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Abstract

Streptococcus agalactiae is a major neonatal pathogen whose infectious route involves septicemia. This pathogen does not
synthesize heme, but scavenges it from blood to activate a respiration metabolism, which increases bacterial cell density
and is required for full virulence. Factors that regulate heme pools in S. agalactiae are unknown. Here we report that one
main strategy of heme and protoporphyrin IX (PPIX) homeostasis in S. agalactiae is based on a regulated system of efflux
using two newly characterized operons, gbs1753 gbs1752 (called pefA pefB), and gbs1402 gbs1401 gbs1400 (called pefR pefC
pefD), where pef stands for ‘porphyrin-regulated efflux’. In vitro and in vivo data show that PefR, a MarR-superfamily protein,
is a repressor of both operons. Heme or PPIX both alleviate PefR-mediated repression. We show that bacteria inactivated for
both Pef efflux systems display accrued sensitivity to these porphyrins, and give evidence that they accumulate
intracellularly. The DpefR mutant, in which both pef operons are up-regulated, is defective for heme-dependent respiration,
and attenuated for virulence. We conclude that this new efflux regulon controls intracellular heme and PPIX availability in S.
agalactiae, and is needed for its capacity to undergo respiration metabolism, and to infect the host.
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Introduction

Heme (iron protoporphyrin IX) is a redox-active molecule, and

a cofactor for numerous cell functions used in oxygen sensing and

signal transmission, metabolism, and metal homeostasis [1]–[3]. In

addition to its varied activities as a cofactor, heme promotes toxic

oxygen radical production [4]. The duality between heme as a

multifunctional cofactor, and a potentially toxic molecule, suggests

the need for strict limitation of its intracellular levels. Metal-free

protoporphyrin IX (PPIX) is also found intracellularly, as a heme

precursor in bacteria that synthesize heme, and as an intermediate

during iron recovery from heme, as shown in Escherichia coli [5].

Thus, cells might have to deal with both heme and PPIX

intracellular pools.

While most studied organisms synthesize heme to ensure

activity of hemoproteins under the appropriate conditions,

numerous bacteria lack heme biosynthesis genes, making heme-

catalyzed processes fully dependent upon external heme supplies.

For example, Haemophilus influenzae, Bacteroides sp., and several

Firmicutes, including Lactococcus lactis, Enterococcus faecalis, Strepto-

coccus agalactiae, and numerous Lactobacillus sp., require heme to

activate a respiration metabolic pathway [6]–[18]. Some of these

bacteria (e.g., H. influenzae, E. faecalis, Bacteroides sp., Lactobacillus

brevis and Lactobacillus plantarum) also encode heme-dependent

catalases, which rely on exogenous heme for both their stability

and activity [19]. Thus, heme supplied by the environment can

have a determining effect on the metabolic and enzymatic

capacities in organisms lacking the heme biosynthetic pathway.

All bacteria, regardless of their heme biosynthesis capacities,

need to manage their intracellular heme pools. Regulation may be

exerted at the levels of biosynthesis, uptake, degradation, and

possibly efflux, which is in some cases coordinated with the cell

iron status [20]–[25]. The use of efflux as a means of heme

homeostasis remains in question. The sole candidate, HrtAB, a

heme-regulated transporter, was first reported as having a role in

heme toxicity in Staphylococcus aureus; orthologs of this system were

also described in L. lactis and Bacillus anthracis [12], [26]–[28].

HrtAB in S. aureus, B. anthracis, and likely several Gram-positive

pathogens responds to an extracytoplasmic heme sensor, HssS

(part of HssSR two-component system) to activate expression

[27], [28].

S. agalactiae is an important human pathogen that does not

synthesize its own heme. Nevertheless, infection by this bacterium

involves compulsory passage through the bloodstream, causing

septicemia and subsequent meningitis [29], [30]. We showed

previously that although S. agalactiae generally grows by a fermenta-

tion metabolism, it can also use heme, present in blood, to activate the

terminal cytochrome bd quinol oxidase for respiration metabolism.
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Thus, beyond the potential use of heme uptake to acquire iron, the

use of heme to activate the energetically favorable respiration

metabolism confers a significant gain in cell density, and is required

for full bacterial virulence in a septicemia model [17],[18].

Despite the importance of growth in heme-rich blood as an initial

step of S. agalactiae infection, the functions involved in regulating

intracellular heme levels are unknown. Homologs of HrtAB and

HssSR exist in S. agalactiae, and might participate in modulating

heme toxicity upon sensing of extracellular heme. However, the

mechanism by which HrtAB modulates heme toxicity is unknown,

and the question remains whether other systems are needed to

regulate heme pools. Here we report the existence of a novel

regulon comprising two efflux operons and a single repressor that

senses intracellular heme and PPIX, and is needed to maintain their

homeostasis. This newly described system is shown to impact on

S. agalactiae respiration capacity and virulence.

Results

Identification of gbs1753 gbs1752 as a putative
heme- and PPIX- induced locus in S. agalactiae

Transcriptome studies, comparing S. agalactiae gene expression

under respiration (i.e., aerobic growth in the presence of exogenous

heme and menaquinone) versus aerobic fermentation (i.e., no

addition) conditions, initially revealed that gbs1753 gbs1752 was 2.4

to 5.1 fold higher under respiration conditions (AD, PG, EC, and P.

Glaser [Pasteur Institute]; Table S1). The gbs1753 ORF encodes an

integral membrane protein of the drug:H+ antiporter family,

belonging to the major facilitator superfamily (MFS) [31]. The

gbs1752 ORF encodes an unknown protein with 2 transmembrane

domains. We chose this locus for study, as it was conserved among

Gram-positive bacteria that lack a complete heme biosynthesis

pathway, but encode cytochrome bd quinol oxidases, indicating a

capacity for respiration metabolism (Fig. 1 and Table S2).

The +1 transcriptional start of gbs1753 gbs1752 was located by 59-

RACE PCR mapping at 134 nucleotides upstream of the gbs1753

start codon at a cytosine (Fig. 2A). The gbs1753 promoter region was

fused to a lacZ reporter, referred to as Pgbs1753-lacZ, and expressed on

a low copy number plasmid (Fig. 2A) [32]. In the absence of added

heme, Pgbs1753-lacZ displayed basal level expression in static and

aerobic growth conditions (possibly reflecting trace amounts of heme

in BHI medium). Cultures grown with added heme (from 0.1 mM to

10 mM) displayed up to 9-fold higher Pgbs1753-lacZ expression

compared to controls without heme, even in non-respiration-

permissive conditions (Fig. 2B), indicating that heme, and not the

state of respiration, was the inducing factor for the gbs1753 promoter.

Significant Pgbs1753-lacZ induction was observed at heme concentra-

tions of 0.3 mM and above. Similarly, PPIX, gallium protoporphyrin

(GaPPIX), and zinc mesoporphyrin (ZnMPIX) also induced

Pgbs1753-lacZ, while free iron had no inducing effect. These initial

results indicate that gbs1753 expression is induced by different

porphyrin molecules, regardless of their metal core status.

Identification of Gbs1402 as a putative regulator of
gbs1753 gbs1752 expression

A random mutagenesis approach was used to identify genetic

factors that affect gbs1753 gbs1752 expression. A transposon-generated

Author Summary

The infectious route of numerous bacterial pathogens
includes septicemia, where bacteria are exposed to heme-
rich blood. Heme (iron protoporphyrin IX) is generally
considered a bacterial iron source. However, while some
pathogens do not biosynthesize heme, they use environ-
mental heme to activate key functions. For example,
incorporation of heme by the major neonatal pathogen
Streptococcus agalactiae activates a latent respiration
chain. Respiration metabolism stimulates S. agalactiae
growth and survival in blood, and is needed for virulence.
While the importance of heme in S. agalactiae behavior is
documented, how it manages its intracellular heme pools
remains unknown. We discovered a novel regulon, called
Pef for ‘‘porphyrin-regulated efflux’’, that modulates S.
agalactiae intracellular availability of heme and protopor-
phyrin IX. A single transcriptional regulator, PefR, represses
two distinct efflux transport operons. Regulator-mediated
repression is alleviated by heme or protoporphyrin IX.
Importantly, over-expression of Pef efflux transporters led
to intracellular heme insufficiency, and consequent respi-
ration and virulence defects. Inversely, when Pef efflux
transporters were inactivated, results indicated an in-
creased intracellular accumulation of heme and protopor-
phyrin IX. These studies point to the important role of
regulated efflux transport systems in bacterial pathogens
for maintaining intracellular heme at levels sufficient to
stimulate growth and promote infection.

Figure 1. Genetic context of two loci for which expression is heme-induced. A, gbs1753 gbs1752 (pefA pefB) and B, gbs1402 gbs1401
gbs1400 (pefR pefC pefD) loci. Bent arrows and lollipops indicate the mapped or putative promoters, and rho-independent terminators, respectively.
doi:10.1371/journal.ppat.1000860.g001

Intracellular Heme Control by an Efflux Regulon
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mutant library was screened for clones in which expression of the

Pgbs1753-lacZ fusion was up-regulated, as detected by deep blue

colony color. Several mutations mapped in a single ORF, gbs1402.

The gbs1402 gene encodes a multiple antibiotic resistance MarR-

like regulator (for review see [33]), and is located just upstream of

gbs1401 gbs1400, encoding a putative ABC-type multidrug transport

complex (Fig. 1B). Sequence analysis predicted that the Gbs1401

and Gbs1400 proteins both contain a transmembrane domain and

an ATPase signature. These observations led us to formulate a

working hypothesis that both gbs1753 gbs1752 and gbs1401 gbs1400

loci are involved in PPIX and metalloporphyrin efflux, and are

regulated by a single protein, Gbs1402. The genes were renamed as

pef genes, for porphyrin-regulated efflux. gbs1753 gbs1752 are

renamed pefA pefB; gbs1401 gbs1400 are renamed pefC pefD; and the

gbs1402 gene for the potential regulator is renamed pefR (Fig. 1).

PefR binds specifically to pefAB and pefRCD promoter
regions and represses their transcription

Proteins of the MarR family characteristically bind to DNA

inverted repeat motifs (IR) [33]. Sequence analysis revealed the

presence of a near-perfect 18-nucleotide IR within a 23 bp

consensus, (59-TAAAATAGTTCTCACGATAACTA-39) present

once upstream of pefA pefB, and twice (one identical sequence, and

one inexact copy with 3 nucleotide substitutions in italics)

upstream of pefR pefC pefD (Fig. 3A). The IR is not present

elsewhere on the S. agalactiae genome. This 23-nucleotide sequence

contains the 210 region (TAAAAT) of a putative promoter and

constituted a candidate target site for PefR binding to pefAB and

pefRCD promoter regions. Mobility shift assays were performed

using a purified PefR His-fusion protein, in combination with

DNA fragments comprising the IRs of pefAB or pefRCD promoter

regions, plus a fragment without an IR as negative internal control

(Fig. 3B). PefR caused a mobility shift of both the pefAB and

pefRCD fragments in a protein concentration-dependent manner.

No shift was observed with the control DNA fragment.

To determine whether PefR impacts on pefA pefB and pefR pefC

pefD expression in vivo, Northern blot experiments were performed

on the WT strain and an in-frame DpefR mutant, using pefAB and

pefC as probes (Fig. 3C). The deduced transcript sizes were

compatible with organization of the pefA and pefB genes as one

operon, and of pefR, pefC, and pefD genes as another. Compared to

the WT strain, expression of both pefAB and pefRCD operons was

strongly increased in the DpefR mutant. We also evaluated

expression of the PpefA-lacZ transcriptional fusion in the WT and

DpefR mutant strains. b-galactosidase expression in the DpefR

background was 12 times higher than in the WT strain (Miller

Units were 62.969.2 in DpefR versus 5.161.7 in the WT strain).

The above in vitro and in vivo results indicate that PefR is a

transcriptional repressor of both the pefAB and the pefRCD

operons, by binding directly to the operator regions.

PefR is an intracellular heme and PPIX sensor and
regulator of pef expression

A characteristic of MarR family regulators is their binding to

effector molecules, which leads to induction or repression of their

target genes [34]–[36]. Transcriptional fusions showed that the

pefAB operon was induced in the presence of metalloporphyrins or

PPIX (Fig. 2B). As PefR binds the two pef promoter regions, and

appears to repress transcription, we hypothesized that PefR

binding and repression are modulated by heme and PPIX. To test

Figure 2. The pefAB locus is induced by porphyrin molecules: heme, PPIX, GaPPIX and ZnMPIX. A. Schematic map of the transcriptional
fusion PpefA-lacZ (same as Pgbs1753-lacZ). Sequence of the pefAB promoter region is displayed. The +1 transcriptional start and 210 and 235 motifs are
in bold blue characters. B. Expression analysis of PpefA-lacZ by determination of b-galactosidase activity in early stationary phase. S. agalactiae was
grown in BHI liquid medium in the presence of the indicated amount of candidate inducers. Strains harboring the pTCV-lac vector (promoterless
negative control) did not show b-galactosidase activity during growth (0.460.1 Miller Units). Measurements were performed at least three times.
doi:10.1371/journal.ppat.1000860.g002
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this in vitro, mobility shift assays between PefR and the pefAB or

pefRCD promoter region DNA fragments were performed with and

without heme or PPIX. For both DNA targets, PefR–DNA

binding was alleviated in a heme or PPIX concentration-

dependent manner (Fig. 4A, Fig. S1A). Iron had no effect on

PefR-DNA binding (Fig. S1B).

Transcriptional fusion data showed that heme and PPIX up-

regulate pefAB expression. To further confirm these results, we

performed Northern blot experiments in the absence and presence

of these molecules, using pefAB and pefC DNA as probes. Both

heme and PPIX induced expression of the two pef operons

(Fig. 4B). These in vivo results are in keeping with in vitro gel shift

data showing that PefR repression is alleviated in the presence of

these porphyrins. We conclude that heme and PPIX both

modulate PefR repression of the pefAB and pefRCD operons.

Expression of hrtAB as a function of heme and PPIX levels
in S. agalactiae

Genomic studies of S. agalactiae revealed the existence of an

analog of HrtAB, a heme-regulated transport system initially

characterized in S. aureus and shown to be involved in heme

toxicity [37]. Gbs0119 and Gbs0120 showed 45% and 29%

identity with HrtB and HrtA of S. aureus respectively. We used

Northern blot experiments (Fig. 5A) and a lacZ promoter fusion,

Pgbs0119-lacZ (Fig. 5B), to assess the heme and PPIX concentrations

needed to induce the hrtAB locus. Interestingly, hrtAB expression

was low at heme concentrations below 1 mM, with strong

induction at 10 mM; PPIX did not induce its expression, as was

observed in S. aureus. Importantly, no hrtAB induction was

observed at heme levels where pefAB was induced, i.e., between

0.1 and 0.5 mM heme (Fig. 2B). We conclude that the pef regulon is

induced at heme concentrations below those needed for hrtAB

induction, indicating that these functions are active under different

conditions.

Role of pefAB and pefRCD operons in porphyrin
sensitivity

The above results led us to ask whether pefAB and pefRCD loci

are involved in porphyrin efflux. Several in vivo approaches were

developed to explore this question. We constructed in-frame pefA

(encoding a putative drug:H+ antiporter) and pefB (encoding a

membrane protein of unknown function) deletion mutants; as the

two components of pefCD are predicted to encode a single ATP-

dependent transporter, we generated a deletion removing both

ORFs. Mutations were combined to inactivate both pef operons.

Tests were also performed with the DpefR deletion mutant, in

which expression of both pef loci were highly induced (Fig. 3C).

Sensitivity of DpefR, DpefA DpefCD, and DpefB DpefCD mutants to

metalloporphyrins was evaluated by plate inhibition tests (Fig. S2).

Both DpefA DpefCD and DpefB DpefCD mutants showed greater

sensitivity than the WT strain to 1 nmole heme (Fig. S2A). Similar

results were obtained using Gallium PPIX (GaPPIX; tested at

50 nmoles, Fig. S2B). We noted that DpefA DpefCD was more

sensitive than DpefB DpefCD; this phenotypic difference might

suggest an accessory role of PefB in PefA PefB function. The single

DpefA, DpefB, DpefC or DpefD mutants gave little or no inhibition by

these porphyrins (data not shown), suggesting a functional

redundancy between the efflux systems encoded by these loci.

Sensitivity of the DpefR mutant to heme and GaPPIX did not differ

significantly from the WT. We further tested heme-mediated

inhibition in liquid medium by growing WT and pef single and

double mutants, and the DpefR mutant, in 0 or 1 mM heme (Fig. 6A

Figure 3. PefR is a repressor of pefAB and pefRCD loci. A. A conserved 23-nucleotide motif is present once upstream of pefAB, and twice
upstream of pefRCD and is highlighted. The IR present in each of the motifs is marked by arrows. The 210 and 235 motifs, and the mRNA pefAB and
putative pefRCD start sites are in blue. Start codons and RBS sequence are in italics. One motif upstream of pefRCD (dotted arrows) differs from the
other motifs by 3 nucleotides, which are in gray italics. B. PefR binds the pefAB and pefRCD promoter regions in gel shift assays. Two pmoles of pefAB
or pefRCD promoter fragment were incubated in the presence of 0, 4, 17, 34, 63 pmoles of PefR (lanes 1 to 5) and 4.6 pmoles control fragment,
corresponding to an 116-bp fragment of the pefA gene. C. Northern blot analyses of pefAB and pefRCD mRNA in the WT and pefR strains, using locus-
specific probes (see Materials and Methods). As probe efficiencies and times of exposure differ for each target RNA, differences between pefAB and
pefRCD levels are not comparable. ldhL mRNA (‘ctrl’) was used to control for RNA quantity.
doi:10.1371/journal.ppat.1000860.g003

Intracellular Heme Control by an Efflux Regulon
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and data not shown). The DpefA DpefCD and DpefB DpefCD

mutants, but not the other tested strains, displayed a slight growth

inhibition in the presence of heme. Addition of 2 mM or 4 mM

heme exacerbates growth retardation of these mutants (data not

shown). These results indicate the need for at least one of the Pef

efflux systems to avoid heme toxicity.

To evaluate PPIX accumulation in S. agalactiae WT and mutant

cells, we exploited its reactivity upon exposure to visible light;

when excited by light, PPIX generates reactive oxygen species

[38],[39]. The WT strain, and DpefAB DpefCD single and combined

mutants, and the DpefR mutant, were grown with 10 mM PPIX and

exposed to visible light for 0, 10 or 50 minutes. Viability of cells

grown without PPIX and exposed to light was equivalent for all

strains (Fig. 6B). Strikingly, inactivation of both putative pumps led

to total mortality upon short light exposure (Fig. 6B). These results

suggested that PPIX accumulates in S. agalactiae when pefAB and

pefCD systems are inactivated. There were also marked differences

between WT and DpefR sensitivity to PPIX after a longer

(50 minute) light treatment. The DpefR mutant, which is up-

regulated for pefAB and pefCD expression, showed essentially full

viability, compared to a .10-fold drop for the WT strain. These

data, showing heme and PPIX sensitivities of DpefAB DpefCD

mutants, and lower PPIX sensitivity of the DpefR mutant give strong

evidence for a role of the pef regulon in porphyrin efflux and

intracellular homeostasis.

Intracellular porphyrin availability in S. agalactiae WT and
DpefA DpefCD strains

We used two approaches to evaluate differences in intracel-

lular porphyrin in the WT versus DpefA DpefCD strain. First, we

exploited the fact that heme- and PPIX- induce PpefA-lacZ (same as

Pgbs1753-lacZ above), to compare induction levels in the WT and

DpefA DpefCD double mutant strains (Fig. 7A). In response to heme

and PPIX addition, b-galactosidase activity was respectively about

2-fold and 3-fold increased in the DpefA DpefCD mutant compared

to WT, suggesting that more heme and PPIX are available to

activate the pefA (gbs1753) promoter in this mutant.

Second, we used an in vivo ‘‘heme and PPIX sensor’’: the E.

faecalis catalase KatA is degraded if not bound to a porphyrin

molecule [19]. Intracellular availability of heme or PPIX was

evaluated by comparing the relative stability of the E. faecalis KatA

expressed in the WT strain and DpefA DpefCD and DpefR mutants

Figure 4. PefR is a heme- and PPIX-modulated repressor of pefAB and pefRCD loci. A. Gel mobility shift analysis of the effect of heme on
PefR binding to pefAB (right) and pefRCD (left) promoter regions. 2 pmoles of PpefAB or PpefRCD fragments and 30 pmoles of PefR were mixed.
Increased concentrations of heme were added in ratios indicated (keeping PefR constant). Assays were also performed with PPIX (Fig. S1A), giving
similar results. On the two top panels, lanes 1–3 were juxtaposed to lanes 4–5, which were separated on the initial same gel. B. Northern blot analyses
of pefAB and pefRCD expression in the presence of heme or PPIX in WT NEM316. Cultures were grown in the presence of 0, 1, 5 and 10 mM heme or
PPIX, and harvested for total RNA extraction in early stationary phase. As probe efficiencies and times of exposure differ for each target RNA,
differences between pefAB and pefRCD levels are not comparable. ldhL (gbs0947; ‘ctrl’) mRNA was used to control for RNA quantities.
doi:10.1371/journal.ppat.1000860.g004

Intracellular Heme Control by an Efflux Regulon
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(Fig. 7B and data not shown). Cells were grown without

porphyrins or in 1 mM heme or PPIX, and KatA levels were

followed in Western blots on cell lysates. Amounts of KatA in the

WT and DpefR mutant strains were not significantly different (data

not shown), which might reflect the limits of this reporter system.

However, in the DpefA DpefCD mutant to which heme or PPIX was

added, KatA showed pronounced stabilization, as expected for

higher intracellular porphyrin levels in that strain. Results of both

in vivo systems used above point to greater availability of

porphyrins in the DpefA DpefCD mutant.

Physiological impact of pefAB and pefRCD activities on
S. agalactiae respiration and virulence

S. agalactiae takes up exogenous heme, which activates its

membrane cytochrome bd quinol oxidase, and is needed for

respiration metabolism; the shift to respiration increases cell

density by at least 20% compared to aerobic fermentation growth

[17]. We compared WT, DpefR, DpefA DpefCD, DpefB DpefCD, and

the DpefR strain complemented by a plasmid-carried pefR gene

(ppefR) for their capacity to grow in respiration conditions (Fig. 8A).

The WT, DpefA DpefCD, DpefB DpefCD, and the complemented

DpefR strain showed increased growth densities, indicative of

respiration growth in these conditions. In contrast, the DpefR

mutant was not augmented, suggesting a respiration defect of this

strain. The pefR::ISS1 insertional mutant gave the same results as

the DpefR deletion strain (data not shown).

To confirm that the growth difference observed above was

due to respiration metabolism, we performed the same growth

experiments in the presence of 2-n-heptyl-4-hydroxyquinoline

N-oxide (HQNO), which inhibits respiration but allows fermen-

tation growth (data not shown; [17]). All tested strains except

DpefR displayed lower growth densities in HQNO, which were

comparable to those in aerobic fermentation; HQNO had no

effect on cell density of the DpefR mutant. These results confirm

that all strains tested above (Fig. 8A), except DpefR, activated

respiration growth.

Respiration growth provokes an increase in oxygen consump-

tion [17]. This property was examined to confirm the respiration-

defect of DpefR. Oxygen consumption in aerobic fermentation

growth by the WT, DpefR, and DpefR (ppefR) strains was measured

as 20.3, 21.0, and 31.1 mM.min21 per OD600 = 1 cells (Table 1),

which in these conditions reflects cytoplasmic NADH oxidase

activity [17]. In respiration-permissive conditions, oxygen con-

sumption by the WT and DpefR (ppefR) strain was markedly higher

(44.2 and 51.6 mM.min21 respectively), but only moderately

higher for the DpefR mutant (30.2 mM.min21) (Table 1), further

indicating the respiration-defect in the DpefR mutant. These

results, together with the above studies, indicate that high PefAB

and PefCD efflux activities impact on respiration by diminishing

heme availability.

WT, DpefAB DpefCD and DpefR strains were tested in a mouse

infection model (Fig. 8B). Virulence of the parental strain, and the

DpefA DpefCD or DpefB DpefCD mutants was essentially the same. In

contrast, the DpefR mutant (as well as the pefR::ISS1 insertional

mutant; data not shown) showed markedly attenuated virulence.

Earlier findings showed that a S. agalactiae respiration-defective

mutant is attenuated for virulence [17]. Reduced intracellular

heme of pefR leads to a respiration deficiency, which can explain

virulence attenuation of this mutant.

Discussion

The present study uncovers a previously unknown system of

porphyrin homeostasis in S. agalactiae, comprising two operons

encoding distinct efflux pumps, controlled by a single intracellular

regulator. Our results indicate that PefR, like numerous MarR-

type proteins, acts as an intracellular sensor to regulate efflux of

its ligands [40],[33], in this case, porphyrins. The range of PefR

regulation is confined to the pefAB and pefRCD operons, as deduced

from the presence of an IR within a 23 bp sequence uniquely

upstream of these operons. This configuration is typical of MarR

binding sites [33], [41],[42]. Expression of the pefAB and pefCD

efflux loci limits S. agalactiae intracellular porphyrin availability; at

high pef expression levels, S. agalactiae may be unable to activate

respiration metabolism, and to cause septicemic infection in the

animal host. The management of intracellular porphyrin levels by

efflux pumps, and regulation by an intracellular sensor in S.

agalactiae constitutes new information on heme and PPIX

homeostasis strategies.

Homology searches revealed that 9 out of 10 species carrying

pefAB genes also encode cytochrome bd quinol oxidases, and thus

are genetically equipped (like S. agalactiae) to activate a respiration

metabolism in the presence of heme, or heme and a menaquinone

(Table S2). In contrast, the pefRCD operon seems to be specific to

the Streptococcus genus, and is also present in species lacking the

respiration genes. Among conditionally respiring bacteria, most

characterized S. agalactiae isolates [43], and Streptococcus uberis

encode the complete pef regulon. Since members of both these

species share the same ecological niche (both are responsible for

bovine intramammary infection [44], [45]), the presence of the

Figure 5. The hrtAB locus is induced by higher heme concentra-
tions than pefAB or pefRCD, and is not induced by PPIX. A.
Northern blot analyses of gbs0119 expression in the presence of heme or
PPIX in WT NEM316. Cultures were grown in the presence of 0, 1, 5 and
10 mM heme or PPIX, and harvested for total RNA extraction in early
stationary phase. ldhL (gbs0947; ‘crtl’) mRNA was used as RNA quantity
control. The hybridization was performed on the same membrane as that
used in Fig. 4B. B. Expression analysis of Pgbs0119-lacZ by determination of
b-galactosidase activity in early stationary phase. S. agalactiae was grown
in BHI liquid medium in the presence of different heme concentrations.
Measurements were performed three or more times.
doi:10.1371/journal.ppat.1000860.g005
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complete pef regulon might conceivably arise from a genetic

transfer event. However, this possibility is unlikely, as the identity

between their pef ORFs (73% to 49%) is not higher than the 72%

identity between these species at the genome level (Average

Nucleotide Identity; calculated as in [46]). Conservation of the pef

regulon may indicate a role in survival and/or infection in the

particular biotopes of both these species.

Results of this study add heme and PPIX to the inventory of

MarR interactants. Several MarR proteins were previously shown

to bind to, and regulate efflux of lipophilic and planar molecules,

such as antibiotics, aromatic aldehydes or fatty acids, usually as a

means to limit cellular toxicity [47]–[51]. PefR activity would

expectedly be tuned to retain sufficient intracellular heme for

functions such as respiration. Indeed, pefAB expression in cells

grown with porphyrins is induced to only half the levels compared

to a fully induced DpefR mutant (data not shown). This, and the

fact that the DpefR mutant is respiration defective, supports the

need for basal levels of intracellular heme. Moreover, the presence

of two putative PefR binding sites upstream of pefRCD (versus one

upstream of pefAB) might influence the differential regulation of

the two loci; possibly, lower levels of pefCD expression could

participate in limiting intracellular heme depletion.

PefAB and PefCD add to a handful of other systems described

as being involved in porphyrin efflux. The PefAB and PefCD

systems share common features with two efflux systems in

eukaryotes that control porphyrin pools: Feline leukemia virus

receptor C, FLVRC, is an MFS-family protein (like PefA) that

exports cytoplasmic metalloporphyrins across an ion-proton

gradient [52], [53]. The breast cancer resistance protein Bcrp/

ABCG2 in humans is an ABC family transporter (like PefCD) that

regulates eukaryotic intracellular heme levels under hypoxic

conditions [54], [55]. Just two possible porphyrin efflux systems

were described in bacteria, neither of which is an analog of PefAB

or PefCD: In E. coli, TolC effluxes PPIX, possibly to facilitate its

turnover after iron extraction from heme; neither its regulation,

nor its capacity to efflux heme have been reported [5], [56]. In S.

aureus, the hrtAB locus is regulated by heme, but not PPIX, and its

inactivation provokes accrued heme sensitivity [28], [27]. The S.

agalactiae hrtAB homologous system (gbs0120 gbs0119) is likely to

have a similar role in limiting heme toxicity. In contrast, the pef

regulon is activated by PPIX, and at heme concentrations that do

not induce hrtAB.

As PefAB efflux relies on proton motive force (PMF) to export

substrates, we speculate that activity would be stimulated by the

greater PMF generated under respiration conditions, as shown in

L. lactis [57], [17], [58]. Indeed, the PefAB system is conserved in

streptococci and lactobacilli having the capacity to activate a

respiration metabolism. As PefCD requires ATPase activity, its

activity likely varies according to growth conditions [59], [60]. The

need for both PefAB and PefCD activities in S. agalactiae may

accommodate the different metabolic states encountered in vivo,

e.g., anaerobic fermentation in abscess, aerobic fermentation in

lungs, and respiration in sepsis.

A model for heme and PPIX homeostasis in S. agalactiae, based

on the newly characterized Pef operons, is proposed (Fig. 9): PefR

represses expression of pefAB and pefRCD operons. Heme and

PPIX are assimilated by unknown mechanisms. Once intracellu-

lar, these molecules interact with PefR, which detaches from its

binding sites to activate PefAB and PefCD efflux pumps. Activities

of the two Pef systems may assure rapid adjustment of intracellular

Figure 6. DpefAB and DpefCD mutants are affected in PPIX and heme sensitivity. A. Growth curves of WT and mutant strains in the presence
of heme. Cells were grown aerobically in M17G medium supplemented with 0 or 1 mM heme. WT (black circle), WT +1 mM heme (black square), DpefA
DpefCD (red circle), DpefA DpefCD +1 mM heme (red square), DpefB DpefCD (gray circle, dashed line) and DpefB DpefCD +1 mM heme (gray square,
dashed line). Results shown are representative of 3 experiments. Growth retardation of DpefA DpefCD or DpefB DpefCD was more pronounced with 2
and 4 mM heme. B. Photosensitivity of WT and mutant S. agalactiae strains grown in the presence of PPIX. Cells were grown until early stationary
phase in M17G medium supplemented or not with 10 mM PPIX. Serial 10-fold dilutions (exponent is indicated) were exposed to 0, 10, or 50 minutes
visible light. Plates were photographed after 24 h incubation.
doi:10.1371/journal.ppat.1000860.g006
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Figure 7. PPIX intracellular accumulation in vivo. A. Expression analysis of PpefA-lacZ by b-galactosidase activity determinations was performed in
early stationary phase cells of WT and DpefA DpefCD strains. S. agalactiae and derivatives were grown in BHI liquid medium. Results represent the mean 6
standard deviation from triplicate experiments. Asterisks denote statistically significant differences as determined by Student’s t-test (p#0.05).
B. PPIX- or heme-dependent production of the E. faecalis catalase KatA in S. agalactiae WT, and DpefA DpefCD mutant strains. Cells were grown in M17G
supplemented or not with 1 mM of PPIX or heme. The loading of equivalent amounts of protein was verified by Coomassie stained gels performed in
parallel. KatA was detected in total S. agalactiae protein extracts by immunoblot assays. Results shown are representative of 3 experiments.
doi:10.1371/journal.ppat.1000860.g007
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heme levels under different cell physiological conditions. Whether

PPIX efflux by pefAB pefCD has a biological role in S. agalactiae as

an enzymatic byproduct of iron capture as in E. coli [5] remains to

be determined. At higher heme concentrations, HrtAB homologs

Gbs0120 and Gbs0119 could be activated via the putative two-

component system Gbs0122 (heme sensor) and Gbs0121 (regula-

tor), as was demonstrated for HssRS in S. aureus [27]. This system

would have a dominant role in protecting cells in a heme-rich

environment, e.g., in conditions of massive degradation of host red

blood cells; such a role is consistent with the strong induction of

hrtAB (.200-fold) when heme levels are high (Fig. 5). Inactivation

of pefAB and pefCD loci results in increased intracellular heme and

PPIX pools, with consequences on growth and on heme-

dependent enzyme activities; constitutive activity of these operons

by pefR inactivation depletes these intracellular pools, resulting in

respiration and virulence defects.

A role for respiration functions in virulence has been reported

for diverse bacterial pathogens, including Brucella abortus, Shigella

flexnei, S. aureus and Mycobacterium tuberculosis; unlike S. agalactiae,

these bacteria biosynthesize heme and are autonomous for

respiration [61]–[64]. In S. agalactiae, respiration is part of the

metabolic reprogramming that occurs during the requisite

septicemic phase of infection, in heme-rich blood [17]. We suggest

that a correlation between unavailability of heme due to high

pefAB and pefCD activity, and the respiration defect explains

virulence attenuation in the DpefR mutant. The use of efflux to

regulate metabolic activity of a major bacterial pathogen has not

been previously reported, and will lead to a better understanding

of how bacteria deal with heme and other porphyrins in the

variable conditions they encounter during infection.

Materials and Methods

Ethics statement
All animal experiments were performed in strict accordance

with INRA institutional guidelines of good animal practice (Jouy-

en-Josas, France), and approved by the Direction des Services

Vétérinaires (accreditation number 78-63).

Bacterial strains, growth conditions and plasmids
Strains and plasmids used in this study are described in Tables 2

and 3. NEM316, a S. agalactiae capsular serotype III strain was

used as wild type (referred to as WT) and was isolated from a fatal

case of septicemia [65]. S. agalactiae and its derivatives were

cultivated at 37uC in M17 medium (Oxoid) supplemented with

glucose (0.2% for pre-cultures and 1% for test cultures [referred to

as M17G]). For b-galactosidase assays, S. agalactiae was grown in

BHI (brain heart infusion, Difco Laboratories) supplemented with

0.8% glucose. Aerated cultures were grown under agitation at

Figure 8. Physiological consequences of pef mutations. A. Impact on respiration metabolism of deregulating pefAB pefCD expression by pefR
inactivation. S. agalactiae WT, DpefA DpefCD, DpefB DpefCD, DpefR and DpefR transformed with vector containing a wild-type copy of pefR (DpefR +
ppefR) strains were grown in respiration-permissive conditions (i.e., 1 mM heme and 10 mM menaquinone). S. agalactiae respiration growth is
characterized by a gain in cell density [17]. Absorbance (OD600) is shown on cultures after 22 h growth. Errors bars represent the standard deviation of
three independent experiments. B. Impact on virulence of deregulating pefAB pefCD expression by pefR inactivation. Survival curves in adult mice
infected with S. agalactiae WT (black square), DpefA DpefCD (red diamond), DpefB DpefCD (gray triangle, dashed line) or DpefR (blue triangle) strains.
Differences in mortality between mice infected with the WT versus the DpefR mutant were statistically significant (p,0.001).
doi:10.1371/journal.ppat.1000860.g008

Table 1. Measurement of oxygen consumption according to
metabolism in WT and DpefR strains.

Strains Oxygen consumption (mM.min21)

Aerobic fermentation Respiration

WT 20.361.6 44.265.7

DpefR 21.066.6 30.264.8

DpefR + ppefR 31.163.2 51.660.3

S. agalactiae WT, DpefR, and DpefR complemented by a plasmid carrying a wild-
type copy of pefR (DpefR + ppefR) were grown to late exponential phase.
Oxygen consumption was measured on whole cells with a Clark-type oxygen
electrode. Results represent the means 6 SD of two (for DpefR + ppefR) or three
experiments.
doi:10.1371/journal.ppat.1000860.t001
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200 rpm in a ratio of air space to liquid of approximately 5/1.

Respiring cultures were grown under agitation in the presence of

1 mM hemin (from a stock solution of 10 mM hemin chloride,

Fluka) and 10 mM vitamin K2 (a menaquinone; Sigma). E. coli was

cultivated in LB medium (Luria-Bertani, Difco Laboratories) at

37uC with aeration by shaking at 180 rpm. Antibiotics were used

as needed at the following concentrations: for S. agalactiae, 5 mg/ml

erythromycin, 1000 mg/ml kanamycin, 4 mg/ml chloramphenicol,

5 mg/ml tetracycline; for E. coli, 100 mg/ml erythromycin, 20 mg/

ml chloramphenicol.

RNA extraction, Northern blot and RACE PCR
RNA was extracted from S. agalactiae cultures as described [66].

Cells from 20 ml culture with an OD600 of 0.5,0.8 (exponential

growth phase) or OD600,1.5 were harvested by centrifugation

at 60006g during 10 min. Total RNA was extracted with a

guanidine isothycionate and phenol-chloroform step [67], using

the TRIzol Reagent (Invitrogen).

For Northern blot analysis, RNA samples (30 mg) were

mixed with an equal volume of glyoxal load dye (Ambion) and

were electrophoretically separated on a 0.9% agarose glyoxal

gel [68]. RNA samples were transferred to a Biodyne B mem-

brane (Pall) according to manufacturer’s instructions. Hybridiza-

tion and detection were performed using ECL direct nucleic

acid labeling and detection systems (Amersham). A ,500 base

pair (bp) DNA labeled fragment of each ORF tested was used

as probe. Primers used for probe generation are shown in

Table S3.

The pefA transcriptional start was mapped using a 59/39 rapid

amplification cDNA ends (RACE) kit, second generation (Roche

Applied Science) according to supplier’s instructions. Mapping was

realized with RNA extracted from respiring cells, using primers:

Figure 9. Model for pefAB and pefCD functions regulated by an intracellular sensor in S. agalactiae. Extracellular heme and PPIX may be
internalized by as yet unknown transporters. By homology with a recently described system in S. aureus [27], heme, but not PPIX, may bind to a
putative external two-component receptor protein Gbs0122, the homolog of S. aureus HssS, resulting in gbs0119 gbs0120 (hrtAB) induction. Once
inside the cell, free porphyrin molecules may encounter different binding proteins, including PefR. Apo-PefR binds to pefAB and pefRCD promoter
regions to repress their expression. PefR-porphyrin binding releases PefR from DNA, to enable pefAB and pefRCD expression. The PefAB and PefCD
loci mediate efflux of free heme and PPIX to avoid toxicity. Overexpression of PefAB and PefCD leads to heme depletion and respiration and virulence
defects. Phenotypes of DpefR versus DpefAB DpefCD mutants are shown in the Table below.
doi:10.1371/journal.ppat.1000860.g009
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59TAGATGTAGGTGCTAACGTCG39 and 59CTTGTTGAG-

CCGTTGACAACG39.

b-galactosidase assays
Plasmid pTCV-lac is a low copy number plasmid used to

evaluate promoter activities in S. agalactiae [32]. A DNA fragment

containing gbs1753 promoter was PCR-amplified with primers

59GCGTAGAATTCATTAAATGGAG39, containing an EcoRI

site (underlined) and 59TATCTCGGATCCCTATTTCTGAT39,

containing a BamHI site (underlined). After digestion of the

amplified fragment by EcoRI and BamHI, the gbs1753 promoter

was cloned into plasmid pTCV-lac, resulting in plasmid pTCV-J11

carrying the Pgbs1753-lacZ (or PpefA-lacZ) fusion. The plasmids

pTCV-lac and pTCV-J11 were subsequently transformed into S.

agalactiae by electroporation and recombinant clones were obtained

by erythromycin selection. The same strategy was performed to

generate a Pgbs0119-lacZ fusion using the primers 59ATACGCCA-

GAATTCTCGGCGAC39 and 59CCTTGGATCCTTTGATG-

TGAAC39, giving rise to plasmid pTCV-J21.

Mutagenesis and screening conditions
Random insertional mutagenesis was performed on S. agalactiae

with pG+host8::ISS1 basically as described [69]. Both Pgbs1753-lacZ

(reporter for gbs1753 transcription) and pG+host8::ISS1 plasmids

were established in S. agalactiae. The strain was grown at 30uC with

kanamycin for 2.5 h. The temperature was then shifted to 37uC
for 2.5 h and plated on M17G with erythromycin, kanamycin and

80 mg/ml X-gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyra-

noside, BioMerieux), to obtain ,100 CFU per plate. After 24 h

incubation at 37uC, deep blue colonies were selected. Stable ISS1

mutants were isolated by growth at 30uC without erythromycin as

described [70]. The flanking chromosomal DNA was sequenced

using primer 59AGGGCATGGAAACAATTCGAGG39. From

the 5000 mutants we screened, 7 were in the pefR locus. Stable

ISS1 mutants were then retested for gbs1753 up-regulation.

Gbs1402 (PefR) overexpression and purification
The gbs1402 ORF was amplified by PCR from S. agalactiae

NEM316 using primers 59CACCATGGAGAATCCTCTT-

CAAAA39 and 59TAATCAAAATCTTCCATCGCC39. This

amplified fragment was cloned into the E. coli expression plasmid

Champion pET100 directional TOPO vector (Invitrogen) and

transformed into E. coli TOP10. After plasmid verification by

sequencing, the plasmid pET100-J14 was electroporated in E. coli

BL21 (DE3). Protein expression was induced at an OD600 = 0.6 by

addition of 1 mM IPTG for 2 h. Cells were harvested by

Table 2. Strains used in this study.

Strain name Main characteristics Reference

E. coli

TOP10 F- mcrA D(mrr-hsdRMS-mcrBC) W80lacZDM15 DlacX74 recA1 araD139 D(ara-leu)7697 galU galK rpsL (StrR) endA1 nupG Invitrogen

TG1repA+ supE hsd-5 thi D(lac-proAB)F9(traD36 proAB+ lacIq lacZDM15) repA+ [71]

BL21 Star (DE3) F2 ompT hsdSB(rB
2mB

2) gal dcm (DE3) Invitrogen

S. agalactiae NEM316

NEM316 Serotype III isolated from neonatal blood culture [65]

NEMJ11 NEM316 DpefA. In-frame deletion of amino acid (aa) positions 36–433 of PefA. This study

NEMJ12 NEM316 DpefB. In-frame deletion of aa positions 26–211 of PefB. This study

NEMJ13 NEM316 DpefC DpefD. Double deletion of aa positions 133–605 of PefC and positions 1–419 of PefD. This study

NEMJ14 NEM316 DpefR. In-frame deletion of aa positions 24–145 of PefR. This study

NEMJ15 NEM316 DpefA DpefCD This study

NEMJ16 NEM316 DpefB DpefCD This study

NEMB08 NEM316 gbs1402::ISS1. ISS1 insertion between codon positions 81 and 82 aa of the gbs1402 ORF. This study

doi:10.1371/journal.ppat.1000860.t002

Table 3. Plasmids used in this study.

Plasmid name Main characteristics Reference

pTCV-lac Conjugative E. coli-Gram-positive bacteria shuttle plasmid with b-galactosidase reporter construct. EmR KmR. [32]

pTCV-J11 Pgbs1753-lacZ or PpefA-lacZ. gbs1753 (pefA) promoter region cloned into pTCV-lac. EmR KmR. This study

pTCV-J21 Pgbs0119-lacZ. gbs0119 promoter region cloned into pTCV-lac. EmR KmR. This study

pG+host8::ISS1 Vector for insertional mutagenesis. TetR. [69]

pG+host5 Temperature sensitive vector used in Gram-positive bacteria. EryR. [70]

pRC2 Cloning vector for complementation. CmR [72]

pRC2-J14 pRC2 plasmid containing pefR gene, referred as ppefR. CmR. This study

pET100/D-TOPO Cloning vector. AmpR Invitrogen

pET100-J14 Expression N-terminal His tagged PefR. AmpR This study

pLUMB5 PaphA-3-katA-His6. Expression E. faecalis KatA. Kanamycin resistance promoter. CmR [19]

doi:10.1371/journal.ppat.1000860.t003
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centrifugation at 6000 rpm for 10 min and resuspended in 10 ml

binding buffer (Tris HCl 50 mM pH 8, NaCl 300 mM, Imidazole

50 mM). Cells were broken by shaking with glass beads in a Fast

Prep apparatus (MP Biomedicals). The lysate was centrifuged at

14000 rpm for 15 min at 4uC. The recombinant His-tagged fusion

protein was purified by nickel affinity chromatography using His-

Select affinity (Sigma) equilibrated with binding buffer according to

supplier’s instructions. The elution was carried out with binding

buffer containing 300 mM imidazole. All fractions were collected

and analyzed by SDS-PAGE. Purified proteins were dialyzed against

50 mM Tris HCl pH 8, 80 mM NaCl and 6.25% glycerol. Protein

concentrations were determined by the Lowry assay (Bio-Rad).

Immunoblotting analysis
Strains harboring PaphA-3-katA-His6 plasmid were incubated

overnight under static conditions with or without 1 mM heme or

PPIX. Cell growth was harvested by centrifugation at 60006g

during 10 min. Cells were broken by shaking with glass beads in a

Fast Prep apparatus (MP Biomedicals). Immunoblotting analysis

was done with rabbit anti-KatA antiserum as described, and kindly

provided by Dr. L. Hederstedt [19]. Detection was performed

using ECL Plus Western blotting detection reagents (GE

Healthcare).

Electrophoretic mobility shift assay (EMSA)
A 281 bp DNA fragment containing the gbs1753 promoter

region and a 248 bp DNA fragment containing the gbs1402

promoter region were generated by PCR from genomic DNA of S.

agalactiae and purified using the PureLink PCR Purification Kit

(Invitrogen). Binding assays with PefR were carried out using a

binding buffer (5% glycerol, 20 mM Tris HCl pH 8, 50 mM KCl,

0.2 mM MgCl2, 1 mM EDTA, 0.2 mM DTT, 0.3 mM BSA) in a

final volume of 15 ml at 37uC. Reaction mixtures were incubated

at 37uC for 20 min, after which they were analyzed by gel

electrophoresis on an 8% polyacrylamide gel in TBE 16 buffer,

stained with ethidium bromide. Reactions were carried out in the

presence of a 116 bp non-specific competitor DNA (internal

coding gbs1753 sequence) where specified. Where tested, heme or

PPIX were added 20 min after protein and DNA components. Gel

shift experiments were performed with two independent batches of

purified PefR.

Construction of Dgbs1753 (DpefA), Dgbs1752 (DpefB),
Dgbs1401 Dgbs1400 (DpefCD) and Dgbs1402 (DpefR)
mutants and ppefR plasmid construction

In-frame pefA, pefB, pefCD, and pefR deletion mutants were

constructed using the strategy described below. Briefly, the two

regions flanking the locus to be deleted were independently

amplified by PCR (see Table S3 for primers). Amplified fragments

were digested by HindIII or EcoRV enzyme and ligated to each

other. The resulting fragments were amplified by PCR, digested

by EcoRI enzyme and cloned into the thermosensitive shuttle

plasmid pG+host5. Electroporation of S. agalactiae strains and

allelic exchange were done as described [70]. In-frame deletions

were confirmed by PCR and sequence analysis. The pefR gene was

amplified (Table S3 for primers), and cloned using EcoRI and

BamHI on fragment ends, onto plasmid pRC2 cut with the same

enzymes; the resulting plasmid, pRC2-J14, is referred to as ppefR

in Results.

PPIX and metalloporphyrin sensitivity tests
Stock solutions (10 mM) of PPIX, GaPPIX, ZnPPIX, and

ZnMPIX (Frontier Scientific) were prepared in DMSO. PPIX

sensitivity of S. agalactiae NEM316 and its derivatives was

examined on early stationary growing cells (OD600 = 1.6). For

PPIX light sensitivity tests, serial dilutions were spotted on plates

and exposed to visible light for 0, 10 or 50 minutes. A 500 W

halogen lamp with a glass lid placed at a distance of 55 cm was

used as light source. Metalloporphyrin sensitivity tests on plates

were performed as described [12]: Briefly, 1:100 dilutions of

stationary-phase cultures were prepared in M17G soft (0.7%) agar,

and poured over M17G plates. Metalloporphyrin (heme, 5 ml of a

0.2 mM solution; GaPPIX, 5 ml of a 10 mM solution) was spotted

onto the plates. All plates were incubated for 20 h at 37uC and

then photographed.

Oxygen consumption.measurements
Oxygen consumption was determined as described [17]. Briefly,

S. agalactiae WT and DpefR late exponential phase cultures,

prepared in aerobic fermentation or respiration conditions, were

washed twice with PBS at 4uC and resuspended in the same buffer

to obtain a 1 ml bacterial suspension at OD600 = 1.0. Oxygen

consumption was followed with a Clark-type oxygen electrode

(Liquid-Phase Oxygen electrode unit DW1, Hansatech instru-

ments). The maximum oxygen consumption rate was measured

following the addition of 10 mM glucose.

Mouse virulence assay
Pathogen-free 6 week-old Swiss CD1 mice (Charles River

laboratories) were infected intravenously with S. agalactiae NEM316

or derivatives. Groups of 7–8 mice were anesthetized with ketamine

(100 mg/g, Merial) and xylazine (12 mg/g, Bayer) and were

inoculated in the eye vein with 108 CFU. Bacterial counts were

determined in parallel by plating serial dilutions in saline buffer on

M17G. Cells were harvested from mid-log phase and washed in a

solution of NaCl 0.9%. Mortality was observed over a 10-day period.

Animal experiments were performed in triplicate.

Bioinformatics
To find the conserved sequence between pef promoter regions,

sequence were aligned with ClustalW and manually refined. A

search for the 23 bp consensus in S. agalactiae NEM316 genome was

done by visual inspection, and using BlastN program with EXPECT

threshold set at 100. Pef protein homologs were identified using

Genome Region Comparison, http://cmr.jcvi.org/cgi-bin/CMR/

CmrHomePage.cgi, and/or were retrieved from genomic Blast

databases, http://blast.ncbi.nlm.nih.gov/Blast.cgi/, using BlastP

program with an E-value threshold set at 0.01.

Supporting Information

Figure S1 A. PPIX displaces PefR from its DNA target. Gel

mobility shift analysis of the effect of PPIX on PefR binding to the

pefAB (right) and pefRCD (left) promoter regions. Samples

contained 2 pmoles of PpefAB or PpefRCD fragment and 30 pmoles

of PefR, to which were added either sample buffer, 120 pmoles

(left) or 240 pmoles (right) of PPIX. On the two top panels, lanes

1–2 were juxtaposed to lane 3, which were separated on the initial

same gel. B. Heme, but not iron, displaces PefR from its DNA

target. Samples contained 2 pmoles of PpefAB fragment and

32 pmoles of PefR, to which were added either sample buffer,

160 pmoles heme, or 160 pmoles iron. Lanes 1–2 were juxtaposed

to lane 3–4, which were separated on the initial same gel.

Found at: doi:10.1371/journal.ppat.1000860.s001 (1.51 MB EPS)

Figure S2 Differential heme (FePPIX) and GaPPIX sensitivity of

the pef mutants. Stationary phase cultures of WT, DpefR, DpefA
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DpefCD or DpefB DpefCD strains were spread on M17G plates and

1 nmole of heme (A) or 50 nmoles of GaPPIX (B) were pipetted

directed onto plates. Plates were incubated 24 hours, and then

photographed. Representative results of at least 3 experiments are

shown.

Found at: doi:10.1371/journal.ppat.1000860.s002 (1.40 MB EPS)

Table S1 Transcriptome analysis in respiration versus aerobic

fermentation conditions. Cells were grown in M17 medium with

1% glucose, supplemented or not with a mixture of 10 mM vitamin

K2 (a menaquinone) and 48 mg/ml hemoglobin as heme source.

Cells were harvested at OD600 = 0.3 for RNA extraction. Total

RNA was extracted and analyzed by hybridization on NEM316

derived whole genome DNA macroarray as described [66]. Fold

change in expression is the mean of two independent macroarray

experiments. Shown are results of S. agalactiae genes whose

expression was induced or repressed at least 2-fold in respiration

compared to aeration conditions. Genes further studied in this

work are in bold. Gene assignments are according to the Sagalist

web site (http://genolist.pasteur.fr/SagaList/) and BLAST search-

es (http://blast.ncbi.nlm.nih.gov/Blast.cgi/).

Found at: doi:10.1371/journal.ppat.1000860.s003 (0.09 MB

DOC)

Table S2 Distribution of pef regulon and cytochrome genes among

Lactobacillales. * Reorganization of gene or domain order; #
frameshift mutation in pefA homologous gene. In bold, species

containing the complete pef regulon; ** Imperfect repeats, character-

istic of MarR DNA binding sites, are present in respective pefAB and

pefRCD promoter regions of this strain; *** gbs1401 and gbs1400

ORFs are missing in S. agalactiae 2603V/R [43].

Found at: doi:10.1371/journal.ppat.1000860.s004 (0.06 MB

DOC)

Table S3 Primers used in this study.

Found at: doi:10.1371/journal.ppat.1000860.s005 (0.05 MB

DOC)
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