loaded from NCBI (August, 2012) were mapped to the
Vi1 genome assembly using Exonerate [152] for similar-
ity based gene prediction. Transcriptome assemblies for
in planta and in vitro libraries (see transcriptome ana-
lysis section below) together with ESTs from Vi1 grown
in vitro and in planta (Vi1-infected susceptible apple
leaves) [46] were used to train AUGUSTUS [23, 153] to
build a species model file (meta parameter file) for
Venturia. Hybrid (evidence-based) gene prediction was
performed for Vi1 using this model together with the
Vi1 transcript sequences and ESTs as hints in AUGUS-
TUS. Based on the trained species model, ab initio gene
predictions were carried out on the repeat-masked ge-
nomes for all the five Venturia isolates, thus there were
two sets of gene predictions for the Vi1 genome.

Transcriptome analysis
RNA-Seq data QC was done using FASTX-Toolkit v0.0.13
[142]. Reads were trimmed to 64 nucleotides based on the
QC reports (using a median phred score >20 as threshold).
For genome-guided transcriptome assembly, trimmed
RNA-Seq reads from Vi1 in vitro and two or seven dpi (in
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planta) were mapped to the reference genome of Vi1 using
tophat-1.4.1 [154] and further assembled with cufflinks-
1.3.0 [155]. De novo transcriptome assembly was carried
out using Inchworm (now evolved to Trinity) [156, 157],
and Oases [158] to aid gene prediction (see above). To
measure transcriptional support for genes FPKM values
were calculated within samples enabling gross ranking of
transcriptional activity, with an arbitrary threshold of >1
for evidence of transcription. Differential gene expression
tests were carried out between in vitro and in planta sam-
ples at different inoculation time points, using rsem-1.2.4
[159] to first map the reads, followed by edgeR v3.2.4 [160]
in Bioconductor version 2.12 [161]. Highly differentially
expressed genes, with a false discovery rate <0.05 and log2
fold change (LogFC) not smaller than two, were used for
prioritisation of genes for analysis.

Identification of the predicted secretomes
Genes encoding putatively secreted proteins were identi-
fied in each Venturia genome and gene catalogues from
P. nodorum, P. graminis f. sp tritici and C. fulvum down-
loaded via the Mycocosm portal at the JGI, using a cus-
tom software pipeline (Additional file 6). Both the
hybrid (based on trancriptome resources used to build
the trained species model) and ab initio (based on the
trained species model) predictions for Vi1 were used in
the secretome discovery pipeline to avoid excluding
genes predicted in only one approach; gene predictions
in either set that co-localised at the same locus (with a
greater than 90% identity and e value of <1e-10) were
considered a single prediction. The SignalP 4.0 [162]
and the SecretomeP [163] servers were used initially to
screen for predicted proteins with a signal peptide or
those secreted via a non-classical pathway, respectively.
The TMHMM server was used to screen for predicted
proteins without a predicted transmembrane domain
[164]. Only those predicted proteins, either lacking a
transmembrane domain or with a single transmembrane
domain with at least 10 aa in the first 60 aa, indicating a
probable correspondence with secretion signal, were
considered for further analysis. The TargetP server [165]
was used to predict cellular location, with those pre-
dicted to be extracellular retained. ProtComp v 9.0 [166]
and WoLF PSORT servers (with an extracellular score
threshold of >17) [167] were used to further analyse the
putative location of these predicted proteins. Proteins
predicted to be secreted by either method were included
to avoid the omission of false negatives.

Annotation of the predicted secretomes
Putative functions of the secretome proteins were initially
assigned following gene ontology analysis through an in-
house annotation pipeline (BioView; Ross Crowhurst,
Marcus Davy and Cecilia Deng, unpublished) that scans
public databases including NCBI RefSeq [168], InterPro
[169], UniRef [170], ExPASy UniProtKB/Swiss-Prot [171]
and ExPASy Prosite [172] and subsequent manual cur-
ation on the basis of similarity searches (BLASTp with a
similarity threshold of 1e-10) against the NCBI nr
database [29]. In addition, identification of the com-
plement of putative carbohydrate-active enzymes
(CAZymes) was achieved using the CAT server [27].
Default parameters were used for CAZyme identification,
apart from the -threshold which was set to 1e-05.
Venturia genomes were also interrogated (using a

combination of automated annotations, BLASTp and
tBLASTn, with a similarity threshold of 1e-10), with
sequences listed in PHI-base [35] and other effectors
(e.g. V. dahliae Ave1, GenBank: AFB18188.1; L. macu-
lans, AvrLm6 GenBank: CAJ90695.1; C. fulvum Ecp6
GenBank: ACF19427.1), as well as sequences annotated
as ‘hydrophobin’ and containing the ascomycete-specific
hydrophobin motif IPR010636 or conserved eight cyst-
eine pattern, from C. fulvum and D. septosporum (as re-
ferred to in [69]), P. nodorum (JGI protein ID 9201,
SNOG_03122.3) and L. maculans (JGI protein ID 775,
Lema_T007750.1). Conserved domains were identified
using Pfamscan [36–38].
Orthologous protein clusters were identified using

OrthoMCL version 2.0.3 [30] together with the Markov
clustering algorithm mcl [173] to cluster all-vs-all
BLASTp (e value <1e-10) results across all isolates.

Small secreted proteins (SSPs)
Small secreted proteins (SSPs) were defined as proteins
that were present in the secretome dataset with a length
of ≤500 aa (following removal of the secretion signal if
identified by SignalP). Enzymes, such as CAZymes, were
not included in the SSP set. A more stringent length
parameter of 200 aa was also used to identify a more
discrete set of candidate effectors. Those SSPs with two
or more cysteine residues in the predicted mature pro-
tein were also identified. SSPs were screened for repeat
content using RADAR [174–176]. The presence of pro-
peptide cleavage sites was analysed using ProP 1.0 [177],
with those sites with a score ≥0.5 recorded as positive.
InterProScan 5 [174, 178] was used to analyse conserved
domains in the SSPs.
In addition to the OrthoMCL analysis, the SSPs (≤200

aa in length) were analysed further using Spectral Clus-
tering SCPS 0.9.8 [57] to detect possible clusters of SSPs
comprising members with lower sequence similarity
than those clustered using the more stringent thresholds
of OrthoMCL. The parameters (default) used were those
that resulted in the AvrLm6-like proteins forming a clus-
ter with the same members as when clustered manually
[45]. The clusters were manually inspected and those
members with a similar cysteine pattern retained. In
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addition, since those SSPs less than 200 aa in length were
over-represented in the Vi1 secretome, members of the
clusters from Vi1 were used to detect possible gene pre-
dictions that were not called automatically by searching
each of the Venturia genomes using genBlastG 1.39 [179],
then manually curating novel gene models followed by
family assignment based on cysteine patterns and con-
struction of multiple sequence alignments using T-Coffee
11.00.8cbe486 [180, 181]. Sequence logos were con-
structed using the TeX package, TeXshade [182].
Proteins similar to selected SSPs in related Dothideo-

mycete genomes (Additional file 15) were identified ei-
ther by BLASTp for singletons or HMMER 3.1b2 [183]
for families (thresholds 1e-10), and clustering data per-
taining to the predicted Dothideomycete orthologues
were obtained from the JGI. Dothideomycete genomes
were selected for comparison based on phylogenetic
spread and diversity of lifestyle, including extremophile
saprobes, biotrophs, hemibiotrophs and necrotrophs.
Gene density and proximity to transposable elements
(or transposable element remnants) in the Vi1 genome
Intergenic distances were calculated for the predicted genes
of Vi1. Gene density across the Vi1 genome was approxi-
mated from 5′ and 3′ flanking intergenic lengths. Intergenic
lengths were binned according to log (length) and plotted as
a 2-dimensional heatmap in R [184] using a method adapted
from Saunders and associates [185]. The average distances
were also calculated; however, genes lacking an immediate
neighbour at either the 5′ or 3′ flank, such as those at the
ends of genomic scaffolds, were excluded from this analysis.
The VIS set, plus AvrLm6- and Ave1-like genes were com-
pared with 440 core eukaryotic genes [25].
The repeat prediction suite REPET 2.2 [186] was used

for the detection and annotation of TEs (repeat se-
quences) for the whole genome sequence of Vi1. A cus-
tom Python script was used to calculate the 5′ and 3′
flanking distances between gene annotations and TE
genomic features that were identified in the REPET ana-
lysis. Flanking distances between genes and repeats were
binned according to log (length) and plotted as a 2-
dimensional heatmap in R [184] using a method adapted
from Saunders and associates [185]. The VIS and core
eukaryotic gene gene sets were plotted for comparison.
Student’s t-Tests were conducted to determine whether
any differences were statistically significant.
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BUSCO analysis was used to assess completeness of the Venturia genome
assemblies. (XLSX 10 kb)

Additional file 6: Pipeline of programmes used to identify the in silico-
predicted secretome of each isolate. (DOCX 147 kb)

Additional file 7: The predicted secretomes and small, secreted
proteins (SSPs) encoded by the genomes of Venturia and
representative related pathogens. The genomes for Parastagonospora
nodorum, Cladosporium fulvum and Puccinia graminis f. sp. tritici were
downloaded via the Mycocosm portal at the Joint Genome Institute
(JGI; see details in Additional file 15). These pathogens were
representatives of necrotrophic, facultative and obligate biotrophic
fungi, respectively. The pipeline outlined in Additional file 6 was
employed to identify the secretome and SSPs in each of the
genomes. (XLSX 11 kb)

Additional file 8: The predicted proteins belonging to OrthoMCL
clusters present in the secretomes of five Venturia isolates. The coloured
horizontal bars represent proportions of predicted proteins (scale at
bottom of figure) that have been annotated according to the key at the
top of the figure, that are present in the secretomes indicated by grey
boxes to the left of the figure (white boxes indicate lack of similar
proteins). S: indicates singleton proteins. Numbers in the boxes are
numbers of proteins. The order of the categories in the key is the same
as that in the horizontal bars. For example: the core secretome is
represented by the top-most horizontal bar; there are similar proteins
present in each of the secretomes (5 grey boxes), of which 15%
(77 proteins) are classified as SSPs between 200 and 500 amino acids in
length with 2 or more cysteines. (PPTX 56 kb)

Additional file 9: The CAZyme domains present in proteins encoded by
the Venturia secretomes. CAZyme domains were identified using the
CAZymes analysis toolkit (CAT) server. Domains: CBM: carbohydrate
binding module; CE: carbohydrate esterase; GH: glycoside hydrolase; GT:
glycosyltransferase; PL: polysaccharide lyase. The known substrates for the
CAZyme domains were taken from Zhao et al. PCW: plant cell wall. FCW:
fungal cell wall. CW: cell wall. ESR: energy storage and recovery. PG:
protein glycosylation. dpi: days post inoculation. (XLSX 17 kb)

Additional file 10: Summary of distribution of similar proteins with
CAZyme domains encoded by the Venturia secretomes. CAZyme
domains were identified using the CAZymes analysis toolkit (CAT) server.
Filled grey boxes in columns indicate presence of a similar protein or
proteins in that secretome identified by OrthoMCL clustering.
(XLSX 12 kb)

Additional file 11: Classification of proteases in the secretomes of the
Venturia pathogens. Filled grey boxes in columns indicate presence of
similar proteins in that secretome identified by OrthoMCL clustering:
aspartate and serine (including those annotated as subtilases) proteases,
metalloproteases and unclassified peptidases. Several of the proteases
were similar (<e-10) to proteases in the Pathogen-Host Interactions database
(PHI-base). (XLSX 15 kb)

Additional file 12: Summary of small, secreted proteins (SSPs) similar to
proteins present in the Pathogen-Host Interactions database. Filled grey
boxes in columns indicate presence of a similar protein(s) in that secre-
tome identified by OrthoMCL clustering. (XLSX 12 kb)

Additional file 13: Small, secreted protein (SSP) family 07 members.
Sequence logo of members of A. family 07 from Vi1 and B. family 07
from all isolates. (DOCX 221 kb)

Additional file 14: Details of the small (≤200 amino acids in length)
secreted proteins in the Venturia infection secretome (VIS) gene set.
(XLSX 22 kb)
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Additional file 15: The genomes used in this study (non-Venturia).
Sources of the genomes downloaded or accessed (with permission) from
the Joint Genome Institute (JGI)/MycoCosm. (XLSX 14 kb)

Additional file 16: Details of the lineage-specific small, secreted proteins
(SSPs) identified in Venturia inaequalis ViL and V. pirina secretomes. Only
those proteins ≤200 amino acids in length are included. (XLSX 18 kb)

Additional file 17: Details of isolates of Venturia inaequalis and V. pirina
used in this study. (XLSX 12 kb)
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