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2 Perform realistic water deficits and abortion rates in controlled platforms 
Four maize hybrids were grown in pots and subjected to different levels of 
soil water availability in greenhouse and growth chamber experiments 
(Phenodyn phenotyping platform). Soil water status was managed by weighing 
pots and adjusting water supply to the target soil water content. Three 
treatments were applied from tassel emergence (TE) to 7d after first silk 
emergence (SE), namely well watered (WW), mild deficit (WD1) and moderate 
deficit (WD2), with soil water potential above –0.10 MPa, around –0.25 MPa 
and around –0.50 MPa respectively (Fig. 1A). Their impacts on photosynthesis 
(Fig. 1C), transpiration (Fig. 1B) and seed set (Fig. 2) were similar to those 
commonly observed in drought prone fields. 

1 Summary  
Yield maintenance under drought in maize (Zea mays) is associated with flowering 
synchrony which requires the rapid extension of styles and stigma (silks) to be 
accessible for pollen. We show here that the control of grain set under moderate 
water deficits similar to those in the field results from a developmental process 
linked to the timing of silk growth, itself related to expansive growth and 
hydraulics processes, in opposition to the common view that abortion is linked to 
the sugar metabolism in ovaries.  

6 Perspectives 
These results confer a pivotal role to hydraulic controls of 
expansive growth processes in grain yield elaboration upon 
changes in environmental conditions. They have large 
consequences in plant breeding, modelling and phenotyping. 
Genotypes largely differ for the sensitivity of silk elongation 
rate to xylem water potential (Fig. 12), and sensitivities of silk 
and leaf growth were correlated (Fig. 13). This opens the way 
for genetic studies of the traits, genes and physiological 
processes controlling grain set under non-optimal climatic 
scenarios. These sensitivities and their genetic variability have 
to be included in the formalisms of crop models simulating yield 
in maize (e.g. APSIM model). An original method for 
phenotyping silk growth is currently developed by our group 
(companion poster IDT6-014). 

Oury V, Caldeira CF, Prodhomme D, Pichon J-P, Gibon Y, Tardieu F, Turc O. 2016. Is change in ovary carbon status a cause or a consequence of maize ovary 
abortion in water deficit during flowering? Plant Physiology 171: 997-1008. 
Oury V, Tardieu F, Turc O. 2016. Ovary apical abortion under water deficit is caused by changes in sequential development of ovaries and in silk growth rate in 
maize. Plant Physiology 171: 986-996. 
Turc O, Bouteillé M, Fuad-Hassan A, Welcker C, Tardieu F. 2016. The growth of vegetative and reproductive structures (leaves and silks) respond similarly to 
hydraulic cues in maize. New Phytologist 212: 377-388. 

5 Carbon metabolism in ovaries was still unaffected at silk emergence 
Changes in concentration and amount of sugars (Fig. 10), in activities of enzymes 
(Fig. 10) and in transcript levels (Fig. 11) of genes of sugar metabolism occurred 
5 d after silk emergence in apical ovaries that eventually aborted, i. e.  after the 
switch to abortion of these ovaries. Hence, we propose that, under moderate 
water deficits corresponding to most European drought scenarios, changes in ovary 
carbon metabolism during flowering time are a consequence rather than a cause of 
the beginning of ovary abortion. 
 

4 Silk growth is controlled by xylem water potential  
Analyses of transcripts and metabolites indicate that 
the first molecular events induced by drought occur 
at first silk emergence (SE), in silks rather than in 
ovaries, and involve genes affecting expansive growth 
rather than sugar metabolism (Fig. 6). Silk 
elongation rate was measured using displacement 
transducers (Fig. 7). Time courses revealed that silk 
elongation rate closely followed changes in soil water 
status and evaporative demand, with day-night 
alternations similar to those in leaves (Fig. 8, Fig. 
9). Day-night alternations were steeper with high 
than low plant transpiration rate, manipulated via 
evaporative demand or by covering part of leaf area 
(Fig. 9). Half times of changes in silk elongation 
rate upon changes in evaporative demand or soil 
water status were of 10-30 minutes (Fig. 8), similar 
to those in leaves, suggesting a common hydraulic 
control of expansive growth in both vegetative and 
reproductive structures. 

3 A switch to abortion occurs rapidly after first silk emergence.  
Silk elongation rate decreased in water deficit and stopped 2-3d after first silk 
emergence, simultaneously for all ovary cohorts, vs 7-8d in well-watered plants. 
Abortion rate in different hybrids, treatments and positions on the ear (Fig. 3) 
was accounted for by the superposition of the sequential emergence of silks 
originating from ovaries of different cohorts along the ear with the simultaneous 
silk growth arrest. Abortion occurred in the youngest ovaries whose silks did not 
emerge 2d before silk arrest (Fig. 4). This mechanism accounted for more than 
90% of drought-related abortion in our experiments (Fig. 5).  
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