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Abstract

In this paper, a method is proposed for the identification of some SISO nonlinear models
with two ill-known components of different nature: a linear (possibly dynamic) part and a static
nonlinear one. This method is well adapted when no a priori information is available about the
nonlinear component to be identified. It is based on a difference operator which enables to cancel
the nonlinear term when applied to the model. Only the ill-known linear part remains in the
transformed model; it can therefore be identified independently of the nonlinear term. Based
on the identified linear component, we have access to a pseudo-graph of the nonlinear term,
whose shape can give precious information for the parameterization of the unknown nonlinear
part and its identification. The identification model under consideration is defined in an abstract
framework, with very weak hypotheses, so that the proposed approach has a large scope. To
highlight the method, a class of dynamic Volterra models including some hybrid models such as
dynamic inclusions is considered for application.

KEY WORDS: System identification; Operatorial cancellation; Nonlinear system; Volterra model;
Diffusive representation

1 Introduction

System identification methods depend on the class of identification models under consideration.
Although discrete-time (DT) models have been mainly studied [1, 2], numerous methods are now
available to identify continuous-time (CT) systems [3, 4]. Two types of CT-based identification
methods have been developed: the “direct” and the “indirect” ones. Whereas the model is directly
identified under its CT form when using a “direct” approach, an “indirect” CT-based identification
method consists first in identifying a DT model and then in transforming it into a CT model. In
the present paper, we propose a direct CT-based identification method.

Identification methods also depend on the structure of the model and the nature of the unknown
components to be identified. Numerous methods have been developed for the identification of linear
dynamic models (see for example [3]), but nonlinear models are now more and more considered [5, 6]
as they are frequently involved in Physics and Biology. The identification methods for nonlinear
systems can be classified into three categories, depending on the form of the considered identification
models: (1) the block structured models (e.g. Hammerstein and Wiener models [7, 8]); (2) the kernel
or nonparametric models (e.g. Volterra series models [9, 10]); (3) and the parametric models (e.g.
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NARMAX models [11]). Among the block-structured approaches, some methods only focus on the
identification of a nonlinear static component, whereas other ones consider models in which both
nonlinear static and linear dynamic components have to be identified (e.g. the Hammerstein models
[12], or other structured models [13]).

Concerning the dynamic part of the model, a lot of methods (modulating functions, integral
equation, linear filters approaches, etc. [3]) have been developed for the identification of linear time-
invariant dynamic operators which can be characterized by means of a rational transfer function. In
that case, the goal is to identify the coefficients of the transfer function, whose structure (number
of poles and zeros) is given. The main advantage of such systems is that they admit a state
representation in which the parameters to be identified appear linearly. However, such models
cannot be used to represent all types of linear dynamic operators. Indeed, some complex dynamic
phenomena need more sophisticated models, not necessarily of finite dimension. Several papers
consider some specific classes of infinite dimensional systems such as time-delay systems [14], non
standard stochastic processes [15] or some distributed physical phenomena [16]. Distributed delay
models (a particular case of time integro-differential equations which can be characterized by a
general transfer function, non necessarily rational) have also been considered in some works [17, 18].

In the present paper, we propose an identification method for a generic class of SISO nonlinear
systems with two ill-known components of different nature: the first one is nonlinear static and
the second one is linear (possibly dynamic and infinite dimensional). The novelty of the proposed
approach mainly comes from the principle of the identification method itself. It consists in decoupling
the identification of the dynamic part of the model from the one of its nonlinear static part by use
of an original “difference” operator which takes advantage of the difference of nature of the two
unknown components. When applied to the original system, this operator enables to cancel the
nonlinear term of the dynamic model, in such a way that the identification of the remaining ill-known
linear dynamic part can first be done independently. Then, based on the so-obtained estimation
of the linear component, we have access to a pseudo-graph of the unknown nonlinear component
whose shape can give precious information for the parameterization of the nonlinear component and
its identification. For example, it can reveal the presence of a discontinuity or a singularity. Note
also that the method has a large scope; the considered class of models includes the Hammerstein
models for which specific identification methods have been developed (see for example [12, 19]). It
also includes the class of nonlinear integral Volterra models already considered in [20], on which the
method described in this paper is applied for illustration in section 6.

The idea of decoupling the linear and nonlinear parts of the model to identify them is not
new: relaxation approaches (such as [8]) and other less common methods [21] are based on this
attractive idea. However, relaxation approaches require the use of an iterative algorithm which
can have problems of convergence [22, 23]. As for the method proposed in [21], it is only suitable
for Hammerstein models, and is not based on the same idea than the one presented in this paper.
In [21] the decoupling between the linear and nonlinear parts of the model is indeed obtained for
a particular input signal (Pseudo-Random Binary Signal) whereas in the present approach, the
decoupling is based on the properties of static functions and therefore does not depend on the input.

To present the method, the paper has been organized as follows. In section 2, the model and
the identification problem are introduced and some concrete examples are given. Then, the method
is presented in details in section 3. In section 4, we propose an analysis of the method previously
described. Then, a simple example is considered in section 5 to show how to implement the method
in concrete situations. In section 6, the method is applied to a class of nonlinear Volterra models
and finally implemented on a concrete example to highlight the relevance of the approach. On this
last example, the proposed method is compared to a classical relaxation approach [24, 8].

Note that section 4 is rather technical but can be skipped without loss of information for the
understanding of sections 5 and 6 or for the implementation of the method. For the sake of clarity,
the notations used in the paper are defined in Appendix A. Only the technical details which are
specific to the proposed method are given in Appendix B.
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2 Presentation of the identification problem

2.1 Identification model under consideration

Let X, Z be some Banach spaces, F a separable Hilbert space and Ω a non-empty compact subset
of Rn. Let Ωi, i = 1 : I be I non-empty compact subsets of Rn and X0 a closed bounded subset of
X; most of the time, Ωi will be time intervals of the form [ti0, t

i
f ] ⊂ R.

Given “admissible” subsets X ⊂
∏I
i=1C

0
X0

(Ωi) and Z ⊂
∏I
i=1 L

∞
Z (Ωi), we consider the abstract

model:
g ◦ x+Ay + z = 0, (1)

with g : X0 → Z a Borel measurable function, x = (xi) ∈ X , y ∈ F, z = (zi) ∈ Z, and A a linear
operator:

A = (Ai) ∈
I∏
i=1

L(F,L∞Z (Ωi)). (2)

Because zi ∈ L∞Z (Ωi), equation (1) must be understood in the almost everywhere sense:

∀i, g(xi(t)) + (Aiy)(t) + zi(t) = 0 t-a.e. in Ωi. (3)

We suppose in addition that g is “almost everywhere continuous” in the following sense:

∀x∈X , ∀i, xi
−1

(W ) is Lebesgue negligible, where W = {ξ ∈ X0 s.t. g is discontinuous at ξ}. (4)

In practice, the condition (4) (as well as the choice of admissible subsets X , Z), can be analyzed by
taking into account available information on the real system under study (see in particular remarks
14). From a pragmatic point of view, this hypothesis can also be postulated a priori and then
confirmed or refuted a posteriori, according to the obtained identification results.

2.2 Formulation of the identification problem

The problem under consideration in this paper is introduced here-after:

Problem 1 (Identification problem) Given model (1), consider some measurement trajectories
xim, z

i
m, A

i
m, i = 1 : I, and denote xm := (xim), zm := (zim) and Am := (Aim) (Am is an operatorial

trajectory).
The problem under consideration is to estimate both y and g, supposed to be unknown, from the
measurement trajectories xim, z

i
m, A

i
m, i = 1 : I, in such a way that (xm, zm, Amy) is close to a

solution (x, z, Ay) of (1).

Remark 2 • In practice, the trajectories xim, z
i
m, A

i
m can be deduced from both physical mea-

surements (with possible noise) and a priori knowledge, with possible numerical computations
(see section 6 for an example).

• Thanks to the abstract form of model (1), the quantity y to be identified can be of various
type: for example, it can be the kernel h of a convolution operator (or another characteris-
tic functional object, see section 6), but also an unknown input of the system (e.g. input,
perturbations, etc.) as in section 5.

2.3 Examples of application

The identification model (1) under consideration in this paper is defined in an abstract framework
and under weak hypotheses, so that it enables to identify a wide class of dynamic models. In
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particular, it can be used for the identification of a generic class of nonlinear Volterra models of the
form:

H(∂t)X = f(X) + u, (5)

where u, X are some real valued trajectories, f is a nonlinear function, and H(∂t) denotes the linear
causal convolution operator associated with the transfer function H and the impulse response h,
that is the operator defined by:

∀X such that X|R∗− = 0, [H(∂t)X] (t) = (h ∗X)(t) :=

∫ t

0
h(t− s)X(s)ds. (6)

Model (5) is of the form (1) with, for example:

x = X, y = h, z = −u, g = −f, A : y 7→ y ∗X. (7)

Other definitions of A and y can be considered, depending on the quantities to be identified (see
examples of sections 5 and 6).

Two concrete examples of such models are given here-after; many others can be found in the
literature (e.g. in [25, 26, 27, 28]). This class of models is considered for identification in section 6
where the method is numerically implemented on the concrete example 4.

Example 3 In [29], a Volterra model has been proposed to describe, in suitable thermodynamic
conditions, the evolution of the radius r of a spherical flame initiated by a source e at point 0 in a
mixture of reactive species. The model is written:

r ∂
1/2
t r = 2 r ln(r) + 2e, (8)

where ∂
1/2
t is the non rational operator with transfer function p1/2. This model is of the form (5)

with X = r, u = 2 e
r , f = 2 ln and H(∂t) = ∂

1/2
t .

Example 4 In [30], a dynamic model has been proposed for the electrical behavior of a capacitor
realized in cubic Perovskite CaCu3Ti4O12. The system includes three components as shown in Figure
1: a resistor r in series with a capacitor of impedance Zc in parallel with a nonlinear conductance:
IG = G(Vc)×Vc.
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Figure 1: System of example 4: structure of the capacitor realized in cubic Perovskite
CaCu3Ti4O12.

The model is written as follows:

V = Zc(∂t)(I −G(V − rI)×(V − rI)) + rI, (9)

⇔ Zc(∂t)
−1(V − rI) = −G(V − rI)×(V − rI) + I, (10)
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where V and I are the voltage and the current, G is the non linear conductance function, and Zc(∂t)

is the impedance operator whose (non rational) transfer function is of the form Zc(p) = (1+τp)β

C p with
C, τ > 0 and 0 < β < 1. This model is of the form (5) with X = V − rI, u = I, f : X 7→ −G(X)X
and H(∂t) = Zc(∂t)

−1.

Finally, one can note that the identification model (1) (and thus the identification method
proposed in this paper) can be used to identify nonlinear and dynamic linear unknown components
of some dynamic inclusions models like [31, 32, 33]. Indeed, considering a function g discontinuous
at some points ξ ∈ X0, if we denote g̃ a set-valued map defined by: g̃(ξ) ⊂ Z for all ξ ∈ X0 and
g̃(ξ) = {g(ξ)} if g is continuous at point ξ, then models such as:

g̃(xi(t)) 3 −(Aiy)(t)− zi(t) (11)

can straightforwardly be identified using the formulation (1), assuming that hypothesis (4) on mea-
sured trajectories is satisfied. This remark applies also for the particular case of Volterra models
(5) which can be considered as dynamic inclusions when f is a discontinuous function; a concrete
example of identification of such a “pseudo-differential inclusion” is treated in section 6.4.5.

2.4 Technical comments about model (1)

Some comments about model (1) are given here-after.

• First, the assumption that xi has values in a bounded set X0 ⊂ X is justified by the fact
that necessarily, for a given x (namely the one which is used, via its measurement xm, for
identification), the set Im(x) :=

⋃I
i=1 x

i(Ωi) is compact in X. Indeed, xi(Ωi) is compact
because xi is a continuous function on the compact set Ωi. In addition, because function g
must be identified on X0, this set must be chosen such that Im(x) is close to X0 in the sense:

sup
η∈X0

inf
ξ∈Im(x)

‖ξ − η‖X 6 α, (12)

with α > 0 small enough.
In practice, the only available data will be the measurement xm. Assume that the measurement
noise belongs to

∏
iC

0
X(Ωi). As usual, some pre-filtering of the data can be required to satisfy

this property, namely when measurement noises are white. Under this assumption, and if we
suppose that ‖xm − x‖ 6 α

2 , then (12) can be achieved by taking X0 as follows:

X0 =
⋃

ξ∈Im(xm)

BX(ξ, β), β >
α

2
, (13)

where BX(ξ, β) denotes the closed ball in X, with center ξ and radius β.
In addition, to make possible a significant identification of g, it can be expected that X0

contains some subset C ⊂ X given a priori. This will be insured if xm is such that:

sup
η∈C

inf
ξ∈Im(xm)

‖ξ − η‖X 6
α

2
. (14)

Roughly speaking, this simply requires the obvious property that the trajectories xi are “rich
enough” to well fill the set C.

• The aim is to propose, in an abstract framework, an identification method which enables to find
a couple (y, g) such that model (1) is a good representation of the system under consideration.
So, uniqueness of the couple (y, g) with respect to given (x, z,A) is not required at this stage.
In fact, without any additional hypothesis, the solution is not always unique (see example
of section 5 and remark 22). In concrete situations however, this property is in general quite
desirable and it will be necessary to study it specifically (as well, possibly, as the well-posedness
of the identified model).
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3 Description of the identification method

In this section, we present the identification method. Only the concrete technical steps of the method
are detailed here-after; the mathematical analysis of the method is done in section 4.

3.1 Principle of the approach

When no a priori information about function g is available, the problem of identifying g and y
simultaneously can present serious difficulties, in particular if g is highly nonlinear (for example non
differentiable, discontinuous or even weakly singular). In such cases indeed, linear parameterizations
of g (whose advantage is to transform (1) into a linear problem) of the form g =

∑
k ak gk with (gk)

a topological basis chosen a priori, may not be accurate enough except if the number of ak is quite
large; but on the other hand, if this number is too large, the estimation is generally bad due to
excessive sensitivity to the measurement noises.

However, one can note that thanks to the linearity of operator A, if the function g (and then
g ◦ x) was known then y could be estimated more easily: indeed the identification problem could
then be written in the sense of a classical least-squares problem, that is, with bm = g(xm) + zm and
G a suitable Hilbert space of Z-valued trajectories:

min
y∈F
‖Amy + bm‖2G , (15)

the solution of which is formally given by the pseudo-inverse of operator Am [34].
The method proposed in this paper takes advantage of this remark by cancelling the nonlinear

term g ◦ x by means of a suitable operatorial transformation of model (1), allowing to estimate y
alone. Under some weak hypotheses, frequently satisfied in practice, the so-obtained new model
indeed reveals itself sufficient for a good estimation of y.

Finally, once an estimate ŷ of y has been computed, it becomes easy to estimate a posteriori the
function g using standard methods applied to the available data, including the new ones deduced
from the knowledge of ŷ, namely Amŷ.

The principle of the operatorial cancellation of g◦x is given here after. Assume that the measured
data are noise-free, and consider two trajectories xi and xj with i, j ∈ {1 : I}. If we find two instants
τ and t such that:

xi(t) = xj(τ), (16)

then, as g is a static function, it follows that g(xi(t)) = g(xj(τ)). By subtraction, we so get from
the ith and jth equations of (1) the following relationship:

(Ayi)(t)− (Ayj)(τ) + zi(t)− zj(τ) = 0. (17)

If we write it for all couples (t, τ) such that xi(t) = xj(τ) with i, j ∈ {1 : I}, then we get a set of
equations in which the static function g has been cancelled. If this set is moreover rich enough, then
we can use it to identify y easily as the equations are linear with respect to y. Classical identification
methods such as least-squares ones can then be used.

In practice, the method can be decomposed in three steps:

1. Step 1: Construction of sets of couples (t, τ) such that g(xi(t)) = g(xj(τ)) (or, more precisely,
such that g(xi(t))− g(xj(τ)) is negligible) for all i, j ∈ {1 : I}.

2. Step 2: Identification of y from the set of equations (17) which are independent of the unknown
function g and linear with respect to y.

3. Step 3: Identification of g from model (1), using the identified value of y.

The details of each step is given here after. In Figure 2, a graphical abstract gives an overview of
the identification method and summarizes its different steps.
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Figure 2: Graphical abstract of the identification method.

3.2 Step 1: Construction of the set Ωx,ε

As explained in the introduction of section 3, the idea of the method is to consider all (i, j)∈ {1 : I}2
and all couples (t, τ) such that xi(t) = xj(τ), in order to cancel the term g(xi(t)) − g(xj(τ)) in a
set of equations which can then be used for the independent identification of y. To this end, we
consider Ωx,0 the set of indexes (i, j) and times (t, τ) such that the above mentioned cancellation of
the nonlinear term g(x) occurs; such a set is defined by:

Ωx,0 :=
{

(i, j, t, τ) ∈ {1 : I}2 × Ωi,j ; xi(t) = xj(τ)
}

where Ωi,j := Ωi × Ωj . (18)

However, requiring the perfect equality between xi(t) and xj(τ) is not relevant in practice, for several
reasons. First, as the measurement trajectories are noisy, we are not able to test the equality between
two values of some trajectories, but only between two measurements of these trajectories. Moreover,
when the dimension of the space Z is greater than 2, the property xi(t) = xj(τ) in general becomes
quite rare (or even with null probability), except at the trivial and not significant points defined by
i = j, τ = t. As a consequence, to overcome these problems, it is more relevant to consider the sets
of couples (t, τ) such that xi(t) is “close to” xj(τ). Considering ε > 0, such sets are defined by:

Ωi,j
x,ε :=

{
(t, τ) ∈ Ωi,j ;

∥∥xi(t)− xj(τ)
∥∥
X
6 ε
}
. (19)

Roughly speaking, Ωi,j
x,ε contains all couples (t, τ) for which the nonlinear term g is “almost-

cancelled” after subtraction of the ith equation of (1) from the jth one at respective times t and τ : in
the sequel, we will call this operation “ε-cancellation”. For convenience, and following the notation
introduced in (18), we denote in the sequel:

Ωx,ε :=
⋃

(i,j)∈Ix,ε

(
{(i, j)} × Ωi,j

x,ε

)
, (20)

with Ix,ε :=
{

(i, j) ∈ {1 : I}2; Ωi,j
x,ε 6= ∅

}
.

As an illustration, one can find in Figure 3 an example of some couples (t, τ) ∈ Ωi,j
x,ε; the

construction of the whole set Ωi,j
x,ε is obtained when the variable x0 of Figure 3 takes all the values in
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Figure 3: Example of couples (t, τ) ∈ Ωi,j
x,ε. The admissible couples (t, τ) are obtained by taking

t and τ in the union of black sets It
1

⋃
It
2 and the union of gray sets Iτ1

⋃
Iτ2 respectively.

X0. This construction process can be used to build some subsets of Ωi,j
x,ε in practice (see Appendix

B).
In the case X0 = R, we can note that another expression of the sets Ωi,j

x,ε can be given. Indeed, the
union of black sets (It

1 and It
2 for time t) and the union of gray sets (Iτ1 and Iτ2 for time τ) highlighted

in Figure 3 can respectively be expressed by xi
−1

([x0 − ε
2 , x0 + ε

2 ]) and xj
−1

([x0 − ε
2 , x0 + ε

2 ]). Thus,
the set of all couples of instants (t, τ) of Figure 3 are given by the cartesian product of these two
sets, which leads to the following expression of Ωi,j

x,ε:

Ωi,j
x,ε =

⋃
x0∈X0

xi
−1
(

[x0 −
ε

2
, x0 +

ε

2
]
)
× xj

−1
(

[x0 −
ε

2
, x0 +

ε

2
]
)
. (21)

Finally, note that the sets Ωi,i
x,ε are never empty because they contain at least all couples of the

form (t, t). Furthermore, if ε′ 6 ε, then Ωi,j
x,ε′ ⊂ Ωi,j

x,ε. We also have the following result:

Proposition 5 For any i, j, the set Ωi,j
x,ε is compact. If ε > 0 and Ωi,j

x,ε 6= ∅, then Ωi,j
x,ε has a

non-empty interior (and therefore has non-null Lebesgue measure). Furthermore,
⋂
ε>0 Ωi,j

x,ε = Ωi,j
x,0.

Proof. Thanks to the continuity of
∥∥Di,jx

∥∥ : Ωi,j → R and the two properties: Ωi,j
x,ε′ ⊂ R

2n and

Ωi,j
x,ε′ ⊂ Ωi,j

x,ε if ε′ 6 ε. �

3.3 Step 2: Identification of the linear component y

From the definition of the set Ωx,ε, by subtracting the ith equation of (1) evaluated at time t from
the jth equation of (1) evaluated at time τ and by neglecting the term g(xi(t)) − g(xj(τ)) for all
(i, j, t, τ) ∈ Ωx,ε , we get the set of equations:

Aiy(t)−Ajy(τ) + zi(t)− zj(τ) = 0, ∀(i, j, t, τ) ∈ Ωx,ε. (22)

To get a more synthetic expression, for any (i, j) ∈ Ix,ε we denote by Di,j
x,ε the operator defined on

any function v ∈
∏
i L
∞
V (Ωi) by:

Di,j
x,ε v : Ωi,j

x,ε → V
(t, τ) 7→ vi(t)− vj(τ);

(23)

thus, each equation of the form (22) can simply be written Di,j
x,ε (Ay) + Di,j

x,ε z = 0. By denoting

Dx,ε :=
(

Di,j
x,ε

)
(i,j)∈Ix,ε

we finally get the model:

Dx,ε (Ay) + Dx,ε z = 0, (24)

8



which presents two advantages: first it does not involve the nonlinear function g any longer, and
second it is linear with respect to the remaining unknown y.

However, as the equations (22) were obtained by subtractions, the constant terms of the model
have also been cancelled, even those who are related to the unknown y. To mitigate this problem,
we need to add at least one equation to (24) . More explanation about this additive equation are
given in section 4. This additional equation will be of the form:

g(xi0(t∗)) + (Ai0y)(t∗) + zi0(t∗) = 0, (25)

with t∗ ∈ Ωi0 , and i0 ∈ {1 : I} arbitrarily chosen. For simplicity, we will denote in the sequel
g0 = g(xi0(t∗)) ∈ Z, A0y = (Ai0y)(t∗) ∈ Z, and z0 = zi0(t∗) ∈ Z.

Finally, we consider the following system built from (1):{
Dx,ε (Ay) + Dx,ε z = 0
g0 +A0 y + z0 = 0,

(26)

which is independent from the nonlinear function g and linear with respect to the unknowns y and
g0. The identification of y and g0 from measurements xm, zm and Am is thus simplified. We simply
rewrite the system (26) under the form:

φεx,A · θ = bεx,z, (27)

with:
θ := (y, g0), bεx,z := (−Dx,ε z,−z0) , (28)

and φεx,A the linear continuous operator defined by:

φεx,A : θ = (y, g0) 7−→ (Dx,ε (Ay), g0 +A0 y). (29)

Then, assuming that xm, Am and zm are sufficiently close to x, A and z (see section 4), we
consider the following equation of linear regression form:

bεxm,zm = φεxm,Am
· θ + eε(θ), (30)

where eε(θ) is the so-called equation error. An estimate θ̂ of the unknown parameter θ = (y, g0) can
finally be obtained by classical error-in-equation identification methods [4, 35] which take advantage
of the linearity of the model with respect to the unknown parameters.

For example, if Z is a separable Hilbert space, we can consider the least-squares estimator,
solution of:

θ̂ = arg min
θ∈F×Z

‖eε(θ)‖2Gε×Z , (31)

with Gε a suitable separable Hilbert space, such as:

Gε =
∏

(i,j)∈Ixm,ε

L2
Z(Ωi,j

xm,ε), (32)

which is such that L∞Z (Ωi,j
xm,ε) ↪→ L2

Z(Ωi,j
xm,ε). This estimator is formally expressed by:

θ̂ = (ŷ, ĝ0) =
(
φεxm,Am

)†
bεxm,zm , (33)

where
(
φεxm,Am

)†
is the pseudo-inverse of φεxm,Am

[34].

Remark 6 As usual, when the problem (31) is ill conditioned or when the solution is not unique,
some “regularized” problems can advantageously be considered, as the following one:

θ̂ = arg min
θ∈F×Z

{‖eε(θ)‖2Gε×Z + η ‖θ‖2F×Z}, (34)

where η > 0 is a small parameter.

9



Note that, as the linear operator φεxm,Am
depends on the noise, some of the classical estimators

(as the least-squares one mentioned previously) can be biased [1]. Some bias reduction methods
[35, 36, 37] can be used to mitigate this problem.

Remark 7 This identification method can easily be extended, up to simple technical adaptation, to
the case where function g is different from one trajectory to the other, that is g ◦ x := (gi ◦ xi)i=1:I .
In such cases, the cancellation of the function g is only possible for j = i; thus only the sets Ωi,i

x,ε

will be used which implies that the difference operator Dx,ε will be given by (Di,i
x,ε)i=1:I .

3.4 Step 3: Identification of the nonlinear function g

Under the a priori hypothesis that the data xm, Am, zm allow to get a good identification of y (that
is ‖ŷ − y‖F small enough), then, from continuity properties, we have for any (i, j, t, τ) ∈ Ωxm,ε:

Aim ŷ(t)−Ajmŷ(τ) + zim(t)− zjm(τ) ' 0. (35)

Moreover, although g is yet unknown at this stage (except at point x0 = xi0(t∗) for which we have
an estimate ĝ0 of its value), we can expect to have, for any i∈ {1 : I} and any t ∈ Ωi, Aimŷ(t) +
g(xim(t)) + zim(t) ' 0, property which can be written under the form:

g(xim(t)) ' −Aimŷ(t)− zim(t), ∀t ∈ Ωi, ∀i = 1 : I. (36)

From this last equation, identification of the nonlinear function g can be achieved with classical
regression methods implemented on the following “pseudo-graph” of g, deduced from the available
data:

Gg =
⋃

i={1:I},t∈Ωi

{(
xim(t),−Aimŷ(t)− zim(t)

)}
⊂ X× Z. (37)

This will be highlighted on numerical examples in sections 5 and 6.

3.5 Advantages and drawbacks of the method

The first advantage of the method is that it allows to have access (after the identification of the
linear unknown y) to a pseudo-graph of the unknown function g before its parameterization for the
identification. Thus, the parameterization of the function g can be adapted to the shape of the
pseudo-graph which is a great advantage especially when the function g is highly nonlinear, non
differentiable, discontinuous or even weakly singular.

The identification model (1) and then the identification method presented in this paper can also
easily be extended to the case where the function g varies from one trajectory to the other simply
by setting g ◦ x := (gi ◦ xi)i=1:I in model (1) and by simple technical adaptation of the method
(see remark 7 for more details). It can be useful if the measured trajectories have been obtained
under different conditions which only impact the nonlinear term of the system (experiments made
at different temperatures for example).

Compared to relaxation approaches (such as [8]), the decoupling between the identification of
the linear component y and the nonlinear function g does not imply the use of an iterative algorithm
and the associated problems of convergence [22, 23]. The method can also be applied regardless of
the type of the input signal (which is not the case for other methods [21]).

However, the method has also some drawbacks. It requires the construction of the set (or more
precisely of a finite subset of) Ωxm,ε which is not trivial. In particular, when the measured trajectories
are noisy, the set Ωxm,ε can become very large compared to the noise-free case, and the pre-filtering
of the data then becomes necessary. A lot of questions remain therefore open, especially about the
best way (in terms of computation time and quality of the results) to do the pre-filtering (see for
example [38]), and to determine the couples of instants (t, τ) that will be used in the identification
process.

Finally, the numerical implementation of the method in the case of systems of high dimension
(that is when the spaces X and Z are of high dimensions) will need extensive studies to deal with
the numerical complexity of the problem.
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4 Analysis of the method

In this section, we analyze the identification method previously introduced. In a first part, we discuss
in details all the steps leading to model (26), starting from (1), and give some results to justify or
explain them. Then, we study the impact of the measurement noise on the method. Finally, we give
some results useful for the practical application of the method.

Note that the reader who is not interested in the mathematical analysis of the method, which is
rather technical, can skip this section without missing any information necessary to understand the
sections 5 and 6, and to implement the method.

4.1 Establishment of model (26)

The transformation process leading to model (26), starting from (1), is composed of three steps:
(i) subtraction of the jth equation of (1) evaluated at time τ from the ith equation of (1) evaluated

at time t for all (i, j, t, τ) ∈ {1 : I}2 × Ωi,j ;
(ii) restriction of the so-obtained “difference model” to subsets Ωi,j

x,0 of Ωi,j (cancellation of g)

and then to subsets Ωi,j
x,ε;

(iii) approximation by ε-cancellation of g.

4.1.1 Difference model and equivalence with model (1).

We first introduce an operator that we call difference operator, which is denoted D and defined here
after.

Definition 8 For any given Banach space V, we consider the operator D defined by:

D :
I∏
i=1

L∞V (Ωi) −→
I∏

i,j=1
L∞V (Ωi,j)

v = (vi) 7−→ Dv = (Di,jv) with Di,jv (t, τ) := vi(t)− vj(τ).

(38)

The operator D is obviously linear; thanks to the continuity of the + operation in Banach spaces,
we have:

D ∈ L
(∏

i
L∞V (Ωi),

∏
i,j
L∞V (Ωi,j)

)
, (39)

and, with DC0 denoting the restriction of D to the subspace
∏
iC

0
V(Ωi):

DC0 ∈ L
(∏

i
C0
V(Ωi),

∏
i,j
C0
V(Ωi,j)

)
. (40)

In the sequel, both of these operators will be denoted D for simplicity.

By applying operator D to both members of (1), we get I2 difference equations that can be
summarized by the following equation in

∏
i,j L

∞
Z (Ωi,j):

D(g ◦ x) + D(Ay) + D z = 0. (41)

At this stage, the equivalence between models (41) and (1) is lost, because operator D is mainly
based on differences; the equivalence is recovered by considering an additional equation of the form
(25), as stated in the following result:

Proposition 9 Model (1) is equivalent to the following system in
∏
i,j L

∞
Z (Ωi,j)× Z:{

D(g ◦ x) + D(Ay) + D z = 0
g0 +A0y + z0 = 0,

(42)

with g0 := g(xi0(t∗)) ∈ Z, A0y := (Ai0y)(t∗) ∈ Z, z0 := zi0(t∗) ∈ Z, where i0 ∈ {1 : I} and t∗ ∈ Ωi0

are arbitrarily chosen.
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Proof. The implication (1)⇒(42) is obvious. Let us show that (42)⇒(1). We have for any (i, j) ∈
{1 : I}2 and any (t, τ) ∈ Ωi,j :

g(xi(t))− g(xj(τ)) +Aiy(t)−Ajy(τ) + zi(t)− zj(τ) = 0. (43)

In particular, for j = i0 and τ = t∗ , we get:

∀t ∈ Ωi, g(xi(t))− g(xi0( t∗)) +Aiy(t)−Ai0y(t∗) + zi(t)− zi0( t∗) = 0. (44)

As (g ◦ xi0)(t∗)+Ai0y(t∗)+zi0(t∗) = 0, it follows that ∀t ∈ Ωi, g ◦ xi(t)+Aiy(t)+zi(t) = 0. �
Thus, we have built a new model equivalent to (1) which, restricted to some suitable subsets of

Ωi,j , can provide a set of equations independent from g and so well adapted to the identification of
y alone. The restriction operations to the subsets Ωi,j

x,ε of Ωi,j are studied here-after.

4.1.2 Restriction to subsets Ωi,j
x,ε.

We introduce the following “restriction operators” to subsets Ωi,j
x,ε ⊂ Ωi,j :

R
Ωi,jx,ε

: L∞V (Ωi,j) −→ L∞V (Ωi,j
x,ε)

w 7−→ w|
Ωi,jx,ε

.
(45)

By composition of operator Di,j with R
Ωi,jx,ε

, we get the operator Di,j
x,ε, introduced in section 3, and

defined by:

Definition 10 The operator Di,j
x,ε is defined, for any (i, j)∈ {1 : I}2 such that Ωi,j

x,ε 6= ∅, by:

Di,j
x,ε = R

Ωi,jx,ε
◦Di,j = Di,j(.)|Ωi,jx,ε (46)

By definition of the norm in L∞ spaces, the operator R
Ωi,jx,ε

is linear continuous; so, similarly to Di,j ,

we have, if Ωi,j
x,ε 6= ∅:

Di,j
x,ε ∈ L

(∏
l
L∞V (Ωl), L∞V (Ωi,j

x,ε)
)
, and Di,j

x,ε ∈ L
(∏

l
C0
V(Ωl), C0

V(Ωi,j
x,ε)
)
. (47)

For convenience, we denote (with Ix,ε defined in section 3.2):

Dx,ε := (Di,j
x,ε) ∈

∏
(i,j)∈Ix,ε

L
(∏

l
L∞V (Ωl), L∞V (Ωi,j

x,ε)
)
. (48)

The application of operator Dx,0 to equation (1) leads to the restriction of model (42) to the

subsets Ωi,j
x,0, whose interest comes from the following property of operator Dx,0:

Proposition 11 Let X0 be a closed subset of X. For any x ∈
∏I
i=1C

0
X0

(Ωi) and any function
g : X0 → Z, we have:

Dx,0(g ◦ x) = 0 (and in particular: Dx,0 x = 0) . (49)

Proof. From definition (19) of sets Ωi,j
x,ε, we trivially get:

∀i, j, ∀(t, τ) ∈ Ωi,j
x,0, ‖(D

i,jx)(t, τ)‖X 6 0, (50)

and then
(
Di,jx

)
(t, τ) = 0; this last result can also be written xi(t) = xj(τ), from which we finally

deduce g(xi(t)) = g(xj(τ))⇔ (g(xi))(t) = (g(xj))(τ), that is:

∀i, j, ∀(t, τ) ∈ Ωi,j
x,0,

(
Di,j(g ◦ x)

)
(t, τ) = 0, (51)

or equivalently Dx,0(g ◦ x) = 0. �
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Thanks to this property, the application of operator Dx,0 to (42) leads to the following model,

in
∏
Ix,0 L

∞
Z (Ωi,j

x,0)× Z: {
Dx,0 (Ay) + Dx,0 z = 0
g0 +A0 y + z0 = 0.

(52)

The advantage of this new model is that the nonlinear function g has been cancelled, while the
unknowns y ∈ F and g0 ∈ Z are linearly involved. Classical identification methods such as least-
squares ones can therefore be used to identify y and g0.

However, as emphasized in paragraph 3.2, the set Ωx,0 cannot be built in practice because of the
measurement noise. Indeed, we have:

‖xim(t)− xjm(τ)‖ = 0 6⇒ ‖xi(t)− xj(τ)‖ = 0. (53)

On the other hand, it can be shown (see section 4.2) that by using only the measurement xm, we
can have access to some sets Ωx,ε where ε > 0 depends on the noise magnitude. For these reasons,
the restriction is done on the subset Ωx,ε (with ε > 0) instead of Ωx,0, which leads to the following
model: {

Dx,ε(g ◦ x) + Dx,ε (Ay) + Dx,ε z = 0
g0 +A0 y + z0 = 0.

(54)

By construction of Ωx,ε, we expect the term Dx,ε(g ◦ x) to be negligible (see paragraph 3.2), so that
we can get a model linear with respect to y and g0 on which the identification of y can be achieved
easily.

The study of this ε-cancellation of Dx,ε(g ◦ x) is done in the next paragraph.

4.1.3 ε-cancellation of g.

The following proposition gives conditions under which the term Dx,ε(g ◦ x) can be considered as
negligible.

Proposition 12 Let X0 be a closed subset of X. For any x ∈
∏I
i=1C

0
X0

(Ωi) and any function
g : X0 → Z, the following properties hold:

(i) ‖Dx,ε x‖ 6 ε;

(ii) if g is continuous at points ξ, η ∈ X0, then Di,j
x,ε(g ◦ x) is continuous at any point of the

set
[
xi
−1

({ξ})× xj−1
({η})

]
∩ Ωi,j

x,ε; in particular, Di,j
x,ε(g ◦ x) vanishes at any point of the set

xi
−1

({ξ})× xj−1
({ξ}) ⊂ Ωi,j

x,0 ⊂ Ωi,j
x,ε, in the sense:[

(tε, τε) ∈ Ωi,j
x,ε −→

ε→0+
(t, τ) ∈ xi−1

({ξ})×xj−1
({ξ})

]
⇒

[ (
Di,j
x,ε(g ◦ x)

)
(tε, τε) −→

ε→0+
0

]
; (55)

(iii) if g is k-Lipschitz, then ‖Dx,ε(g ◦ x)‖ 6 kε.
Proof. We have:

(i) ‖Dx,ε(x)‖ = sup
i,j

sup
(t,τ)∈Ωi,jx,ε

∥∥(Di,jx)(t, τ)
∥∥
X
6 ε by definition of Ωi,j

x,ε.

(ii) for any (τ, t) ∈
[
xi
−1

({ξ})× xj−1
({η})

]
∩ Ωi,j

x,ε, the function g is continuous at points xi(t),

xj(τ); so, for any sequence (tn, τn) ⊂ Ωi,j
x,ε such that (tn, τn)→ (t, τ), thanks to the continuity

of x:
g(xi(tn))→ g(xi(t)), g(xj(τn))→ g(xj(τ)), (56)

and so: g(xi(tn))− g(xj(τn))→ g(xi(t))− g(xj(τ)).
If (t, τ) ∈ xi−1

({ξ}) × xj−1
({ξ}), then necessarily xi(t) = xj(τ) = ξ and so, (t, τ) ∈ Ωi,j

x,0; it
follows from proposition 11 that: (

Di,j
x,ε(g ◦ x)

)
(tε, τε) −→ 0. (57)
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(iii) ‖Dx,ε(g ◦ x)‖ = sup
i,j

sup
Ωi,jx,ε

∥∥(Di,j(g ◦ x))(t, τ)
∥∥
Z

= sup
i,j

sup
Ωi,jx,ε

∥∥g(xi(t))− g(xj(τ))
∥∥
Z

6 sup
i,j

sup
Ωi,jx,ε

k
∥∥xi(t)− xj(τ)

∥∥
X

= k sup
i,j

sup
Ωi,jx,ε

∥∥(Di,jx)(t, τ)
∥∥
X
6 k ε by definition of Ωi,j

x,ε.

�

The continuity with respect to ε expressed in the property (ii) of proposition 12 ensures that the
term Dx,ε(g◦x) will remain small enough, in such a way that (54) can be supposed“quasi equivalent”

to the following equation in
∏
Ix,ε L

∞
Z (Ωi,j

x,ε)× Z:{
Dx,ε (Ay) + Dx,ε z = 0
g0 +A0 y + z0 = 0.

(58)

Quantitative questions about such a quasi equivalence will be deepened in a further work. In the
present paper, we suppose that the approximate model (58) will be sufficient, at least in some
situations, to get good identification results. In other words, we suppose that the identification bias
induced by the above approximation will remain negligible. The legitimacy of this hypothesis will
be highlighted by numerical examples presented in sections 5 and 6.4.

Remark 13 The convergence deduced from (iii) is uniform, while we have in (ii) a weaker topology
of simple convergence. For this reason, it can be expected that when g is not Lipschitz-continuous on
X0, numerical treatments can be more delicate. However, in many concrete situations, function g
is almost everywhere continuous and Lipschitz-continuous on some subsets Xη ⊂ X0, in such a way
that the property ‖Dx,ε(g̃η ◦ x)‖ 6 kηε holds for kη-Lipschitz-continuous function g̃η defined on X0

and such that g̃η |Xη
= g |Xη . We will see in section 6.4 that such a property (in addition to property

(ii)) can be sufficient to get good identification results.

Remark 14 In proposition 12, the function g is not assumed to be continuous on the whole set X0.
Let W = {ξ ∈ X0 s.t. g is discontinuous at ξ}; if for any i, the (Lebesgue-measurable) set xi

−1
(W )

is negligible in Ωi (that is a null set in the sense of the Lebesgue measure), then the set of all the
points of Ωi,j

x,ε at which Di,j
x,ε(g ◦ x) is possibly discontinuous, which can be written:

V i,j
x,ε : = {(t, τ) ∈ Ωi,j

x,ε; x
i(t) ∈W or xj(τ) ∈W} (59)

=
[(
xi
−1

(W )× Ωj
)
∪
(
xj
−1

(W )× Ωi
)]
∩ Ωi,j

x,ε, (60)

is obviously negligible in Ωi,j
x,ε as soon as ε > 0 and Ωi,j

x,ε 6= ∅. Furthermore, V i,j
x,0 rewrites:

V i,j
x,0 = {(t, τ) ∈ Ωi,j

x,0; xi(τ) = xj(t) ∈W} =
(
xi
−1

(W )× xj−1
(W )

)
∩ Ωi,j

x,0. (61)

If the set V i,j
x,0 is negligible in Ωi,j

x,0, then (55) holds for almost any (t, τ) ∈ Ωi,j
x,0. Such properties can

be obtained for example when g is continuous except on a discrete subset of X0. It is the case for
example for the function g(x) = sign(x): although the subset on which g is discontinuous is negligible
(in the Lebesgue sense), the function g is really discontinuous.

4.2 Impact of the measurement noise

Let now discuss about the impact of the measurement noise on the efficiency of the identification
method. When xm is noisy, that is xm 6= x, the (theoretical) set Ωi,j

x,ε and the set Ωi,j
xm,ε (and so, the

operators Dx,ε and Dxm,ε) are in general different, because, due to the measurement noise, we have:∥∥xi(τ)− xj(t)
∥∥ 6 ε 6⇔ ∥∥xim(τ)− xjm(t)

∥∥ 6 ε. (62)

However, we will see in the sequel that, in spite of the presence of some measurement noise, the trans-
formation of model (1) by the (linear continuous) operator Dxm,ε can be used to get an identification
model based on measurement trajectories. This is what is shown in the following results.
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Proposition 15 Let x, x̃ ∈
∏I
l=1C

0
X(Ωl); if ‖x̃− x‖ 6 ε, then for any i, j:

Ωi,j
x,ε/3 ⊂ Ωi,j

x̃,ε ⊂ Ωi,j
x,3ε ⊂ Ωi,j

x̃,9ε. (63)

As a consequence, if ε′ 6 ε
3 then we have:

Ωi,j
x̃,ε′ ⊂ Ωi,j

x,ε ; (64)

furthermore the operator: ∏
l C

0
X(Ωl) −→ L

(∏
l L
∞
V (Ωl), L∞V (Ωi,j

x,ε′)
)

x 7−→ R
Ωi,j
x̃,ε′
◦Di,j

x,ε
(65)

is well defined on the ball with center x̃ and radius ε and equal to Di,j
x̃,ε′.

N.B. We recall that R
Ωi,j
x̃,ε′

is simply a restriction operation to subset Ωi,j
x̃,ε′ (see section 4.1.2).

Proof. From ‖x− x̃‖ = supi supΩi
∥∥xi(τ)− x̃i(τ)

∥∥
X

, we deduce that for any i, j, τ, t:∥∥xi(τ)− x̃i(τ)
∥∥
X
6 ε and

∥∥x̃j(t)− xj(t)∥∥
X
6 ε; (66)

moreover, from the definition of Ωi,j
x̃,ε, if (τ, t) ∈ Ωi,j

x̃,ε, then
∥∥x̃i(τ)− x̃j(t)

∥∥
X
6 ε. We deduce that:∥∥xi(τ)− xj(t)

∥∥
X
6
∥∥xi(τ)− x̃i(τ)

∥∥
X

+
∥∥x̃i(τ)− x̃j(t)

∥∥
X

+
∥∥x̃j(t)− xj(t)∥∥

X
6 3ε, (67)

which means that (τ, t) ∈ Ωi,j
x,3ε. The proofs of Ωi,j

x,ε/3 ⊂ Ωi,j
x̃,ε and Ωi,j

x,3ε ⊂ Ωi,j
x̃,9ε are similar.

The inclusion (64) is directly deduced from (63). Consequently, the function x 7→ R
Ωi,j
x̃,ε′
◦ Di,j

x,ε

is well defined on B(x̃, ε), the ball with center x̃ and radius ε. We then deduce from (64) that
R

Ωi,j
x̃,ε′
◦R

Ωi,jx,ε
= R

Ωi,j
x̃,ε′

, and from definition of Di,j
x,ε, we get, for any x ∈ B(x̃, ε):

R
Ωi,j
x̃,ε′
◦Di,j

x,ε = R
Ωi,j
x̃,ε′
◦R

Ωi,jx,ε
◦Di,j = R

Ωi,j
x̃,ε′
◦Di,j = Di,j

x̃,ε′ . (68)

�
From proposition 15, if the noise trajectories are continuous (which excludes white measurement

noises; in practice, a suitable pre-filtering of the measured data can be required) and small enough
in X, we so have the nice property Ωi,j

xm,ε ⊂ Ωi,j
x,3ε. From proposition 5, we also know that Ωi,j

xm,ε is
closed, with non-empty interior, if ε > 0. We then easily deduce the following important result.

Corollary 16 If ‖xm − x‖ 6 ε, then for any v ∈
∏
l L
∞
V (Ωl), we have:

Di,j
xm,ε/3

v = Di,j
x,εv|Ωi,j

xm,ε/3
, (69)

with Ωi,j
xm,ε/3

⊂ Ωi,j
x,ε.

Proof. By application of proposition 15 for x̃ = xm and ε′ = ε
3 . �

From the practical point of view, this last result means that in spite of the measurement noise
em := xm − x, if this noise is such that ‖em‖ 6 ε, then the (unknown and not directly accessible)
operator Di,j

x,ε can be exactly determined from the only measurement xm by applying the operator
Di,j
xm,ε/3

. In other words, by applying Di,j
xm,ε/3

, we get the same “result” than if we apply Di,j
x,ε (in

particular the ε-cancellation of g leading to model (26), which is used for the identification of y; see
sections 3.3 and 4.1), but restricted to a smaller set (namely Ωi,j

xm,ε/3
instead of Ωi,j

x,ε), which means
that we get less equations to identify y. Thus, we can state that the consequence of the measurement
noise is only a loss of precision in the identification process of y.
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Remark 17 Note that, in practice, it can seem more natural to denote ε the size of the quasi-
cancellation band on measured trajectories xm instead of the one on theoretical trajectories x, that
is to build sets Ωi,j

xm,ε instead of sets Ωi,j
xm,ε/3

. In fact, this has no importance at all as the value of ε
can be arbitrarily chosen, and all the above results can be applied by replacing ε by 3ε, as it is done
in section 3.3.

Remark 18 There is no restriction about the probabilistic nature of the noise measurement: it is
only assumed that the noise trajectories em are continuous with norm bounded by some ε > 0. In
particular, Gaussian as well as non-Gaussian measurement noise are admissible. In the case of white
measurement noise, a pre-filtering of the measured data would be required in order to get continuous
noise trajectories; the cut-off frequency should be chosen as small as possible (in order to get ε
as small as possible) but far away the frequency band of the dynamic system under consideration,
in such a way that the disturbance on the measured trajectories remains negligible. Note that in
practical situations, such a pre-filtering is anyway required for the construction of a finite subset of
Ωxm,ε (see Appendix B).

4.3 Properties of difference operators D and Dx,ε

We give in this paragraph an important result used in section 6, about operators D and Dx,ε. We
first introduce the following notation: if g is a function defined on V and v = (vi) a vector of
V-valued functions vi, then, by convention, we denote g ◦ v the vector-function with components
defined by:

(g ◦ v)i := g ◦ vi. (70)

With this convention, if v ∈
∏
i L
∞
V (Ωi) (with Ωi, i = 1 : I some non-empty compact subsets of Rn)

and if g is measurable with values in a Banach space Z, then g ◦v is a vector of Z-valued measurable
functions, namely: g ◦ v ∈

∏
iM(Ωi; Z).

Proposition 19 Let B ∈ L(V,Z); then the linear operator:

B :
∏
I L
∞
V (Ω̃) −→

∏
I L
∞
Z (Ω̃)

v 7−→ B ◦ v (71)

is continuous for Ω̃ = Ωj and I = {1 : I} or Ω̃ = Ωi,j and I = {1 : I}2. Furthermore:

D ◦B = B ◦D ∈ L
(∏

j
L∞V (Ωj),

∏
i,j
L∞Z (Ωi,j)

)
, (72)

Dx,ε ◦B = B ◦Dx,ε ∈ L
(∏

j
L∞V (Ωj),

∏
Ix,ε

L∞Z (Ωi,j
x,ε)

)
. (73)

Proof. The continuity of B is deduced from:

‖Bv‖ = sup
k∈I

sup
s∈Ω̃

∥∥∥B(vk(s))
∥∥∥
Z
6 sup

k∈I
sup
s∈Ω̃

‖B‖
∥∥∥vk(s)∥∥∥ 6 ‖B‖ ‖v‖ . (74)

Then we have:

[(D ◦B) v]i,j (τ, t) = [D (B ◦ v)]i,j (τ, t) = (B ◦ v)i(τ)− (B ◦ v)j(t)
= B vi(τ)−B vj(t) = B(vi(τ)− vj(t)) = B

[
(Di,jv)(τ, t)

]
=

[
B ◦ (Dv)i,j

]
(τ, t) = [(B ◦D) v]i,j (τ, t).

(75)

(73) is finally proved by restriction to Ωx,ε. �

Remark 20 Due to the different natures of the involved vector spaces, operators B and D in ex-
pression B ◦D are in fact different from the ones in expression D ◦B: they are either defined with
Ω̃ = Ωj and I = {1 : I} or Ω̃ = Ωi,j and I = {1 : I}2. For simplicity, the same notation is used for
both cases.

16



5 A simple academic example

In this section, we present an academic example to apply the method on a simple and noise-free
case where the data xm, the quantity z and the sets Ωi,j

x,ε can be analytically computed. The aim
of this example is essentially to illustrate the steps of the identification method and to show how it
works. A more complex and relevant example is treated in section 6.

We consider the dynamic model:

∀t > 0, ∂tX(t) = f(X(t)) + u(t), X(0) = 0, (76)

where X and u are real-valued trajectories, and f is a function defined on R. Given one measured
trajectory Xm (N.B.: we take here I = 1), the problem under consideration is to identify both the
function f and the “input” trajectory u. Note that without any additional hypothesis, the solution
to this problem is not unique. Indeed, for any f chosen a priori and for Xm=X, a trajectory u is
deduced directly from (76), namely: u(t) = (∂tX)(t)− f(X(t)).

The model (76) can be identified under the form (1) with Ω1 = [0, T ], X = Z = R, F ⊂ L∞(Ω1)
(and then F ⊂ L2(Ω1)) a L-dimensional subspace of bounded functions and:

x = X, y = u, z = −∂tX, g = f, A : y 7→ y. (77)

Note that in spite of its trivial definition, the operator A : F → L∞(Ω1) is not the identity operator
but must be understood as the canonical injection: F ↪→ L∞(Ω1).

Assume that a (noise-free) measured solution of (76) is given by:

xm(t) = X(t) = sin(t2), t ∈ Ω1 =
[
0,
√
π
]
. (78)

Then, we have: z(t) = −∂tX(t) = −2t cos(t2). Following the identification method, we build the set
(ε can be chosen equal to 0 because the measurements are noise-free and Z = R):

Ω1,1
xm,0

=
{

(t, t) ,
(
t,
√
π − t2

)
, t ∈

[
0,
√
π
]}
. (79)

One can see on Figure 4(a) the subset of Ω1,1
xm,0

obtained in a concrete situation for a uniform
discretization {tk}k=1:40 of [0,

√
π].

We know by construction that for any (t, τ) ∈ Ω1,1
x,0 we have:

u(t)− u(τ)− (∂tX)(t) + (∂tX)(τ) = 0. (80)

As explained in Step 2 (cf. 3.3), these equations can be written under the synthetic form (27) with:

b0x,z : (t, τ) ∈ Ω1,1
x,0 7−→ ((∂tx)(t)− (∂tx)(τ), (∂tx)(t∗)), (81)

φ0
x,A(u, g0) : (t, τ) ∈ Ω1,1

x,0 7−→ (u(t)− u(τ), g0 + u(t∗)), (82)

where t∗ ∈ [0,
√
π] is arbitrarily chosen, and g0 = f(x(t∗)). From there the unknowns θ = (u, g0)

have been identified by using the least-squares estimator given by (34) with:

t∗ = 0, ε = 0, G0 := L2(Ω1,1
xm,0

) 3 Dxm,0 y, (83)

and a conditioning parameter η = 10−4 which ensures the uniqueness of the solution of this least-
square problem. The identified input û obtained with this identification process (for the above-
mentioned discretization) can be seen on Figure 4(b).

Finally, following the Step 3 (cf. 3.4), we have made an a posteriori estimation of f using a
classical regression of its pseudo-graph (using the estimation û previously identified). The result of
this identification is given in Figure 4(c).

To highlight the accuracy of the identified model, we give in Figure 4(d) both the measured
trajectory Xm = X and the reconstructed trajectory X̂ numerically computed from the identified
model:

∂tX̂ = f̂(X̂) + û, X̂(0) = Xm(0) = 0. (84)

As we can see, the simulated trajectory perfectly fits the measured data.
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Figure 4: Identification example of section 5: (a) set Ω1,1
X,0= Ω1,1

xm,0
; (b) identified input û;

(c) identified function f̂ ; (d) theoretical trajectory X used for the identification and reconstructed
trajectory after identification.

Remark 21 The method can still be used for the identification of model (76) with additional con-
straints, for example u(0) = u0 or u a T0-periodic function (with T0 < T ). Indeed, those problems

can still be expressed under the form (1) with x = X, y = u, f =

(
f
0

)
, and respectively:

• z =

(
−∂tX
−u0

)
, A =

(
I

< δ, . >

)
for the case u(0) = u0;

• z =

(
−∂tX

0

)
, A =

(
I

e−T0p − I

)
for the case where u is a T0-periodic function (e−T0p

being the symbolic notation for the delayed operator v 7→ v(.− T0)).

This is one of the benefits of the generic formulation (1) chosen to develop the identification method
of this paper.

6 Application to a class of Volterra models

In this section, the identification method is applied to a class of Volterra models in which a nonlinear
function and a linear dynamic operator with non rational transfer function have to be identified.

6.1 Model under consideration and identification problem

Consider the multi-trajectory model of the form:

H(∂t)X
i = f(Xi) + ui, i = 1 : I, (85)

where:
• ui ∈ L∞(R+

t ), i = 1 : I, are the inputs (supposed to be known),
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• Xi ∈ C0(R+
t ), i = 1 : I, are the outputs (which are measured),

• f is a nonlinear function,
• and H(∂t) is a linear operator for which there exists a function µ ∈ L2(Rξ;C) such that H(∂t) can
be realized by the infinite dimensional state formulation:{

∂tψ
i(t, ξ) = γ(ξ)ψi(t, ξ) +Xi(t), ξ ∈ R, ψ(0, .) = 0

H(∂t)X
i(t) =

∫
R µ(ξ)

[
γ(ξ)ψi(t, ξ) +Xi(t)

]
dξ,

(86)

with γ : R→ C− a given continuous function defining an infinite arc in C−.
The operators H(∂t), as defined above, are the so-called diffusive operators, associated with the
diffusive representation theory. A complete statement of this theory, devoted to state realizations of
integral operators, can be found in [39, 40]. Note that the problem of identification of convolution
operators by means of diffusive representation is studied in [17, 20].
Models of the form (85) are frequently encountered in various domains (see examples 4 and 3). With
the convenient notation: 〈µ, η〉 :=

∫
µ(ξ) η(ξ) dξ, model (85) can be rewritten under the equivalent

form: { 〈
µ, γ ψi +Xi

〉
= f(Xi) + ui, i = 1 : I,

∂tψ
i = γ ψi +Xi, ψi(0, .) = 0, i = 1 : I.

(87)

The problem under consideration is to estimate, with the method introduced in section 3, both
the operator H(∂t) (characterized by the function µ) and the function f , from measurements Xi

m of
Xi and the associated inputs ui.

Remark 22 Without additional hypothesis, the solution (H(∂t), f) is of course not unique, namely
because equation (H(∂t) + cI)X = f(X) + cX + u is equivalent to H(∂t)X = f(X) + u. The
uniqueness of the identification problem is restored when, for example, the static gain of the operator
H(∂t), that is the value H(p)|p=0 or the value of function f at a given point, is known (see paragraph
6.4).

Remark 23 The transfer function H(p) of the causal convolution operator H(∂t) can be expressed
by:

H(p) =

〈
µ,

p

p− γ(.)

〉
. (88)

Indeed, by denoting L the Laplace transform with respect to the time variable t and p the Laplace
symbolic variable, we have:

L(H(∂t)X
i) = L

∫
R

(γ ψj +Xi)µ(ξ) dξ =

∫
L(γψj +Xi)µdξ =

∫
L(∂tψ

j)µdξ (89)

=

∫
pLψj µdξ =

∫
p µ

p− γ
LXi dξ (from (86)) = H(p)LXi with H(p) =

∫
p µ

p− γ
dξ. (90)

This property will be used in the example of section 6.4.

6.2 Application of the method

Let define ΨXi(t) := γ(.)ψi(t, .)+Xi(t). It can be shown (see for example [39]) that if Xi ∈ L∞loc(R
+
t ),

then ΨXi(t) ∈ L2(Rξ;C) ∩ C0(Rξ;C) for any t > 0 and that t 7→ ‖ΨXi(t)‖L2 is bounded on any
[0, T ]. We then denote, by convenience, AXi := 〈. ,ΨXi〉, that is:

AXi : L2(Rξ;C) → L2
loc(R

+
t ;C)

µ 7→ 〈µ,ΨXi(.)〉. (91)

Using these notations, for any Xi and µ we have AXiµ = H(∂t)X
i and then model (87) can be

written under the form (1) with:

Ai = AXi , g = −f, y = µ ∈ L2(R;C), xi = Xi ∈ C0([ti0, t
i
f ]), zi = −ui ∈ L∞([ti0, t

i
f ]). (92)
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In accordance with section 3, after application of the difference operator Dxm,ε and ε-cancellation
of the nonlinear term, we get model (27), whose unknowns to be identified are θ = (µ, g0) ∈
L2(Rξ;C) × R. To make explicit the operator φεxm,Am

necessary for the identification of θ (see

formula (30)), we use the proposition 19 with B : Ψxi(t) ∈ L2(Rξ;C) 7→ 〈µ,Ψxi(t)〉 ∈ C from which
we get:

Dxm,ε (Amµ) = Dxm,ε ◦BΨxm(.) = B ◦Dxm,εΨxm(.) = 〈µ,Dxm,ε Ψxm(.)〉 , (93)

with Ψxm(t) =
(
Ψxim

(t)
)

and Am =
(
Axim

)
. Such a property is interesting because it makes the

linearity of µ appear explicitly in the expression of operator φεxm,Am
which is indeed given by:

φεxm,Am
: (µ, g0) 7→

(
〈µ,Dxm,ε Ψxm(.)〉 , g0 +

〈
µ, Ψ

x
i0
m

(t∗)
〉)

, (94)

with t∗ ∈ [ti0, t
i
f ], and i0 ∈ {1 : I} arbitrarily chosen. With in addition bεxm,zm = (Dxm,εu , u(t∗)), θ

can be identified by means of the estimator (33). After the identification of θ, the function g can be
identified following the method presented in paragraph 3.4.

Remark 24 We recall that, following the notations introduced in this paragraph, Ψxim
:= γ ψxim +xim

with ψxim the solution of the Cauchy problem:

∂tψ(t, ξ) = γ(ξ)ψ(t, ξ) + xim(t), ψ(0, .) = 0. (95)

Remark 25 Note that, even if the operator H(∂t) is rational, the use of the diffusive representation
is quite useful, namely because the function µ (to be identified), which completely defines the operator
H(∂t), always appears linearly in the model, which would not be the case when using the coefficients
(numerator and denominator) of a rational transfer function.

6.3 Numerical implementation

From the numerical point of view, thanks to the continuity of Ψxm , a finite dimensional approximate
identification model can be obtained simply by considering L-dimensional approximations µL of µ
such as atomic measures (δb denotes the Dirac measure at point b) defined on a suitable sequence
of mesh {ξLl }l=1:L [39]; such an approximation takes the form:

µL =
L∑
l=1

µLl δξLl
, µLl ∈ C. (96)

If
⋃
L6L{ξLl } is an increasing sequence and

⋃
L<+∞{ξLl } is dense in R, the following (weak) conver-

gence holds with µLl suitably chosen [39]:

∀η ∈ C0(R),
〈
µL, η

〉
−→

L→+∞
〈µ, η〉 . (97)

In that sense, we get the following L-dimensional approximation of (Amµ)(t) = 〈µ,Ψxm(t)〉:

(Amµ)(t) '
〈
µL,Ψxm(t)

〉
=

L∑
l=1

µLl (Ψxm(t)) (ξLl ). (98)

Many of (non rational or rational) operators H(∂t) encountered in practice can be closely approxi-
mated with small L (see for example [41]).

With such an approximation, we can consider the least-squares estimator of θ = (µ, g0) given by
(34). The nonlinear function g is then identified after decomposition on a suitable topological basis.
The choice of the basis functions will depend on the form of the pseudo-graph of g obtained after
identification of θ (see the following paragraph).
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6.4 A concrete application example

For the numerical application, we consider the problem of identification of the electrical behavior of
a capacitor realized in cubic Perovskite CaCu3Ti4O12. The identification model considered is the
one described in example 4 (and in [30]). For an other concrete example of application, see [42] in
which the identification method has been applied to the model of the spherical flame described in
example 3.

6.4.1 Model of the system.

In the example 4, the model of the system is of the form (85). The operator H(∂t) to be identified
is the inverse of the impedance operator of the capacitor, that is Z−1

c (∂t), whose transfer function
is given by [30]:

H(p) =
13× 10−9p

(1 + 5.0× 10−4p)0.12
(99)

This operator can be realized by an infinite dimensional state realization of the form (86) with
[40, 39]:

γ(ξ) = |ξ| ei sign(ξ)(π
2

+α), with α ∈
]
0,
π

2

[
, (100)

and µ(ξ) =
13× 10−9ξe2i sign(ξ)(π

2
+α)

2iπ
(

1 + 5× 10−4 |ξ| ei sign(ξ)(π
2

+α)
)0.12 , ∀ξ ∈ R. (101)

The nonlinear unknown function f is defined by f : X 7→ −G(X)X where G is the conductance
nonlinear function of the system. The shape of the function −f is given in Fig. 1 in [30]. For the
simulation of the data, a comparable but analytical function has been considered under the form:

f : X 7→ −p1tan(p2X)− p3X, (102)

with p1 = 2.820× 10−3, p2 = 1.692× 10−2 and p3 = −4.771× 10−5 (see Figure 7 in 1(b)).

6.4.2 Available data sets and identification parameters.

For the identification, we consider I = 4 sets of data {ui,km , Xi,k
m }, i = 1 : I (k being the time dis-

cretization index), which were obtained from accurate simulation of (85) with the above-mentioned
operator H(∂t) and function f (see [40, 39] for details about such a simulation). The sampling
frequency is equal to 1

∆t = 106Hz and K = 6× 106, so that tmax = K ∆t = 6 s.

The input measurements {ui,km } are assumed noise-free, that is ui,km = ui,k. For any i, the considered
input ui,· is a colored noise obtained by filtering a stationary white Gaussian process with standard
deviation 1 with a first order filter of transfer function a

p+a , a = 100
2π .

The sampled output data set associated with input ui,k is denoted Xi,k. The output measurements
Xi,k

m are defined by Xi,k
m = Xi,k + ηi,k with ηi,· a wide-band Gaussian sequence with standard devia-

tion σ∆t. From the continuous-time point of view, this measurement noise is a wide-band stationary
Gaussian process with spectral power density σ =

√
∆t σ∆t.

Remark 26 The band of the measurement noise is limited: recall indeed that its trajectories must
be continuous functions (otherwise, the sets Ωi,j

x,ε would not be well defined). In practical situations,
a pre-filtering of the measured data may be required.

According to the Shannon Theorem, the continuous-time information contained in the available
discrete data sets {ui,km , Xi,k

m }, i = 1 : I is limited to the angular frequency band
[

2π
K ∆t ,

π
∆t

]
=[

1.05, 3.14× 106
]
. In this example, the objective is to identifyH(∂t) on the specific angular frequency

band [2 × 100, 106] ⊂ [ 2π
K ∆t ,

π
∆t ] and the nonlinear function f on the domain [−50, 50] covered by

the data.
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For that, the function g = −f is identified under the form g '
∑P

p=1 cp gp, cp ∈ R with P =
60, and gp some classical hat functions. We denote {ĉp}p=1:P the coefficients computed by the
identification method. To get the uniqueness of the solution (µ, f) of (87) (for given X and u), we
suppose that the value f(20) (this value has been arbitrarily chosen in our case) is a known data
that we denote f20:

f(20) = −p1tan(20p2)− 20p3 = f20. (103)

The identified function f̂ will be therefore given by:

f̂(X) =
f20 +

∑P
p=1 ĉp gp(20)

20
X −

P∑
p=1

ĉp gp(X). (104)

Then we consider the approximation (98) of Amµ in which γ is defined by (100) with α = 70
180 π,

and with L = 120 discretization points ξl geometrically spaced between ξ1 = 100 and ξ120 = 106 (10
points per frequency decade). Some indications about the choice of γ and the discretization {ξl}l=1:L

can be found in [17, 20]. We denote {µ̂l}l=1:L the coefficients computed by the identification method.

From (96) and (88), and to satisfy constraint (103), the identified transfer function Ĥ is given by:

Ĥ(p) = p
L∑
l=1

µ̂l
p− γ(ξl)

+
f20 +

∑P
p=1 ĉp gp(20)

20
. (105)

6.4.3 Identification results and influence of noise.

In this paragraph the results obtained with the proposed identification method are presented in
noise-free and noisy cases. To facilitate the reading, the proposed identification method will be
called “Cancellation method” in the sequel.

• Noise-free case (σ = 0)

The measured data Xj,k
m are first supposed to be noise-free (i.e. σ∆t = 0).

For illustration, a part of the graph ofX1
m(t) and the associated subset of Ω1,1

Xm,0
(in fact Ω1,1

Xm,0

⋂
[1.2; 1.3]2)

are shown in Figure 5.
In Figure 6, we can see the Bode diagram of the frequency response Ĥ(iω) (deduced from µ̂

through formula (105)), associated with the identified operator Ĥ(∂t) (in 1(a) and 1(b)). The
operator H(∂t) is well approximated on the expected angular frequency band [2× 100, 106] covered
by the ξl.

In Figure 7, in 1(b), the graph of the identified function f̂ (see formula (104)) is compared to the
theoretical function f . The function is correctly reconstructed on the whole domain [-50,50] with
an absolute error smaller than 1.5× 10−6 (see Figure 7, 1(c)). As an example, one of the resulting
pseudo-graphs of f , namely:

Gif =
⋃
k

{(
Xi,k

m ,

L∑
l=1

µ̂l

(
γ(ξLl )ψl(i, t

i
k) +Xi,k

m

)
− ui,km

)}
, (106)

where ψl(i, t) is an approximation of ψXi
m

(t, ξLl ) computed from numerical integration of (95) with

input Xi
m, is also given in Figure 7, in 1(a).

• Noisy case (σ 6= 0)

The measured data Xi,k
m are now corrupted by additive wide-band measurement noises, with σ∆t = 4.

The obtained results are given in Figures 6 and 7 (right columns). Note that before applying the
identification method, a pre-filtering of the data has been performed with a first order filter of
transfer function b

p+b with b = 2× 104.

In spite of the measurement noise, the identified transfer function Ĥ(iω) is still close to H(iω),
but on a smaller frequency band than in the noise-free case (see Figure 6, in 2(a) and 2(b)): this
is a normal consequence of the presence of measurement noise. Indeed, high frequencies are more
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Figure 5: Part of the graph of X1
m(t) and the associated subset of Ω1,1

Xm,0
.

corrupted than low ones because the trajectories Xi are continuous, with spectral density decreas-
ing at high frequencies. This highlights the intuitive feature that accurate identification at high
frequencies needs more and more measurement data as the noise magnitude increases.

The a posteriori identified function f̂ is also still very close to the theoretical one (see Figure 7
in 2(b)), the absolute error being smaller than 2× 10−5. Note that in spite of the presence of noise,
the pseudo-graph of f (shown in Figure 7 in 2(a)) clearly exhibits significant informations, useful
for the a posteriori choice of the basis functions gp.

6.4.4 Comparison with an iterative identification method.

To highlight its efficiency, the cancellation method is now compared to an other identification ap-
proach. We have chosen to consider an iterative equation error approach based on a relaxation
algorithm and dedicated to the identification of Hammerstein models. This approach is described
in several papers (see e.g. [8, 24]). It has the advantage to be a block-structured approach (like the
method presented in this paper) which is able to identify non rational dynamic operators. It is not
the case of all the identification methods for Hammerstein models, which often assume a rational
expression for the dynamic operators.

The considered iterative method can be summarized as follows. The dynamic linear term
[H(∂t)X](t) is identified under the form:

S∑
s=0

hsX(t− s∆t), (107)

which is a discrete approximation of the convolution integral h ∗ X, assuming that the support of
the kernel h of H(∂t) is included in [0, S∆t].

23



✶�✵ ✶�✁ ✶�✷ ✶�✸ ✶�✹ ✶�✺ ✶�✻
✂✄✍

✼�✍

✼✄✍

✽�✍

✽✄✍

✾�✍

✾✄✍

✶��✍

❛☎✆✝✞❛✟ ❢✟✠✡✝✠☎☛② ✇ ✭✟❛☞✌✎✲✁✮

✏
✑
✒
✓✔
✕✖
✔
✒
❣✔
✔
✗

✶�✵ ✶�✁ ✶�✷ ✶�✸ ✶�✹ ✶�✺ ✶�✻

✘✶✄�

✘✶��

✘✄�

❛☎✆✝✞❛✟ ❢✟✠✡✝✠☎☛② ✇ ✭✟❛☞✌✎✲✁✮

♠
✏
✒
✑
✙✚
✛
✖
✔
✕✖
✜
✗

♦✢✠✟❛✣♦✟ ✣♦ ❜✠ ✐☞✠☎✣✐✤✠☞

☛❛☎☛✠✞✞❛✣✐♦☎ ✥✠✣✦♦☞

✐✣✠✟❛✣✐✈✠ ✥✠✣✦♦☞

✶�✵ ✶�✁ ✶�✷ ✶�✸ ✶�✹ ✶�✺ ✶�✻

�

✧

★

❛☎✆✝✞❛✟ ❢✟✠✡✝✠☎☛② ✇ ✭✟❛☞✌✎✲✁✮

✏
✩
✪✫
✓✛
✚✔
✔
❣❣
✫
❣
✫
✑
❍
✕✖
✜
✗

◆✬✯✰✱ ✳✴✱✱ ❝✿✰✱❀❁❂❃

❀❁❄❃

❀❁❅❃

✶�✵ ✶�✁ ✶�✷ ✶�✸ ✶�✹ ✶�✺ ✶�✻

�

✂

✶�

❛✄☎✆✝❛✞ ❢✞✟✠✆✟✄✡② ✇ ✭✞❛☛☞✌✲✁✮

✍
✎
✏✑
✒✓
✔✕
✕
❡❡
✑
❡
✑
♦
❍
✖✗
✘
✙

✶�✵ ✶�✁ ✶�✷ ✶�✸ ✶�✹ ✶�✺ ✶�✻

✚✶✂�

✚✶��

✚✂�

❛✄☎✆✝❛✞ ❢✞✟✠✆✟✄✡② ✇ ✭✞❛☛☞✌✲✁✮

♠
✍
✛
♦
✜✔
✓
✗
✕
✖✗
✘
✙

✶�✵ ✶�✁ ✶�✷ ✶�✸ ✶�✹ ✶�✺ ✶�✻
✢✂✣

✼�✣

✼✂✣

✽�✣

✽✂✣

✾�✣

✾✂✣

✶��✣

❛✄☎✆✝❛✞ ❢✞✟✠✆✟✄✡② ✇ ✭✞❛☛☞✌✲✁✮

✍
♦
✛
✒✕
✖✗
✕
✛
❡✕
✕
✙

◆✤✥✦✧ ❝★✦✩✪✫✬✯

✪✫✰✯

✪✫✱✯

Figure 6: Identification of the dynamic operator H(∂t) of a Volterra model (section 6.4)
in the noise-free case (case 1 - left column) and in the noisy case (case 2 - right column): (a) and (b)
comparison of the Bode diagram of the transfer function Ĥ of the identified operator Ĥ(∂t) with the
theoretical one; (c) absolute error between the magnitude of Ĥ(iω) and H(iω). The results obtained
with the cancellation method are plotted in solid black line, the ones obtained with the iterative
method are plotted in dashed black line, and the theoretical function is plotted in gray solid line.
The gray bands correspond to the angular frequencies which are outside the band on which the
identification has been preformed.

The function g = −f is identified under the same form than for the cancellation method, that is:∑P
p=1 cp gp, cp ∈ R with gp some hat functions.
The iterative method consists in minimizing the function:

V ({hs}s, {cp}p) :=

K∑
k=1

J∑
j=1

∥∥∥∥∥∥
S∑
s=0

hsX
j,k−s
m +

P∑
p=1

cp gp(Xj,k
m )− uj,km

∥∥∥∥∥∥
2

(108)
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Figure 7: Identification of the nonlinear function f of a Volterra model (section 6.4) in the
noise-free case (case 1 - left column) and in the noisy case (case 2 - right column): (a) pseudo-graph
of f ; (b) comparison between the identified function f̂ and the theoretical one; (c) absolute error
between f and f̂ . The results obtained with the cancellation method are plotted in solid black line,
the ones obtained with the iterative method are plotted in dashed black line, and the theoretical
function is plotted in gray solid line.

with respect to the parameters {hs}s=0:S and {cp}p=1:P , with the following relaxation algorithm:

for n = 1, 2, .... (loop)

Step 1: {ĥns }s=0:S = arg min
{hs}s

V ({hs}s, {ĉn−1
p }p) (109)

Step 2: {ĉnp}p=1:P = arg min
{cp}p

V ({ĥns }s, {cp}p) (110)

end for

where {ĉ0
p}p is given.

For the Step 1 of the iterative method (identification of {hs}s given {ĉn−1
p }p), the algorithm

of Bojanczyk, Brent & de Hoog (BBH, [43]) is used. For the Step 2 (identification of {cp}p given

{ĥns }s), the classical least-squares method is applied.
The identification results obtained with the iterative method are given in Figures 6 and 7. To

compare the cancellation and the iterative methods, we have used the same number of parameters

25



than for the cancellation method, that is P = 60 parameters for the nonlinear function f and
K + 1 = 120 parameters for the dynamic operator H(∂t). For all the noise-free and noisy cases, the
iterative method needed less than 10 iterations to converge.

In Figure 6, we can compare the identified transfer functions of the dynamic operator H(∂t)
obtained with the cancellation method and the iterative method in both noise-free and noisy cases.
For the iterative method, the transfer function has been deduced from {hs}s by a Fast Fourier
Transform (FFT) algorithm. In the noise-free case, the cancellation method gives results slightly
better than the iterative method. In particular, the transfer function obtained with the iterative
method exhibits some oscillations at high frequencies which are not present with the cancellation
method. In the noisy case, an identification bias appears with the iterative method which degrades
the quality of the identification of H(∂t) in comparison with the cancellation method.

In Figure 7, the functions f identified with both methods can be compared. In both noise-free
and noisy cases, the identification of f is accurate and the results quality of both methods are
similar.

The good quality of the identification results obtained by application of the cancellation method
on this concrete example is a proof of concept which demonstrates the feasibility of the method.
From the comparison between the cancellation and the iterative methods, we moreover see that the
cancellation method can be sometimes better than some other well-known methods. However, as
explained in section 3.5, further study is required to improve and optimize the cancellation method
and to determine the cases where it can have a substantial advantage in comparison with other
methods. The case where f is discontinuous can be one of them.

6.4.5 Case where f is discontinuous.

To highlight one of the advantage of the method, we now consider the case where f is discontinuous.
The system is the same as previously except for the function f which is now discontinuous at X = 0.
The function f to be identified is now given by:

f : X 7→ −p1tan(p2X)− p3X − p4sign(X), (111)

with p1 = 2.820× 10−3, p2 = 1.692× 10−2, p3 = −4.771× 10−5 and p4 = 10−3.

Remark 27 Because function f is discontinuous at point X = 0, the dynamic model to be identified
is in fact the “pseudo-differential inclusion” H(∂t)X − u ∈ f̃(X), or equivalently:{ ∫

µ (γ ψ +X) dξ − u ∈ f̃(X)
∂tψ = γ ψ +X, ψ(0, .) = 0

with f̃(x) =

{
{f(x)} if x 6= 0
[−c2, c2] if x = 0.

(112)

Note that in this case, the sets Xi−1

m ({0}) must be negligible in R to fit hypothesis (4), as written in
paragraph 2.4. Such dynamic inclusions are frequently encountered in some fields of mechanics, for
example when dry frictions are involved [44].

The function g = −f is still identified under the form g '
∑P

p=1 cp gp, cp ∈ R with P = 60, and gp

some classical hat functions, except at point 0 where the basis function is taken discontinuous, to get
accurate approximations of f with only a small number of parameters. Note that in real situations,
i.e. when f is entirely unknown, such an information can be easily deduced from a detailed analysis
of the pseudo-graph Gg (see Figure 8, 2(a)). The same identification parameters than in the previous
case (with f continuous) have been considered for the identification of H(∂t). The considered data
sets have also the same characteristics than before: number, sampling frequency, maximal time,
input, noise level. The results obtained with the two identification methods in the noisy case are
given in Figure 8.

For both methods, the identification of the operator H(∂t) gives results similar to the case where
f is continuous, on an angular frequency band slightly smaller. The results of the iterative method
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Figure 8: Identification of a Volterra model with a discontinuous function f (section
6.4). Left column - identification of the operator H(∂t): (a) magnitude of H(iω); (a) angle of
H(iω); (a) absolute error on the magnitude of H(iω). Right column - identification of the function
f : (a) pseudo-graph of f ; (b) comparison between the identified function f̂ and the theoretical one;
(c) absolute error between f and f̂ . The results obtained with the cancellation method are plotted
in solid black line, the ones obtained with the iterative method are plotted in dashed black line, and
the theoretical function is plotted in gray solid line.

are still less accurate than the ones of the cancellation method, and still subject to an identification
bias. The function f , as well as its set-valued extension f̃ (see (112)), are correctly reconstructed with
the cancellation method, even around the discontinuity. Although the function f is not Lipschitz-
continuous around x = 0, property (iii) of proposition 12 remains satisfied around this point. In
comparison, the iterative method fails to well-identify the function f around the discontinuity,
despite the fact that the same basis functions have been used for both identification methods. It
comes from the fact that, with the cancellation method, a pseudo-graph of f is available before
beginning the identification of the nonlinear static term, which enables to adapt the identification
method. In this particular example, the discontinuity of f at X = 0, which clearly appears on the
numerical pseudo-graph, can be taken into account.
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7 Conclusion

In the present paper, it has been shown that, by use of a particular difference operator, accurate
identification of nonlinear (possibly singular or discontinuous) models is possible, at least in some
cases, even if no information is available about the nonlinear terms to be identified.
This difference operator is mainly based on the construction of a set of couples of instants at which
the measured trajectories take the same value. Thus it allows to transform the problem in such a
way that the nonlinear term of the model is (quasi) cancelled. Then the identification of the residual
linear unknown becomes a classical problem with straightforward solution. Once the unknown linear
term of the model is identified, the identification of the nonlinear term is greatly simplified.
Some questions will of course need more in-depth investigations, in particular from the numerical
point of view when the system is of high dimension. In such cases indeed, numerical complexity has
to be correctly controlled.
Some extensions of this approach are currently under study, namely when the nonlinear term is no
more an ordinary function but a set-valued function associated with some hysteresis operators.

A Notations used in the paper

The mathematical notations used in the paper are given hereafter.
• Given V a Banach space and Ω a non-empty compact subset of Rn, we denote by C0(Ω; V)

(resp. L∞(Ω; V)) the Banach space of continuous functions defined on Ω (resp. essentially bounded
measurable functions defined on Ω) with values in V. The space C0(Ω; V) identifies with a closed
subspace of L∞(Ω; V), the topology of which is the one of the uniform convergence, that is:

‖v‖ = sup
t∈Ω
‖v(t)‖V . (113)

For brevity, we denote:

L∞V (Ω) := L∞(Ω; V), L2
V(Ω) := L2(Ω; V), C0

V(Ω) := C0(Ω; V) (114)

and, as usual: L∞(Ω) = L∞R (Ω), L2(Ω) = L2
R(Ω), C0(Ω) = C0

R(Ω).
• Given V0 a closed subset of V, we denote:

C0
V0

(Ω) := {v ∈ C0
V(Ω); ∀t ∈ Ω, v(t) ∈ V0}; (115)

the set C0
V0

(Ω) is a closed subset of C0
V(Ω).

• Let Vi be Banach spaces; then the product space
∏I
i=1 Vi is a Banach space when equipped

with the norm:
‖v‖ = sup

i=1:I

∥∥vj∥∥
Vi . (116)

• With V and W two Banach spaces, we denote by L(V,W) the vector space of all the linear
continuous operators from V into W; L(V,W) is a Banach space when equipped with the norm:

‖f‖ = sup
‖v‖V61

‖f · v‖W . (117)

B About the numerical implementation of Step 1 (case Ωj ⊂ R)

In this appendix, we give some details about the practical implementation of the Step 1 (see section
3.2) of the method in the case where Ωj ⊂ R. We present one method allowing to construct a finite
subset ωxm,ε,dt of Ωxm,ε from a measurement xm of x, in the case where Ωi ⊂ R and Z = R. This
simple method has been used for the numerical examples of section 6. The case of spaces of higher
dimension requires some technical and/or numerical adaptations.
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Consider I trajectories (xi, Ai, zi), i = 1 : I, solution of (1) for some given g and y ∈ F to be

identified. Consider also I sets of discrete data xi,km , zi,km defined by:

xi,km = xi(tik) + εi,kx , zi,km = zi(tik) + εi,kz , (118)

with {tik}k=1:Ki ⊂ Ωi, and {εi,kx }k=1:Ki and {εi,kz }k=1:Ki some zero mean noises with finite (and
sufficiently small) standard deviations.

We denote xm := (xim), zm := (zim) where xim and zim are the continuous trajectories obtained
from a continuous interpolation process (linear, splines [45], etc.) and a possible pre-filtering of the

data xi,km and zi,km . Let {xl0}l=1:L be a mesh of the (bounded) set
⋃
i x

i
m(Ωi).

Given ε > 0, we proceed in three steps to construct a finite subset ωxm,ε,dt of Ωxm,ε:
1. First, for any i and any l, we determine (by analytic computation of real intervals) the open

sets ωixm,ε,l := xi
−1

m (]xl0 − ε
2 , x

l
0 + ε

2 [), that is the sets of t such that |xjm(t)− xl0| < ε
2 .

2. Then, from the sets ωixm,ε,l, we build the subsets ωi,jxm,ε defined by:

ωi,jxm,ε :=
⋃
l=1:L

ωixm,ε,l × ω
j
xm,ε,l

, (119)

that are such that: ωi,jxm,ε ⊂ Ωi,j
xm,ε. Indeed:

(t, τ) ∈ ωi,jxm,ε ⇔ ∃l,

{
|xim(t)− xl0| < ε

2

|xjm(τ)− xl0| < ε
2

}
⇒ |xim(t)− xjm(τ)| 6 ε⇔ (t, τ) ∈ Ωi,j

xm,ε. (120)

Although in general ωi,jxm,ε  Ωi,j
xm,ε, these subsets can remain rich enough in practice to ensure an

accurate identification.
3. Finally, by choosing a time step dt small enough, we can discretize the 2D-sets ωi,jxm,ε to get

some finite subsets ωi,jxm,ε,dt ⊂ ωi,jxm,ε. The finite set:

ωxm,ε,dt :=
⋃
i,j

(
{(i, j)} × ωi,jxm,ε,dt

)
⊂ Ωxm,ε, (121)

can then be used for numerical purposes. By denotingQ := card(ωxm,ε,∆t) =
∑

(i,j)∈Ix,ε card(ωi,jxm,ε,dt),

the set ωxm,ε,dt can then be simply denoted by {(iq, jq, τ q, tq)}q=1:Q.

References

[1] Ljung L. System identification: theory for the user. Prentice-Hall Englewood Cliffs, NJ, 1987.
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