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Introduction

Problems related to food security and sustainable development are complex (Erick-
sen et al., 2009) and require consideration of biophysical, economic, political, and
social factors, as well as their interactions, at the level of farms, regions, nations,
and globally. While the solution to such societal problems may be largely political,
there is a growing recognition of the need for science to provide sound informa-
tion to decision-makers (Meinke et al., 2009). Achieving this, particularly in light
of largely uncertain future climate and socio-economic changes, will necessitate
integrated assessment approaches and appropriate integrated assessment modeling
(IAM) tools to perform them. Recent (Ewert et al., 2009; van Ittersum et al., 2008)
and ongoing (Rosenzweig et al., 2013) studies have tried to advance the integrated
use of biophysical and economic models to represent better the complex interac-
tions in agricultural systems that largely determine food supply and sustainable
resource use.

Nonetheless, the challenges for model integration across disciplines are substan-
tial and range from methodological and technical details to an often still-weak con-
ceptual basis on which to ground model integration (Ewert et al., 2009; Janssen et al.,
2011). New generations of integrated assessment models based on well-understood,
general relationships that are applicable to different agricultural systems across the
world are still to be developed. Initial efforts are underway towards this advancement
(Nelson et al., 2014; Rosenzweig et al., 2013).

Together with economic and climate models, crop models constitute an essen-
tial model group in IAM for large-area cropping systems climate change impact
assessments. However, in addition to challenges associated with model integration,
inadequate representation of many crops and crop management systems, as well as
a lack of data for model initialization and calibration, limit the integration of crop
models with climate and economic models (Ewert et al., 2014). A particular obsta-
cle is the mismatch between the temporal and spatial scale of input/output variables
required and delivered by the various models in the IAM model chain.

Crop models are typically developed, tested, and calibrated for field-scale appli-
cation (Boote et al., 2013; see also Part 1, Chapter 4 in this volume) and short
time-series limited to one or few seasons. Although crop models are increasingly
used for larger areas and longer time-periods (Bondeau et al., 2007; Deryng et al.,
2011; Elliott et al., 2014) rigorous evaluation of such applications is pending.
Among the different sources of uncertainty related to climate and soil data, model
parameters, and structure, the uncertainty from methods used to scale-up crop mod-
els has received little attention, though recent evaluations indicate that upscaling
of crop models for climate change impact assessment and the resulting errors and
uncertainties deserve attention in order to advance crop modeling for climate change
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assessment (Ewert et al., 2014; Rotter et al., 2011). This reality is now reflected in
the scientific agendas of new international research projects and programs such as
the Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosen-
zweig et al., 2013) and MACSUR (MACSUR, 2014).

In this chapter, progress in evaluation of scaling methods with their related uncer-
tainties is reviewed. Specific emphasis is on examining the results of systematic
studies recently established in AgMIP and MACSUR. Main features of the respec-
tive simulation studies are presented together with preliminary results. Insights from
these studies are summarized and conclusions for further work are drawn.

Methods of Scaling-Up Crop Models

Error versus uncertainty in scaling-up crop models

In crop modeling literature, the terms “error” and “uncertainty” are often used inter-
changeably (see Part 1, Chapter 9 in this volume). While error measures the deviation
between simulated and past observations, uncertainty can be thought as a measure
of the difference between simulated and likely future observations (see Part 1, Chap-
ter 9 in this volume). While the relationship between past errors and future uncer-
tainty is of critical importance, it is not the subject of this chapter. Here we focus
on the scaling-up of crop models under past conditions that has resulted in errors
that are largely unknown as many past studies have not justified, nor transparently
disclosed, assumptions made in scaling models. Systematic evaluation of scaling
methods should provide some understanding of the size of this error and hence
help to quantify and reduce the uncertainty in applying crop models for large-area
assessment in the future. We do not investigate future uncertainty in this chapter,
but rather examine the errors produced, and their implications, of scaling-up crop
models with historic climate/weather data. Likewise, the uncertainty of upscaling
should be analyzed in conjunction with the uncertainties related to climate input
data, crop model structure, and model parameters (Asseng et al., 2013; Palosuo
et al., 2011; Rotter et al., 2012), which is beyond the scope of this chapter.

Scales — resolution, extent, and coverage

The most relevant scales in crop modeling refer to space and time. Various terms are
related to scales such as extent, resolution, and coverage though their exact meaning
is often unclear and they are therefore defined and discussed again here following
Bierkens et al. (2000), Ewert (2004), and van Delden et al. (2011; see also Fig. 1).
Scale is defined as the characteristic dimension in time and space of a phenomenon or
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Fig. 1. Schematic representation of resolution, extent, and coverage for (a) spatial and (b) temporal
scales. Increasing the spatial extent often means that the resolution becomes coarser (modified from
Bierkens er al., 2000). Note that this study only refers to spatial upscaling.

observation, and thus dimensions and units of measurements can be assigned. In the
context of this chapter, the definition of scale is colloquial (in contrast with the older
cartographic definition of scale), which implies that large-scale studies deal with
large extents, while small-scale studies are concerned with a small extent. Extent
refers to the area and time-period over which the observations or simulations have
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been made. Resolution indicates the largest spatial unit or time-period for which
the variable of interest is considered to be homogeneous, i.e., only the average
value of the variable is known, not the variation. A finer resolution indicates more
observations per time or spatial unit, or, in the case of simulations, the use of a
smaller grid size or time-step.

Coverage refers to the ratio between the sum of areas (or time-periods) for which
the observations or simulations have been made and the extent (Fig. 1). Detail
relates to the spatial and temporal resolution, as well as the complexity employed,
in the representation of processes. Complexity is defined as the number of included
relations and variables in a model. Finally, scaling is defined as transferring data
and models between scales, a definition used by Bloschl and Sivapalan (1995),
Ewert et al. (2011), and van Delden et al. (2011). Upscaling transfers data and
models, including parameters, to a larger scale, while downscaling implies transfer
of data, models, and parameters to a smaller scale. Scales should not be confused
with levels of organization (Ewert ef al., 2011), which refer to organizational (or
structural) entities such as a single plant organism, agroecosystem or farm, or the
regional, national, continental, or global food system. These levels of organization
have typical spatial extents and can be analyzed over specific time-periods.

Relevant processes of crop growth and yield should be modeled with sufficient
functional detail, which will depend on the considered spatial and temporal resolu-
tions. While appropriate model detail is increasingly viewed as important, the topic
is still little understood (Adam et al., 2011). Therefore, the use of the term “scale”
implies that the application of a model refers to an area (or time-period) with a
certain extent and that the model is used with a spatial and temporal resolution that
should be concurrent to the resolution for which the model was originally developed.
Any deviation from this will require proper evaluation (and perhaps modification of
model structure, parameters, or input data) as the model is used outside the system
characteristics for which it was originally developed.

Upscaling methods

While climate impact assessment studies are generally conducted on large scales,
most crop models have been developed for a spatial resolution of a plot or homoge-
nous field, with crop physiological processes typically simulated with daily tem-
poral resolution. For some models (or processes), the resolution is higher — hours
or even minutes. In theory, crop models can be applied to an infinite number of
plots or homogenous fields as long as the required input data (weather, soil, and
crop management) and cultivar parameters are available. The same applies to the
temporal extent, i.e., the number of years for which the model is applied. In practice,
large-scale model application is constrained by data availability and computing time
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with relatively little consideration given to the mismatch in model process details
and spatial scale of application. Therefore, methods to adjust (and likely reduce)
model complexity with increasing scales are required.

Various methods are used to apply field models at larger scales, and generally
are pragmatic solutions to the problem of limited data availability and/or computa-
tional power. For instance, model application in a region may be constrained to the
(small) number of available weather stations from which data can be used for model
simulations. Or, a model is applied in conjunction with climate change scenarios in
which data are provided in grid cell format with a defined size, typically 50 x 50 km?
(e.g., Elliott et al., 2014). The same applies to the temporal resolution of available
climate/weather data, which may not have the resolution required for crop models
(Nonhebel, 1994; van Bussel et al., 2011). Such methods can be grouped according
to how complexity is reduced. Accordingly, methods refer to the manipulation of
(1) input data (climate, soil, management), (2) model structure, by reducing model
complexity, and (3) model parameters. A comprehensive overview of scaling meth-
ods is given Ewert et al. (2011) and van Oijen et al. (2009). The most prominent
methods used in climate change studies are described here.

Data aggregation, sampling, and extrapolation

Two main methods of data aggregation can be distinguished based on whether the
aggregation refers to the input data or the output data after model simulation. The
latter assumes that points are well sampled across a region to obtain good coverage.
However, in most cases data coverage is insufficient. In the simplest case, only one
so-called “representative” point is available within a region for which data (weather,
soil, and crop management) are available and for which model simulations are per-
formed. Simulation results for this point are then assumed to be representative for
the entire region, i.e., simulations are extrapolated to all parts of the region (Fig. 2a).
However, this is only valid if the region of concern is homogenous for all relevant
input data of the model, which will rarely be the case. For heterogeneous regions, the
number of sampling points should ideally be sufficient to represent the spatial het-
erogeneity in input data of this region. As information about the spatial variability in
input data is limited, sampling points are usually randomly chosen. A more qualified
way for considering heterogeneity within a region is stratified sampling (Fig. 2b).
Sampling points are chosen for strata in a region that represent homogenous quan-
tities, often climatic conditions. Hence, environmental stratifications are commonly
used to support such sampling (Ewert et al., 2011). However, the sampling is usu-
ally constrained by the number of available points with data. Little information is
available about the relationship between change in number of sampling points and
deviation in simulation results.
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Fig. 2. Selected scaling methods often used in impact assessment studies: (a) extrapolation from
a single point in the region to the entire region, (b) stratified sampling guided by an environmental
stratification to sample points within relatively homogenous environmental strata, and (c) aggregation
of input data to larger grid cells for which the models are run. For a more elaborated description of
scaling methods see Ewert ef al. (2011).

Alternatively, input data are aggregated and models are run with these aggre-
gated input data (Fig. 2c¢), as is the case when models are used in combination with
gridded climate data from climate models (Bondeau et al., 2007; Deryng et al.,
2011; Elliott et al., 2014). The main advantage of this method is that full cover-
age of the spatial extent of interest can be achieved. The disadvantage is that with
increasingly coarse levels of aggregation, heterogeneity in input data is lost, which
potentially affects simulation results as many processes in crop models are typically
non-linear. Although both methods have frequently been used, uncertainties in using
these methods are largely unknown. Further, possible interactions between scaling
method and choice of crop model are unclear. Recent studies have pointed to the
importance of using crop model ensembles in impact studies to account for the large
uncertainty in crop models (Asseng et al., 2013; Palosuo et al., 2011; Rotter et al.,
2012).

Evaluating Uncertainty from Scaling Methods

Uncertainties in both methods of input and output data aggregation for model
upscaling have been evaluated systematically in two comprehensive studies recently
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Fig.3. Example region in (a) Germany used in scaling exercise. The region refers to the state of North
Rhine-Westphalia with heterogeneous conditions of (b) altitude and (c) environmental conditions. Note
that environmental zones are derived from Metzger et al. (2013).

launched within the international research program AgMIP (http://www.agmip.org/)
and the FACCE JPI Knowledge Hub MACSUR (http://www.macsur.eu/). Simula-
tion exercises and results are described in detail elsewhere for AgMIP (van Bus-
sel et al., 2014) and MACSUR (Hoffmann et al., 2014; Zhao et al., 2014). In
these studies, the effect of different numbers of sampling points (AgMIP) and
grid cell size (MACSUR) were investigated for winter wheat grown in the state
of North Rhine-Westphalia in Germany (Fig. 3). The region was chosen because
it is characterized by a considerable spatial heterogeneity in environmental (cli-
mate and soil) conditions (Fig. 3). Also, high-resolution weather and soil data were
available.

Simulation exercises

Models were applied to simulate a typical winter wheat variety grown in the region.
Information for model calibration only comprised a typical sowing date (October
1) and harvest date (August 1) and an indication of the regional average actual
dry matter grain yield (about 7.2 t/ha) was given. Simulations were performed to
obtain potential and water-limited yields. In the first step of these exercises the effect
of scaling-up climate data was investigated. Other input data (soil, crop manage-
ment) were kept constant. Hence, only one dominant soil type (sandy loam) with a
rootable depth of 2.3 m and a total available water capacity of 429 mm was chosen
for the entire region; more detailed soil information can be obtained from van Bussel
et al. (2014). Also, crop management did not vary and was considered optimal for
nitrogen fertilization and no effects of pests, diseases, or weeds were considered.
Selected results presented in this chapter refer to potential growth, while results for
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(b) Changing size of grid cells
10x 10 25x 25 50 x 50 100 x 100

km2 Ky
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Fig. 4. Set-up of simulation experiments for evaluating deviations from (a) high-resolution simula-
tions of (b) different grid cell sizes and (c) reduced numbers of sampling points. Details are described
in van Bussel et al. (2014), Hoffmann et al. (2014), and Zhao et al. (2014).

water-limited conditions are shown elsewhere (Hoffmann et al., 2014; van Bussel
et al., 2014; Zhao et al., 2014).

In the AgMIP study 12 crop models were used (MONICA, APSIM, pDSSAT,
HERMES, MCWLA, NWheat, SALUS, SIMPLACE<LINTUL2>, SPASS-
ExpertN, STICS, CERES-wheat, and CROPGRO), a subset of those used in Asseng
et al. (2013). Models and references are described in Asseng et al. (2013). Ten of the
12 models are considered in the later analysis described in this chapter. Five of these
models were also used in the MACSUR study, along with six other models for a
total of 11 models in this chapter (APSIM, Modified APSIM, COUP, DailyDayCent,
LandscapeDNDC, EPIC, HERMES, SIMPLACE<LINTULS>, MCWLA, MON-
ICA, STICS). Models and references are described in Hoffmann ez al. (2014) and
Zhao et al. (2014).

The effect of different sample sizes (Fig. 2a, b) for climate/weather data were
investigated in AgMIP; the number of sampling points per region was varied from
10, 100, 500, to 1000 points and compared with a high-resolution run for 34168
points (Fig. 4a), which refers to a 1 x 1 km? grid raster (Fig. 4c). The sampling of
points was guided by the environmental stratification of Metzger et al. (2013). The
effects of grid cell size was investigated in MACSUR by conducting simulations
for the region with grid cell sizes of 10 x 10 km?2, 25 x 25km?2, 50 x 50 km?, and
100 x 100 km? (Fig. 4b). These were also compared with a high-resolution run from
100 x 100 km?, i.e., 34168 cells. Observed actual yields were obtained from regional
yield statistics (IT_.NRW, 2014).
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Impact of Scaling Method

Effect of sampling size (AgMIP study)

Surprisingly, differences in regional averages of simulated potential yields based
on crop model ensemble means were small, depending on the number of sampling
points considered (Fig. 5a). This was essentially consistent across models with dif-
ferences between models for simulated yields larger than differences due to sample
size (van Bussel et al., 2014). The model ensemble mean also reproduced the inter-
annual yield variability well for most years, again with small effects of sample
size on temporal yield variability (Fig. 5b). As simulated yields refer to potential
conditions they are about 15% to 20% higher than observed yields. Likewise, differ-
ences between models in simulating interannual yield variability were substantially
larger than the small differences due to the different sample point sizes (van Bussel
etal.,2014). Such results suggest that with relatively few sample points (in this case
ten) the relative error in regional yield simulations compared to simulations with a
high density (full coverage) is small. However, our example referred to a stratified
sampling case in which a sample size of ten points ensured that all environmental
strata were sampled. Results may differ if points are sampled randomly without
consideration of an environmental stratification (van Bussel ef al., 2014).

Effect of grid cell size (MACSUR study)

Simulation results of model ensemble means reveal some effects of changing grid
cell sizes on potential yields (Fig. 5c). Average yields tend to decline as the size of
the grid cells increases until a size of 50 x 50 km? (Fig. 5c). The higher average
yield at the large grid cell size of 100 x 100 km? may be caused by the method-
ology of considering border grid cells, which results in a larger total area of this
cell size as compared to smaller grid cell sizes. The ensemble mean of the 11
models used in this exercise also closely reproduced the interannual variability of
observed regional yields (Fig. 5d). Again, model differences were considerable, as
shown elsewhere (Hoffmann et al., 2014; Zhao et al., 2014). Grid cell size showed
some effect on simulated potential yields, which changed depending on the year
(Fig. 5d), but temporal patterns of ensemble means were not affected. These results
suggest that for the crop, region, and models considered here, errors in simulat-
ing potential yields are comparably small for larger grid cell sizes. However, it
should be noted that, also in this study, average potential yields were 15% to 20%
higher than observed actual yields, which is in line with reported yield gaps for
Germany.
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Fig.5. Selected results from scaling exercise in AgMIP and MACSUR for simulated potential grain
yield of winter wheat in North Rhine—Westphalia, Germany between 1981-2011. Results show model
ensemble means of the effect of the number of sampling points (rate) on (a) 30-year yield statistics (box-
and-whisker plots with mean, median, and 25th and 75th percentiles) and (b) interannual yield variabil-
ity, and of the effects of grid cell size on (c) 30-year yield statistics (box-and-whisker plots with mean,
median, and 25th and 75th percentiles) and (d) interannual yield variability. Gray lines in (b) and (d)
refer to observed regional yield statistics. Note, different models are behind the ensemble means shown
in the different panels (see the section on simulation exercises). For a more elaborated description and
presentation of results see van Bussel ef al. (2014), Hoffmann ez al. (2014), and Zhao et al. (2014).

Spatial variability

Variability in simulated potential yield through space increases with increasing num-
ber of sample points (Fig. 5a) and decreasing grid cell size (Fig 5c). The effects of
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climate/weather data aggregation on spatial variability have been reported earlier
(Zhao et al., 2015) and are also evident from this study (Zhao et al., 2014). If
information on the spatial variability of yields is required, studies based on few
sample points or large grid cells may be insufficient. This applies particularly to
areas where spatial variability in environmental conditions is high (Zhao et al.,
2015).

Knowledge Gaps and Future Activities

Knowledge gaps

These results (Fig. 5) are in line with a recent study (Angulo et al., 2013) but con-
tradict other studies (e.g., Hansen and Jones, 2000). The results presented here refer
to potential yields and the aggregation of climate/weather data, though effects of
scaling methods are more pronounced for water-limited yield (Hoffmann et al.,
2014; van Bussel et al., 2014; Zhao et al., 2014). It remains unclear how large
the differences between the scaling methods with weather data become if regional
variability in soil and management are considered and simulations are extended
to also consider N-limited conditions. Likewise, there is no indication of to what
extent results obtained in our studies can be transferred to other crops or regions.
The results presented here refer to grain yield, whereas in integrated assessment
studies other variables such as greenhouse gas emissions, N-leaching, N-yield will
also be of interest (Ewert et al., 2014). How transferable these results are across
impacts variables is unknown. Particularly striking are the differences among crop
models, not shown here but presented in detail elsewhere (Hoffmann et al., 2014;
van Bussel et al., 2014; Zhao et al., 2014). These which are consistent with reports
from earlier studies (Asseng et al., 2013) and are worth exploring in relation to
the available input data for model calibration. As some interaction between scal-
ing methods and crop models has been observed, such interactions should not be
ignored in future studies. Ensemble means may be a suitable approach to avoid such
interactions.

Future activities

Given these gaps, future research on better understanding the scaling-up of crop
models for large-area assessments should focus on:

o Inclusion of spatial variability in soils.

o Consideration of spatial variability in management particularly for N fertilization,
sowing dates, and varieties grown. A particular challenge is to understand the
impact of methods to scale-up crop rotations (Teixeira et al., 2014).
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o Generalization of results across crops and regions.
o Adequate model structure, parameters, and use of ensemble means.

As these and other results suggest, given that uncertainty from crop models and
global climate models (GCMs) is larger than from scaling methods applied to
weather data input (with the qualification that soils and management variability
has not been considered yet), future research should also focus on improving crop
models for large-scale applications. Here the question of appropriate model detail
becomes important (Adam ef al., 2011). To date, large-area crop models have not
been developed to capture the relationships important at an aggregated regional
scale. The same applies to long time-horizons.

The effect of upscaling may become more important if variability in soil and
crop management is also considered. The latter is likely to be particularly relevant
in regions where crop yields are more constrained by management than by climatic
conditions and where spatial variability in management intensity is high. In regions
with a large share of low-intensity farming systems as in Africa, crop physiological
processes as considered in crop models may be less important (Webber ef al., 2014)
than approaches of modeling effects of management. Hence, a new generation of
crop models may be needed that adequately considers the range of factors and
relations relevant at larger scales and that complies with the demands of integrated
assessment modeling (IAM) (Ewert et al., 2014).
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