Development of new biosensors to detect ciguatoxins
Helene Yken, Sylvain Derick, Camille Gironde, Hélène Taiana Darius, Christophe Furger, Dominique Laurent, Jean-Marie François, Mireille Chinain

To cite this version:
Helene Yken, Sylvain Derick, Camille Gironde, Hélène Taiana Darius, Christophe Furger, et al.. Development of new biosensors to detect ciguatoxins. ECSafeSeafood final Conference, Jan 2017, Bruxelles, Belgium. ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 1p., 2017, 10.13140/RG.2.2.22311.14246. hal-02952021v2

HAL Id: hal-02952021
https://hal.science/hal-02952021v2
Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Ciguatera Fish Poisoning: the most prevalent intoxication from seafood worldwide!

- **Symptoms:** variety of gastrointestinal, cardiovascular, neurological symptoms (paresthesia, ataxia, cold allodynia), with persistent neurological effects
- **Cause:** Ciguatoxins or CTXs, lipid-soluble polyethers produced by dinoflagellates Gambierdiscus spp., mostly found in tropical and subtropical zones, and now also present in temperate waters.
- **Mechanism:** CTXs bind to Voltage Gated Sodium Channels (VGSCs) of human sensory neurons.

No effective treatment!

Existing functional detection tests for CTXs such as (CBA-N2a, RBA) are heavy, expensive, impossible to transport for an in situ use.

Design of new biosensors based on yeast cells:
- **Why Yeast cells?** well-known, easy to genetically modify, eukaryotic = good conservation of signaling pathways with higher eukaryotes, fast and easy to grow.
- **Methodology:**
 The yeast Ca\(^{2+}\) channel is very close to Mammalian VGSC. In response to CTXs, it induces a transcriptional signal (here reporter gene lacZ), that we measure in yeast cells.

On-going improvements:
Replace colorimetry by Fluorescence, or other value easily measurable in the field Use cell wall and signaling mutants to improve CTXs access and amplify the signal
Mutagenesis on the channel protein to improve CTXs binding

Future developments:
Express the Mammalian VGSC in yeast, per se or as chimera with the yeast ion channel, and follow cellular signaling induced. Measure binding of the different toxins to the receptors by Single Molecule Force Spectroscopy (by AFM or Optical Tweezers). Develop cell-free sensors systems with the toxins receptor (human VGSC or its yeast homolog) integrated in lipid bilayers. Create point mutants of the receptors, to identify the residues involved and then design or search for possible cures.

References:
1 Otero et al., Anal. Chem. 2010, 82, 6032
2 Nuñez et al., 2012. Euro Surveill. 17, 2018
3 Fraga et Rodriguez, 2014 Protist 165, 839
5 Caillaud et al., 2010 Mar. Drugs. 8, 1838