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Abstract

Two satellites are currently monitoring surface soil moisture (SM) using L-band observations: 

SMOS (Soil Moisture and Ocean Salinity), a joint ESA (European Space Agency), CNES (Centre 

national d’études spatiales), and CDTI (the Spanish government agency with responsibility for 

space) satellite launched on November 2, 2009 and SMAP (Soil Moisture Active Passive), a 

National Aeronautics and Space Administration (NASA) satellite successfully launched in January 

2015. In this study, we used a multilinear regression approach to retrieve SM from SMAP data to 

create a global dataset of SM, which is consistent with SM data retrieved from SMOS. This was 

achieved by calibrating coefficients of the regression model using the CATDS (Centre Aval de 

Traitement des Données) SMOS Level 3 SM and the horizontally and vertically polarized 

brightness temperatures (TB) at 40° incidence angle, over the 2013 – 2014 period. Next, this 

model was applied to SMAP L3 TB data from Apr 2015 to Jul 2016. The retrieved SM from 

SMAP (referred to here as SMAP_Reg) was compared to: (i) the operational SMAP L3 SM 

(SMAP_SCA), retrieved using the baseline Single Channel retrieval Algorithm (SCA); and (ii) the 

operational SMOSL3 SM, derived from the multiangular inversion of the L-MEB model (L-MEB 

algorithm) (SMOSL3). This inter-comparison was made against in situ soil moisture 

measurements from more than 400 sites spread over the globe, which are used here as a reference 

soil moisture dataset. The in situ observations were obtained from the International Soil Moisture 

Network (ISMN; https://ismn.geo.tuwien.ac.at/) in North of America (PBO_H2O, SCAN, 

SNOTEL, iRON, and USCRN), in Australia (Oznet), Africa (DAHRA), and in Europe 

(REMEDHUS, SMOSMANIA, FMI, and RSMN). The agreement was analyzed in terms of four 

classical statistical criteria: Root Mean Squared Error (RMSE), Bias, Unbiased RMSE 
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(UnbRMSE), and correlation coefficient (R). Results of the comparison of these various products 

with in situ observations show that the performance of both SMAP products i.e. SMAP_SCA and 

SMAP_Reg is similar and marginally better to that of the SMOSL3 product particularly over the 

PBO_H2O, SCAN, and USCRN sites. However, SMOSL3 SM was closer to the in situ 
observations over the DAHRA and Oznet sites. We found that the correlation between all three 

datasets and in situ measurements is best (R > 0.80) over the Oznet sites and worst (R = 0.58) over 

the SNOTEL sites for SMAP_SCA and over the DAHRA and SMOSMANIA sites (R= 0.51 and 

R= 0.45 for SMAP_Reg and SMOSL3, respectively). The Bias values showed that all products are 

generally dry, except over RSMN, DAHRA, and Oznet (and FMI for SMAP_SCA). Finally, our 

analysis provided interesting insights that can be useful to improve the consistency between 

SMAP and SMOS datasets.

Keywords

SMOS; SMAP; soil moisture; statistical regression

1. Introduction

Lately, the importance of soil moisture has become increasingly apparent, because soil 

moisture is a key variable in better understanding of the land-atmosphere interactions (Chen 

et al., 2016; Hirschi et al., 2014). The exchange of heat and water between the land surface 

and atmosphere is influenced by soil moisture (Berg et al., 2014; Hupet & Vanclooster, 

2002; Seneviratne et al., 2010; Western et al., 2004), which was recognized as an Essential 

Climate Variables (ECV) in 2010 (GCOS, 2010).

Global soil moisture information has become available via different active and passive 

microwave remote sensing techniques with good temporal and spatial resolutions (Bartalis et 

al., 2007; Kerr et al., 2001; Njoku et al., 2002; Njoku et al., 2003; Owe et al., 2001; Ulaby et 

al., 1996; Wigneron et al., 1995). However, the required temporal and spatial resolutions 

strongly depend on the applications (e.g., agricultural applications vs. climate studies). 

Recently, new global soil moisture datasets, with a typical target accuracy of 0.04 m3/m3 

(Jackson et al., 2016; Kerr et al., 2010; Kerr et al., 2012) over bare, low vegetation cover, 

and sparsely vegetated areas, have been produced based on microwave satellite observations 

at L-band (1.4 GHz, 21 cm). L-band is considered optimal for soil moisture monitoring 

(Kerr et al., 2001; Njoku et al., 2003; Wang & Choudhury, 1981) due to its higher sensitivity 

to soil moisture and penetration into vegetation and soil (Kerr, 2007; Njoku et al., 2003; 

Owe & Van de Griend, 1998; Wang & Choudhury, 1981) than other higher frequencies (e.g., 

C-band, X-band, etc.). The new L-band based datasets include surface soil moisture from 

two spaceborne missions: ESA’s (European Space Agency) Soil Moisture and Ocean 

Salinity (SMOS) (Kerr et al., 2012) and NASA’s (National Aeronautics and Space 

Administration) Soil Moisture Active Passive (SMAP) (Entekhabi et al., 2010). The SMOS 

and SMAP satellites were launched in 2009 and 2015, respectively, and have been providing 

microwave brightness temperature (TB) observations since then. Soil moisture information 

is retrieved from SMAP’s and SMOS’s TB observations based on the principle that soil TB 

is mainly determined by soil moisture via soil dielectric constant (Njoku et al., 2002; 
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Schmugge et al., 1976; Ulaby et al., 1996). Nevertheless, the sensitivity of the SMOS and 

SMAP TB observations to soil moisture is reduced by perturbing factors such as vegetation 

(attenuation of the emission from the soil and additional upwelling emission toward the 

space-borne sensor), surface roughness (scattering effects increase the emitting surface 

area), topography, soil texture, soil bulk density, and soil temperature (Choudhury et al., 

1979; Grant et al., 2008; Holmes et al., 2006; Jackson & Schmugge, 1991; Kerr et al., 2012; 

Njoku & Li, 1999; Njoku et al., 2003; Wang et al., 1983; Wigneron et al., 2007; Wigneron et 

al., 2011).

There are several remotely sensed soil moisture products available (in addition to SMOS and 

SMAP); however, these cover different periods and are not consistent in terms of spatial and 

temporal resolutions, period availability, grid, etc. Given the wide availability of soil 

moisture datasets retrieved from different microwave observations, studies focusing on the 

merging of these products are important to advance in the field of producing long-term and 

consistent datasets of several climatic variables. A great effort has been made by the 

scientific community in the last decade to build a coherent and consistent long term soil 

moisture datasets such as the ESA Climate Change Initiative (CCI) soil moisture data record 

(e.g., Enenkel et al., 2015; Liu et al., 2012; http://www.esa-soilmoisture-cci.org/; Wagner et 

al., 2012), deemed necessary for global soil moisture monitoring, drought monitoring, 

climate forecasts, etc. The CCI product is estimated based on a posteriori merging i.e. 

merging the retrieved soil moisture datasets based on the relative errors of soil moisture 

products and a CDF (cumulative distribution function)-matching used to rescale the different 

soil moisture products into a common climatology. An alternative approach is to use data 

fusion i.e. merging of microwave datasets prior to the retrieval (e.g., through the use of a 

common retrieval algorithm as proposed later in this paper). This method allows better 

exploitation of the complimentary of information provided by the different sensors not 

included in the posteriori combination approach (Aires et al., 2012; Kolassa et al., 2013). A 

recent project was established by ESA to investigate the integration of SMOS soil moisture 

estimates within the CCI soil moisture data record using three approaches that implement 

the data fusion strategy:

(i) multi-linear regression (Al-Yaari et al., 2016);

(i) neural networks (Rodríguez-Fernández et al., 2015); and

(ii) the Land Parameter Retrieval Model (LPRM; Van der Schalie et al., 2016).

Al-Yaari et al. (2016), for instance, demonstrated the efficiency of physically-based 

multiple-linear regression equations (Wigneron et al., 2004), referred to here as Linear 

Regression Method (LRM) in the following, to retrieve soil moisture from the Advanced 

Microwave Scanning Radiometer Earth Observing System (AMSR-E) TB observations. The 

LRM has several advantages: quickness, simplicity, and no strong demand on auxiliary 

datasets (Al-Yaari et al., 2016) such as the normalized difference vegetation index (NDVI) 

product used by the SMAP Single Channel Algorithm (SMAP_SCA), to estimate vegetation 

effects. The purpose of that initial study was to extend the SMOS soil moisture product into 

the past i.e., 2003–2009, using AMSR-E TB observations. The current study follows the 

same strategy to retrieve soil moisture from SMAP TB observations (SMAP_Reg) with a 

purpose to improve the temporal sampling rate together with the SMOS soil moisture 
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product at the global scale. The main interest in the SMAP-Reg soil moisture product is that 

it is fully consistent with the SMOS Level 3 soil moisture product, as the regression 

equations are calibrated based on SMOS Level 3 data (soil moisture and TB). Furthermore, 

the idea here is to re-build a coherent and consistent soil moisture data set rather than to 

develop a new algorithm or to surpass the well-established radiative transfer models (e.g. the 

L-band Microwave Emission of the Biosphere (L-MEB) model, LRPM, etc.).

To thi s end, two specific objectives of this study are listed below:

i. produce a soil moisture product (SMAP_Reg) from SMAP TB that is consistent 

with SMOS soil moisture retrievals using physically-based regression equations; 

and

ii. compare SMAP_Reg with operational SMAP and SMOS soil moisture retrievals 

against ground-based soil moisture measurements.

Since SMAP soil moisture products are relatively recent, their evaluation and their inter-

comparison with other soil moisture data sets are required (Chan et al., 2016; Zeng et al., 

2016). To advance our goal, therefore, the second objective of this study is two-fold: to 

evaluate the SMAP_Reg product, and to carry out a first evaluation of the agreement 

between SMAP and SMOS level 3 soil moisture products on global scale and against 

ground-based measurements (sparse and dense networks). The aim is not to establish which 

product is more accurate with respect to in situ but to understand the spatio-temporal 

patterns of SMAP relative to SMOS and how SMAP differs from SMOS globally. The 

agreement and degree of dispersion between the SMAP and SMOS soil moisture products 

are analyzed here in terms of four classical statistical criteria: Root Mean Squared Error 

(RMSE), Bias, Unbiased RMSE (UnbRMSE), and correlation coefficient (R) during the 

overlapping period (from Apr 2015 to Jul 2016).

The datasets, the local regression method, and the evaluation metrics used in this study are 

described in Section 2. Results are presented in Section 3. Finally, discussion and 

conclusions are provided in Section 4 and Section 5, respectively.

2. Materials and methods

2.1 Datasets

2.1.1 SMOS level 3 TB and soil moisture products—SMOS is a joint ESA, CNES 

(Centre national d’études spatiales), and CDTI (the Spanish government agency with 

responsibility for space) mission that was launched on November 2, 2009 (Kerr et al., 2012). 

The SMOS satellite carries an interferometric radiometer that operates at L-band, with 

multiple incidence angles, a spatial resolution of 35 km at the center of the field of view, a 

revisit time of 3 days, and ascending and descending overpass at 6:00 AM (local time) and 

6:00 PM, respectively (Kerr et al., 2001; Kerr et al., 2010). Global SMOS Level 3 gridded 

multi-angular TB and soil moisture (top 0–5 cm surface layer) products (SMOSL3; version 

R04+OPER) are generated and provided by the CATDS (Centre Aval de Traitement des 

Données) center in France (Kerr et al., 2013). The SMOSL3 products are delivered for both 

orbits i.e. ascending and descending, projected on a global EASE (Equal Area Scalable 
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Earth) grid (V2) 25 km, by the CATDS, and are available online via http://www.catds.fr/. 

The IFS (Integrated Forecast System) soil temperature product from the European Centre for 

Medium-Range Weather Forecasts (ECMWF) is used in the SMOSL3 algorithm to retrieve 

the SMOSL3 soil moisture.

SMOSL3 TB product provides multi-angular TB data (in Kelvin) at the top of the 

atmosphere, i.e. not at the surface level and without correction for select reflected 

extraterrestrial sky (e.g., cosmic and galactic) and atmosphere contributions, but after 

projection onto the Earth reference frame (unlike the operational Level 2 product). The 

multi-angular TB are binned and averaged in 5°-width incidence angle bins with the center 

ranging from 2.5° to 62.5°. CATDS has recently provided SMOSL3 TB at 40°, and for this 

purpose the multi-angular TB are binned and averaged in 2°-width incidence angle bins. 

SMOSL3 soil moisture products (provided in m3/m3) are derived from the multiangular 

inversion of the L-MEB model (L-MEB algorithm) (Wigneron et al., 2007), i.e. the same 

method used for Level 2 soil moisture retrieval (Kerr et al., 2012), but are improved by using 

several revisits simultaneously (Kerr et al., 2016). SMOS TBs for ascending passes only and 

their associated soil moisture retrievals were used in this study (Al-Yaari et al., 2014a; Al-

Yaari et al., 2014b) for a better consistency with SMAP soil moisture retrieval datasets, 

which are only provided at 6:00 AM.

Radio Frequency Interferences (RFI) originating from man-made emissions have been 

shown to affect the quality of the SMOS TB observations (Oliva et al., 2012). RFI 

probability is used to filter the SMOS datasets. This probability is the total number of 

deleted TBs due to suspected RFI on a certain period divided by the total number of TB 

measurements acquired during the same period available in the SMOS L1C datasets. In this 

study, SMOS TB and soil moisture data were excluded when the RFI probability is higher 

than 20% following Kerr et al. (2016). The reader is referred to the Algorithm Theoretical 

Based Document (Kerr et al., 2013) for more details on the SMOSL3 products.

2.1.2 SMAP level 3 TB and soil moisture products—SMAP is a NASA satellite that 

was launched on January 31, 2015. The SMAP satellite at launch carried two instruments: a 

Synthetic Aperture Radar and a radiometer operating at L-band, with a fixed incidence angle 

of 40°, a spatial resolution of 40 km, a revisit of 2–3 days and ascending and descending 

overpass at 6:00 PM (local time) and 6:00 AM, respectively (Entekhabi et al., 2010; 

Piepmeier et al., 2016). Soil moisture (top 0–5 cm surface layer) and freeze/thaw were 

supposed to be provided with three spatial resolutions ~3 km (high-resolution from radar), 

~9 km (intermediate-resolution from radar and radiometer), and ~36 km (low-resolution 

from radiometer), projected on the EASE V2 grid. However, the radar instrument onboard 

SMAP satellite stopped transmitting data on Jul 7, 2015 due to a problem in the radar’s 

high-power amplifier (Chan et al., 2016). Currently, soil moisture products are retrieved 

from SMAP TB radiometer data using the baseline Single Channel Algorithm (SCA) V-pol 

(Chan et al., 2016; Jackson, 1993). The global daily SMAP level 3 V3 gridded descending 

brightness temperature (at both H and V polarizations) and soil moisture (which is a 

compilation of 24 hrs of L2 soil moisture orbits) products, henceforth referred to here as 

SMAP_SCA, on EASE 2 grid (36 km) were used in this study. Unlike the SMOSL3 TBs 

product, the TBs provided within the SMAP L3 product are calibrated at the surface level, 
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i.e. corrected for Sky radiation and atmosphere contributions using auxiliary near surface 

information (De Lannoy et al., 2015). The SMAP L2 half-orbit soil moisture product (and 

also the SMAP L3 soil product) uses ancillary data (including soil temperature information) 

from the NASA’s Global Modeling and Assimilation Office (GMAO/GEOS-5) Forward 

Processing product, which is provided with SMAP datasets. They are freely available from 

the National Snow and Ice Data Center (NSIDC). For more details on the SMAP mission 

and SMAP passive products, the reader is referred to (Chan et al., 2016; Piepmeier et al., 

2016) and the SMAP Level 2 & 3 Soil Moisture (Passive) Algorithm Theoretical Basis 

Document (SMAP_ATBD) available here: https://nsidc.org/data/docs/daac/smap/sp_l2_smp/

pdfs/L2_SM_P_ATBD_v7_Sep2015-po-en.pdf.

Furthermore, it should be noted that both the SMOS and SMAP TB and soil moisture 

datasets were filtered prior to the regression analysis and the evaluations. A pixel was 

masked out when:

i. it is not considered as “Land” in the United States Geological Survey (USGS) 

Land-Sea mask (water fraction above 10%)”;

ii. it is classified as “Urban and Built-Up”, “Snow and Ice”, “Water”, “Permanent 

Wetlands”, “Evergreen Needleleaf Forest”, or “Evergreen Broadleaf Forest” 

according to the International Geosphere Biosphere Programme (IGBP) land 

cover map;

iii. the number of retrievals < 15 over the whole retrieval period;

iv. it corresponds to a date where the MERRA-Land soil temperature is < 274 K (to 

avoid frost and frozen conditions);

v. SMOS TB is estimated to be not sensitive to the surface effects according to the 

mask developed by Parrens et al. (2016); and

vi. it corresponds to a date that is not recommended for retrieval based on the SMAP 

quality flag.

2.1.3 MERRA-Land soil temperature—The soil temperature product was extracted 

from the NASA MERRA-Land product, which is a land-surface model forced with 

atmospheric reanalysis fields (precipitation corrected using gauges) (Reichle et al., 2011). 

MERRA_Land is a supplemental land surface data product of the Modern-Era Retrospective 

analysis for Research and Applications (MERRA) datasets, produced by the Goddard Earth 

Observing System model and assimilation system. MERRA-Land uses an updated 

catchment land surface model (version Fortuna-2.5) and includes a gauge-based 

precipitation data from the NOAA Climate Prediction Centre. The accuracy and precision of 

MERRA-Land soil temperature were assessed and analyzed by Parinussa et al. (2011) and 

Holmes et al. (2012). These studies found the performance of MERRA-Land to be similar to 

the ECMWF soil temperature products. The MERRA-Land product is available for the 

1980-February 2016 period, provided with high temporal resolution (hourly) and a 

horizontal resolution of 2/3° longitude by 1/2° latitude (http://gmao.gsfc.nasa.gov/research/

merra/merra-land.php). The follow-up re-analysis product is MERRA2. It has improved soil 

temperature estimates, and uses gage information to correct the precipitation (Reichle et al., 
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2016), similarly to (but not exactly the same as) MERRA-Land. At the time of writing, the 

MERRA2 product was not yet available. Consequently, this study uses MERRA-Land 

auxiliary information.

2.1.4 ECMWF soil temperature—The global atmospheric reanalysis ERA-Interim soil 

temperature datasets obtained from ECMWF were used in this study. The Hydrology-Tiled 

ECMWF Scheme for Surface Exchange over Land (H-TESSEL) is used by the ECMWF 

forecasts to solve for several parameters including a four-layer soil temperature profile 

(Balsamo et al., 2009). In this study, the soil temperature from the first layer (0–0.07 m) 

provided at 00:00, 06:00, 12:00, 18:00 UTC over a grid with a space sampling of 0.25×0.25 

degrees was used. The ECMWF product is available from 1979 to present. The ECMWF 

datasets can be freely accessed at: http://apps.ecmwf.int/datasets/ and more information can 

be found in Berrisford et al. (2011).

2.1.5 Ground-based measurements—Validation of remotely sensed soil moisture 

products against ground-based measurements is a necessary step before any use. Nowadays 

several soil moisture networks share ground-based soil moisture measurements via the 

website of the International Soil Moisture Network (ISMN; Dorigo et al., 2011; Dorigo et 

al., 2015). ISMN is an ESA funded project initiated through the SMOS CAL/VAL. Data can 

be freely obtained from ISMN at https://ismn.geo.tuwien.ac.at/. All sites from ISMN that 

provide soil moisture within the period of Apr 2015–Jul 2016 were used in this study to 

evaluate the remotely sensed soil moisture products. Most of the sites are located in different 

regions with different vegetation, climate, and soil conditions.

Eleven networks in North America, Australia, Africa, and Europe were used namely: the 

PBO_H2O (http://xenon.colorado.edu/portal) network (Larson et al., 2008), the SCAN (Soil 

Climate Analysis Network) network (http://www.wcc.nrcs.usda.gov/scan/) (Schaefer et al., 

2007), the SNOTEL (Snow Telemetry) network (http://www.wcc.nrcs.usda.gov/snow/), the 

USCRN (U.S. climate reference) network (Bell et al., 2013), the newly built RSMN 

(Romanian Soil Moisture & Temperature Observation Network) network (http://

assimo.meteoromania.ro/) in Romania, the FMI (Finnish Meteorological Institute) network 

(Rautiainen et al., 2012) in Finland, the Oznet (Australian Moisture Monitoring Network) 

network (Smith et al., 2012) in Australia, the SMOSMANIA (Soil Moisture Observing 

System–Meteorological Automatic Network Integrated Application) network (Albergel et 

al., 2008; Calvet et al., 2007) in France, the DAHRA network (Tagesson et al., 2015) in 

Senegal, the iRON (Integrated Roaring Fork Observation Network) network http://

ironagci.blogspot.co.at/, and the REMEDHUS (Soil Moisture Measurement Stations 

network of the University of Salamanca) network (Sanchez et al., 2012) in Spain. To ensure 

the high quality of the in situ measurements and to minimize the systematic differences 

between them and the remotely-sensed soil moisture products, we restricted the validation 

step to sites with a top soil layer of ~ 0 – 5 cm and with a minimum number of temporal 15 

measurements. ISMN quality flags associated with the soil moisture data were applied 

(Dorigo et al., 2013). Consequently, ~ 400 (out of ~ 1000) sites from 11 networks were used 

for the evaluation. Moreover, if multiple sensors fall within one pixel, each sensor is treated 

independently: in this paper, unlike (De Lannoy & Reichle, 2015) we will not seek to 
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construct reliable statistical confidence intervals. Fig. 1 shows the locations of the different 

in situ soil moisture sites.

2.2 Methodology

The methodology used in this study to retrieve soil moisture from SMAP TB based on 

regression coefficients, obtained from SMOS TB and soil moisture, is schematized in Fig. 2. 

It consists of two steps: the calibration and the data production.

2.2.1 Calibration—A regression equation was analytically derived from the general (tau-

omega) model equations (Mo et al., 1982) by Wigneron et al. (2004):

ln (SM) = a0 + a1 ln (ΓH) + a2 ln (ΓV) (1)

Where a0, a1, and a2 are regression coefficients, and the first (second) term on the right hand 

side of Eq. (1) represents the surface reflectivity at horizontal (vertical) polarization (ΓP), 

described as:

ΓP = 1 −
TBP
TG

(2)

where:

TBP is the brightness temperature at polarization p (H or V) at 40° incidence angle 

and TG is the surface soil temperature.

We used a multiple linear regression i.e., a statistical technique that predicts the outcome of 

a response (dependent) variable using two or more independent (explanatory) variables. The 

coefficients of Eq. (1) were estimated using ordinary least squares techniques that minimize 

the sum of the squared errors. Eq. (1) was used in this study to retrieve soil moisture from 

the SMAP L-band TB observations. The coefficients a0, a1, and a2 of Eq. (1) were calibrated 

per land cover category (obtained from the IGBP land cover map (see Fig. 1)) using the most 

recent available re-processed SMOS datasets: the SMOS TB in both V and H polarizations 

at incidence angle of 40° and soil moisture, and MERRA TG datasets. The calibration was 

done during the 2013–2014 period. Note that this calibration was made here per land cover 

category, and not on a pixel to pixel basis as it was made previously in most LRM studies 

based on space-borne observations (Al-Yaari et al., 2016; Parrens et al., 2012; Saleh et al., 

2006). This choice was made here to increase the spatial coverage. SMOS TBs observations 

are highly affected by RFI and therefore most of the regions in Europe and Asia would be 

masked out. To overcome this issue, we removed pixels with high RFIs and then we 

calibrated the regression equation with the rest of pixels within each land cover category. 

Lastly, we applied the obtained coefficients to the SMAP TB data (which are less impacted 

by RFI) for all the pixels for each land cover category.
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2.2.2 Soil moisture production—Soil moisture was computed from the SMAP TB data 

for the Apr 2015 – Jul 2016 period using the regression coefficients computed in the 

calibration step using Eq. (1). This was done given the fact that we have all inputs for Eq. (1) 

to compute the soil moisture: TB observations at both polarizations from SMAP, TG datasets 

based on the GMAO GEOS-5 (here in after referred to as GEOS-5) model provided with the 

SMAP datasets (or any other source like ECMWF), and the coefficients (a0, a1, and a2) from 

the calibration step.

2.3 Metrics used for evaluating the soil moisture data set

The SMAP_Reg soil moisture product, obtained using the LRM algorithm, was compared 

with the SMAP and SMOS official Level 3 soil moisture products, and all three remotely 

sensed soil moisture products were evaluated against in situ observations. This was achieved 

using classical metrics: Root Mean Square Error (RMSE; m3/m3), Bias (m3/m3), UnbRMSE 

(m3/m3) (Entekhabi et al., 2010), and the (Pearson) correlation coefficient (R), which can be 

computed as follows:

Bias = 1
N ∑

i = 1

N
Si − Oi (3)

RMSE = 1
N ∑

i = 1

N
(Si − Oi)

2 (4)

UnbRMSE = RMSE2 − bias2 (5)

R = 1
(N − 1) ∑

i = 1

N Si − S
σS

Oi − O
σO

  (6)

where the overbar indicates the mean;

• Si is the ith remotely sensed soil moisture value;

• Oi is the ith in situ observed or the remotely sensed soil moisture value;

• N is the total number of observations; and

• σo and σs are the standard deviations of the in situ observed or remotely sensed 

soil moisture values, respectively.

Moreover, Taylor diagrams (Taylor, 2001) were used in this study to compare in a 

comprehensive way the remotely sensed soil moisture and the in situ soil moisture 

measurements. Three statistics are summarized in a Taylor Diagram: the normalized 
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standard deviation (SDV) displayed as a radial distance, the correlation coefficient (R) 

displayed as an angle in the polar plot, and the centered RMSE (displayed as the distance to 

the point (observed) where R and SDV are equal to one). The performance of the remotely 

sensed soil moisture products is considered closest to ground measurements with the 

shortest distance to R = 1 and SDV = 1.

3 Results

3.1 SMAP and SMOS inter-comparison

Before presenting the regression analyses and evaluating the SMAP_Reg soil moisture 

product, it is necessary to evaluate and compare the measured (retrieved) Tb’s (soil 

moisture) from SMOS and SMAP, which is the key to understand the different results, as it 

is the only input that changes between the SMAP and SMOS-based SM retrieval algorithms. 

For instance, this could help explain the differences in Bias, RMSE and correlation obtained 

between the different soil moisture products evaluated in this study over the different 

networks. For this purpose, global maps of R, RMSE, Bias, and UnbRMSE between SMAP 

and SMOS TBs and soil moisture were produced. Fig. 3 shows the global maps between 

SMOS and SMAP TBs during the Apr 2015 Jul 2016 period at both polarizations vertical 

(V-pol; left) and horizontal (H-pol; right): (a& e) correlation, (b& f) RMSE, (c& g) Bias, 

and (d &h) UnbRMSE. In general, there is a good agreement between SMOS and SMAP 

TBs at both V-pol and H-pol particularly in terms of temporal dynamics (R mostly > 0.8). 

The RMSE and UnbRMSE values are lower between SMAP and SMOS at V-pol than 

between SMAP and SMOS at H-pol over some regions (e.g., region of western North 

Africa). The RMSE (UnbRMSE) values range mostly between 2 and 8 (4) K over most of 

the globe except over some regions (e.g., Western Europe). SMAP presents cold (warm) bias 

with respect to SMOS over most of the globe (high latitude regions).

Fig. 4 displays global inter-comparison between the operational SMOS (L3) and SMAP 

(SCA) soil moisture retrievals during the Apr 2015–Jul 2016 period: (a) correlation, (b) 

RMSE, (c) Bias, and (d) UnbRMSE. The correlations between SMOS and SMAP soil 

moisture retrievals (Fig. 4a) are very high (between 0.8 and 1) over Australia, central Asia 

and USA, and the Sahel, while moderate and low correlations are found over the other 

regions. SMAP is much wetter under regions where the vegetation is moderate or high as 

well as on coastlines, whereas SMOS is wetter over India and Central America, and far 

north (see Fig. 4c). It can be seen in Figs. 4(b& d) that higher values of RMSE and 

UnbRMSE are found in regions where the vegetation is moderate or high than over arid and 

semi-arid regions. The retrieved soil moisture data from both SMOS and SMAP seem to 

agree generally well in terms of unbRMSE (mostly < 0.05 m3/m3).

3.2 Regression calibration

The regression coefficients a0 (intercept coefficient), a1 (coefficient for the H polarized TB), 

and a2 (coefficient for the V polarized TB) in Eq. (1), obtained using SMOSL3 TB (V & H) 

and soil moisture in the calibration step, are presented in Table 1 and Fig. 5. A unique 

coefficient value for each land cover category was obtained. It can be seen that the values of 

the coefficient for the different land cover categories can be clearly distinguished. For 
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instance, lowest coefficients values for a0 and a2 were obtained over “Closed shrublands” 

and highest over “Deciduous needleleaf forest” for a2 and “Deciduous broadleaf forest” for 

a0 while lowest values for a1 were obtained over “Cropland/Natural vegetation mosaic” and 

highest over “Deciduous broadleaf forest”.

In order to make a first evaluation of the quality of the calibration step, and before applying 

the LRM algorithm to the SMAP TB data, we applied the LRM equations to the SMOS TB 

data. The soil moisture product (SMOS_Reg) was retrieved from SMOSL3 TB using the 

regression coefficients computed from Eq. (1) over the calibration period. Then, SMOS_Reg 

was compared with the reference SMOSL3 soil moisture for the same period in terms of 

RMSE and correlation coefficient (P-value < 0.05).

Looking at the correlation map in Fig. 6a, a remarkable agreement (R > 0.8) can be seen 

between SMOS_Reg and SMOSL3 over most of the globe except over some forests areas 

(e.g., boreal regions) where the correlation values drop below 0.4. Looking at the RMSE 

map in Fig. 6b, the spatial patterns of the RMSE values are also found to be in 

correspondence with the vegetation distribution: low RMSE values (~ 0.05 m3/m3) are found 

over areas with low vegetation while high RMSE values are found over moderately 

vegetated regions.

3.3 SMAP_Reg soil moisture evaluation

This section presents an evaluation of the SMAP_Reg soil moisture product, which was 

based on applying the LRM algorithm to the SMAP Level 3 TB observations (see Section 

2.2.2) and using two soil temperature products: GEOS-5 and ECMWF. Note that the LRM 

algorithm was calibrated with MERRA-Land soil temperature; here, we only change the 

input, not the linear regression coefficients, as it will become clear that the temperatures 

estimated in GEOS-5 and ECMWF do not differ much in the first order. Both these 

SMAP_Reg soil moisture products were first compared with the SMAP operational Level 3 

soil moisture product (SMAP_SCA) to investigate the similarity/dissimilarity between the 

various SMAP soil moisture products. This was done by computing the R and RMSE 

statistical criteria between the SMAP_Reg and SMAP_SCA soil moisture products at the 

global scale. The temporal correlation between SMAP_Reg and SMAP_SCA soil moisture 

retrievals is shown in Fig. 7a using GEOS-5 and in Fig. 7c using ECMWF. Figs. 7a & c 

show that the temporal dynamics of both SMAP_Reg and SMAP_SCA soil moisture 

products are generally very similar with R values larger than 0.8 over most of the globe. 

However, weaker correlations between SMAP_Reg (ECMWF) and SMAP_SCA (GEOS-5) 

than between SMAP_Reg (GEOS-5) and SMAP_SCA (GEOS-5) can be seen over a few 

regions particularly over high latitude areas and Sahara. Fig. 7b shows that the distribution 

of the RMSE values between SMAP_Reg and SMAP_SCA soil moisture products present 

clear spatial patterns: low RMSE values over deserts and savannahs (e.g., the Sahara, 

Australia, Southern Africa, etc.), whereas high values of RMSE values were generally found 

over vegetated areas. Looking at both Figs. 7a &c (correlations) and Figs. 7b &d (RMSE), 

there is a general good agreement between SMAP_Reg and SMAP_SCA over regions with 

low to moderate amounts of vegetation cover.
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The SMAP_Reg soil moisture product with GEOS-5 soil temperature as auxiliary input was 

additionally evaluated against

i. in situ soil moisture observations using more than 400 sites from eleven networks 

spread over the globe (see Section 2.1.4); and

ii. the operational SMAP and SMOS Level 3 soil moisture products at these 

individual site locations. The SMAP_SCA and the SMOSL3 soil moisture 

products were considered in the evaluation in order to investigate the consistency 

in time variations between the new soil moisture product (SMAP_Reg) and the 

original ones at different sites.

Taylor diagrams (see Section 2.2.3) given in Fig. 8 show the statistics for the sites 

individually. Fig. 8 shows values of SDV, R, and the centered RMSE between the remotely 

sensed soil moisture products and measured soil moisture values over all sites used in this 

study. In Fig. 8, the performance of SMAP_SCA (blue symbols), SMAP_Reg (red symbols), 

and SMOSL3 (green symbols) varies from one site to another and from one network to 

another as demonstrated by the uneven distribution of the sites (shown as circles) in the 

plots. Looking at the Taylor diagram over the SCAN and SNOTEL sites, the correlations 

values range between 0 and 0.9 and both SMAP_Reg and SMOSL3 tend to have higher 

SDV values than SMAP_SCA. Over the REMEDHUS sites, the three algorithms have a 

comparable performance but with a large variability (as defined by high SDV index) with the 

in situ observations; the correlation values range between 0.4 and 0.8. Over the PBO-H2O 

sites, SMAP_SCA patterns are closer to the in situ patterns than SMOSL3 and SMAP_Reg, 

which have larger SDV values than the in situ observations and most of the correlation 

values range between 0.5 and 0.9. Over the USCRN sites, the retrieved soil moisture values 

from all algorithms have a similar variability to that of the in situ observations, although 

SMAP_Reg and SMOSL3 soil moisture products have a larger variability for some sites. 

Over the RSMN sites, the three products present the same level of performance with respect 

to the in situ observations but all had higher SDV than the in situ observations. However, the 

correlations drop below 0.4 for a few sites for the three products. Over the DAHRA network, 

the SMOSL3 (best correlation) and SMAP_SCA product lie closest to the observed point 

followed by SMAP_Reg with higher SDV than the in situ observations for all products. Over 

the iRON sites, the correlations range from 0.4 to 0.8 for the SMOSL3 and SMAP_Reg. 

SMAP_SCA and SMAP_Reg are comparable in terms of variability and they are closer to 

the in situ patterns than SMOSL3. Over the Oznet network, the three products are 

comparable in terms of correlations (ranging from 0.6 to 0.9) and, similarly to the RSMN 

network, overestimate the in situ observations. Over the FMI sites, the correlations range 

from 0.4 to 0.8 and 0.9 for SMAP_SCA and SMAP_Reg, respectively. Similarly, to what 

was obtained over the Oznet sites, the SMAP_SCA and SMAP_Reg products overestimate 

the in situ observations over most of the sites. Finally, over SMOSMANIA, SMAP_Reg has 

better correlations, with in situ data ranging from 0.4 to 0.95, than the other two products. 

For SMOSL3, the correlations drop below 0.4 for a few sites. Overall, all three products 

have approximately the same level of performance in terms of variability but SMAP_SCA is 

slightly better in terms of temporal dynamics.
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In order to have a general idea on the overall performance of SMAP_SCA, SMAP_Reg, and 

SMOSL3, the average of the Bias, RMSE, and UnbRMSE values and the median of the 

correlation values for all sites were computed per each network. Given the different sizes of 

the networks, the varying sample sizes, and varying temporal and spatial autocorrelations, 

the values are only indicative and no statistical confidence levels are provided. It should be 

noted that the average and median values were only computed when the site has a number of 

observations > 15 and p-value <0.05. This is presented in Table 2 and Fig. 9, which show the 

comparison statistics for the three algorithms i.e. SMAP_Reg, SMAP_SCA, and SMOSL3 

against the in situ observations. It can be seen in Table 2 and Fig. 9 that the best R scores (R 

> 0.80) for the three algorithms were obtained over the Oznet sites while the worst ones 

were observed over (R ~ 0.58) over the SNOTEL sites for SMAP_SCA and over the 

DAHRA and SMOSMANIA sites (R=0.51 and R=0.45 for SMAP_Reg and SMOSL3 

respectively). SMOSL3 had highest R values over the DAHRA site while SMAP_Reg had 

highest R values over SMOSMANIA. Other than those two networks, SMAP_SCA had 

highest R values. However, both SMAP products i.e. SMAP_SCA and SMAP_Reg have 

comparable performance particularly in terms of correlation coefficients. In terms of 

unbRMSE, SMAP_SCA had lower values for all sites except in Oznet where the lowest 

values were obtained by SMOSL3. Even though it is difficult to compare absolute values at 

in situ locations, a comparison based on a large sample can give some indication of biases: 

the Bias values showed that all products are generally dry, except over RSMN, DAHRA, and 

Oznet (and FMI for SMAP_SCA). Unlike SMAP_Reg, a notable overall positive bias is 

obtained over FMI for SMAP_SCA (overestimation). The overestimation of in situ soil 

moisture observations over RSMN and FMI networks by SMAP_SCA is in line with the 

recent findings of Zeng et al. (2016).

4 Discussion

We investigated the potential utility of a physically based multi-linear regression approach to 

retrieve soil moisture from two microwave remote sensing satellites that operate at L-band: 

SMOS and SMAP. The approach consists of two steps:

i. a calibration step to compute regression coefficients using SMOS TB and soil 

moisture over 2013–2014 (calibration period); and

ii. a production step to retrieve soil moisture from SMAP TB using the computed 

regression coefficients, for Apr 2015 to Jul 2016 (production period).

4.1 SMAP and SMOS inter-comparison

Before applying the regressions, an inter-comparison was made between SMOS and SMAP 

TBs and soil moisture. From the results (Fig. 3 & 4), it was shown that there is a very good 

agreement between the two datasets. However, small discrepancies (2 to 4 K of Bias) 

between the SMOS and SMAP TBs were found over most of the globe and high 

discrepancies were found particularly over regions affected by RFI (Western Europe, North 

Africa, etc.). This is not unexpected due to the fact that, as indicated in Section 2.1.1 and 

2.1.2, the SMOSL3 TB product provides TBs on top of the atmosphere and there is no 

correction for sky and atmosphere contributions whereas SMAP TB is provided at the 
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surface. According to De Lannoy et al. (2015), a difference of less than 2 K for H-Pol TB 

and 1 K for V-Pol TB at 40° incidence angle between SMOS TB and SMAP TB can be 

attributed to the contributions of the atmospheric and reflected sky (e.g., cosmic and 

galactic) radiations. This low difference can be explained by the fact that the effects of (i) the 

contribution of the atmosphere to TB (direct and reflected) and (ii) the attenuation effects 

due to the atmosphere, partially offset each other. Nevertheless, local and short-term values 

regularly exceed 5 K (De Lannoy et al., 2015). In addition, SMAP TBs are water-body 

corrected while SMOS TBs are not. Thus, the SMOS and SMAP TBs do not correspond 

exactly to the same pixel coverage: the SMOS TBs correspond to the whole pixel, while the 

SMAP TBs correspond to the whole pixel, but excluding open water areas. As the emission 

of open water surfaces (~ 60 – 150 k) is small in comparison to the emission of soil and 

vegetation-covered surfaces, applying this correction leads systematically to an increase in 

the TBs values. Note that for pixels with a fraction of water bodies higher than 10%, data 

were filtered out. But even after this filtering, the water TB correction may have an impact 

on the TB values. This water TB correction may explain the warm “Bias” (~10 K) of the 

SMAP TBs with respect to the SMOS TBs over high latitude and boreal regions (where 

many pixels may contain lakes, rivers, wetlands, etc.). Excluding these regions, a small cold 

bias of SMAP TBs with respect to SMOS TBs can be noted (~3–6 K). Overall, a very good 

agreement was found globally between the SMAP and SMOS TBs data.

4.2 Regression calibration and soil moisture production

The regression model was run for each land cover category (defined here using the IGBP 

land cover map) separately and thus we obtained coefficients of each land cover category. 

These values vary from one land cover category to another, reflecting the different 

characteristics for each land cover category. These three parameters as indicated by Saleh et 

al. (2006) are a function of the soil type and roughness. The regression approach quality was 

evaluated in two ways:

i. first, we estimated soil moisture from SMOS TB and compared the predicted soil 

moisture (SMOS_Reg) to the reference (SMOSL3) using correlation and RMSE, 

over the calibration period (2013–2014). High correlations (R> 0.8) and low 

RMSE values were obtained between SMOS_Reg and the reference over the 

continental surfaces, indicating that the spatio-temporal dynamics of SMOSL3 

was well captured by SMOS_Reg. However, some differences can be noted in 

terms of magnitude over high to moderate vegetation areas and high latitude 

regions. This is not unexpected due to uncertainties in the SMOS datasets caused 

by the high vegetation attenuation effects in these regions, which is a major 

problem for most of the remotely sensed soil moisture retrievals (Vittucci et al., 

2016; Wigneron et al., 2003); and

ii. Second, we estimated soil moisture from SMAP TB for the Apr 2015 to Jul 2016 

period (SMAP-Reg) and compared it to the original SMAP_SCA and the 

SMOSL3 soil moisture products against more than 400 sites over the world.

Soil temperature is an important input in the radiative transfer equation and has a significant 

impact on the final estimate of the soil moisture retrievals (Holmes et al., 2012; Lv et al., 

2016; Parinussa et al., 2011). In order to study how sensitive is the retrieved soil moisture to 
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the soil temperature effects, we used soil temperature from two different sources: ECMWF 

and GEOS-5. We applied the regression coefficients to SMAP TB using these two products 

and then we compared with SMAP_SCA. It was found that in general the spatial patterns are 

similar for both products in terms of R and RMSE values; however, the correlations between 

SMAP_Reg (ECMWF) and SMAP_SCA (GEOS-5) are lower than the correlations between 

SMAP_Reg (GEOS-5) and SMAP_SCA (GEOS-5) over some regions (e.g., Sahara, Far 

Eastern Federal District, East-Central Canada, etc.). The better agreement between 

SMAP_Reg (GEOS-5) and SMAP_SCA (GEOS-5) does not necessarily mean that the 

quality of GEOS-5 is better than ECMWF. This could simply results from the fact that the 

same soil temperature product was used in both the regression approach and the 

SMAP_SCA algorithm. However, it does seem that soil temperature has an important impact 

on the soil moisture retrievals (e.g., Lv et al., 2016), i.e. using the same soil temperature 

leads to similar soil moisture retrievals from SMAP no matter if different retrieval 

approaches are used. This could partially explain the strong agreement found between 

SMAP_SCA and SMAP_Reg.

Results from the comparison between SMAP_Reg both (ECMWF & GEOS-5) and 

SMAP_SCA showed that SMAP_Reg is in agreement with SMAP_SCA, particularly in 

terms of temporal dynamics which is of high relevance (Crow et al., 2010; Liu et al., 2012). 

Moreover, it is noticed here that the performance of the “production” step i.e. comparison 

between SMAP_Reg and SMAP_SCA is much better than the “calibration” step i.e. 

comparison between SMOS_Reg and SMOSL3. This can be partly explained by three 

reasons:

1. in the calibration step, the TBs used are not exactly the same while in the 

production step they are. More specifically, the SMOSL3 soil moisture product is 

not directly retrieved from SMOSL3 TB but from TB products in the Fourier 

domain (L1B); thus the TB used in the regression does not necessarily match the 

actual TB used to retrieve SMOSL3 soil moisture. Therefore it is expected that 

the temporal dynamics of the two soil moisture products will be more similar 

because they will be driven by the common input TB dynamics. This uncertainty, 

among others, may affect the quality of the calibration;

2. the quality of SMAP TB seems to be very good and therefore whatever the used 

algorithm, the resultant soil moisture is the same particularly in terms of 

temporal dynamics. This, again, may partially explain the strong similarity 

between the two products i.e. SMAP_Reg and SMAP_SCA; and

3. the regression (LRM coefficients) is based on MERRA-Land TG, which is 

similar to the GEOS-5 product used in SMAP_SCA and not in SMOSL3 (for 

which the ECMWF product is used); explicitly indicating that soil temperature 

may play a crucial role in the quality of the SM retrievals.

4.3 SMAP_Reg soil moisture evaluation

Results from evaluating both SMAP products and SMOSL3 against in situ observations 

showed that SMAP_SCA and SMAP_Reg soil moisture products have comparable 

performance with similar R values over the REMEDHUS, PBO_H2O, SNOTEL, SCAN, 
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Oznet, and USCRN sites. Nevertheless, all three remotely sensed soil moisture products had 

poor performance over the SNOTEL. The poor performance of the three algorithms over the 

SNOTEL network can be attributed to several reasons: among them it should be considered 

that most of the SNOTEL sites are located in mountain regions with forests and freezing and 

thawing processes, more details on these aspects can be found in Al Bitar et al. (2012). It 

should be kept in mind that when using only the recommended retrievals for SMAP, there 

was no data left from the iRON sites. So the statistics for this particular network were based 

on data without considering if the retrieval was recommended or not but other filters were, 

however, applied.

All remotely sensed soil moisture products underestimated generally the in situ observations 

used in this study. The bias values ranged from −0.095 m3/m3 (SMOSMANIA) to 0.066 

m3/m3 (DAHRA) for SMAP_Reg, from −0.094 m3/m3 (iRON) to 0.076 m3/m3 (FMI) for 

SMAP_SCA, and from −0.182 m3/m3 (iRON) to 0.026 m3/m3 (RSMN) for SMOSL3. This 

so-called “dry” bias of SMOSL3 and SMAP_SCA is in line with previous studies (Al-Yaari 

et al., 2014b; Al Bitar et al., 2012; Chan et al., 2016; Dente et al., 2012). On the other hand, 

an overestimation was found over FMI (for only SMAP_SCA) and RSMN, DAHRA, and 

Oznet sites (for the three products). It should be kept in mind that FMI is a very specific 

network: the sites of FMI are located in high latitude regions with cold climate in which 

remotely-send soil moisture retrievals are influenced by the effects of soil freezing and 

thawing processes, organic matter in the soil substrate and the presence of numerous water 

bodies and bogs (Rautiainen et al., 2012; Zeng et al., 2016). The reasoning behind the 

underestimation/overestimation of the in situ soil moisture values is a challenge. The dry 

bias could be related to the different spatial scales and sampling depths between the satellites 

and the in situ observations (e.g., Dorigo et al., 2015; Escorihuela et al., 2010; Rondinelli et 

al., 2015). Moreover, although RFI was severely filtered from the SMOS datasets, it could 

be that some sources of RFI are still not filtered/detected, which can explain the rather 

general underestimation which is found in this study (Oliva et al., 2016). This was evident 

especially for SMOS as seen in Fig. 3 where SMOS still has higher TBs close to those 

regions despite filtering RFI. The reader is referred to Al Bitar et al. (2012) for a discussion 

on these questions.

In terms of UnbRMSE, a comparable performance between SMAP_SCA and SMAP_Reg 

was found over the SMOSMANIA, iRON, and SNOTEL sites but lower values were 

obtained with SMAP_SCA over the other networks. SMOSL3 had generally higher 

UnbRMSE values than both SMAP_SCA and SMAP_Reg. However, SMOSL3 had lower 

values over the Oznet and DAHRA sites.

It was noted from Table 2 and Fig. 9, that the SMAP TB-based soil moisture products 

(SMAP_SCA and SMAP_Reg) have a slightly better performance than SMOSL3 for most 

of the networks especially in terms of temporal dynamics. Although the three algorithms use 

TB at L-band and rely on the same radiative transfer equation (tau-omega model), they vary 

in many things (e.g., ancillary datasets, model parameterizations and assumptions). For 

instance, SMOS and SMAP use two different land cover maps: ECOCLIMAP 2004 

(containing 213 classes) for SMOS and MODIS IGBP (containing 17 classes) for SMAP, so 

it is likely there is a mismatch between the real land cover and the theoretical land cover 
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used in SMAP and SMOS soil moisture retrievals leading to a different behavior of the soil 

moisture retrievals. This may also partially explain the similarity between SMAP_Reg and 

SMAP_SCA given the use of the same land cover. These differences were already noted in 

the direct intercomparison between SMOSL3 and SMAP_SCA displayed in Fig. 4. The 

SMOS team is currently investigating the impact of land cover mapping and the possibility 

to replace the ECOCLIMAP map by the IGBP map in the SMOS soil moisture retrieval 

algorithm. Furthermore, the better performance of SMAP soil moisture products could be 

related to the enhanced quality of the SMAP TB observations due to an improved RFI 

mitigation and detection system (Piepmeier et al., 2016). Moreover, SMOS TB observations 

have a radiometric error of ~ 3 to 3.5 K while SMAP TB observations have a radiometric 

error of ~ 1 K (De Lannoy et al., 2015). Finally, SMOS and SMAP use different surface soil 

temperature sources for their operational products.

Based on the presented results, it can be noted that applying regression analysis to TB (from 

SMAP and SMOS) observed at L-band (1.4 GHz) gave better results compared to what was 

found by Al-Yaari et al. (2016), who applied the LRM algorithm to TB observed at C-band 

(from AMSR-E; 6.9 GHz). This is not unexpected, as the simplifications and assumptions 

(e.g., neglecting the scattering effects) of the LRM method are more valid at L-band. 

Moreover, both SMAP and SMOS observe TB at the same frequency i.e. L-band, which is 

considered optimal for soil moisture retrievals (Chan et al., 2016; Jackson, 1993). On the 

other hand, a similar behavior with Al-Yaari et al. (2016) of the regression coefficients that 

correspond to the H polarization and V polarization was found: low (high) coefficient values 

at H polarization correspond generally to high (low) values at V polarization over most of 

the regions.

5 Conclusions

This study demonstrated the potential benefits of combining SMOS and SMAP datasets 

given the good performance of SMAP_Reg compared to SMOSL3 and SMAP_SCA original 

products over some regions. This in return shows the close similarity between SMOS and 

SMAP TB observations and highlights that an integration of SMAP and SMOS data sets to 

build a long term soil moisture record will be successful and higher temporal frequency. 

Finally, this first evaluation of preliminary SMAP products, and the inter-comparison with 

SMOS datasets provided insights and statistics that can be useful for SMAP/SMOS soil 

moisture product validation and SMAP/SMOS algorithm refinements and convergence on 

auxiliary data sets. A calibration of the soil and vegetation effects has been recently made 

(Fernández Morán et al., 2016). A new SMOS Level 3 soil moisture product integrating this 

new calibration and with a significantly improved accuracy is being produced. Future 

research will consider the calibration of SMAP-Reg with this new SMOS product and 

further fusion studies will be continued by applying LRM to the SMOS and SMAP datasets 

considering other important variables such as the vegetation opacity.
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Fig. 1. 
IGBP (International Geosphere Biosphere Programme) land cover classification (Friedl et 

al., 2010) with the locations of the different in situ soil moisture sites (a) over Australia (b), 

the USA (c), and Africa and Europe (d).
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Fig. 2. 
The LRM (local regression method) algorithm: inputs (in blue), calibration step (in red), and 

soil moisture production step (in green).
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Fig. 3. 
Global inter-comparison between SMOS and SMAP TBs during the Apr 2015–Jul 2016 at 

both polarizations vertical (V-pol; left) and horizontal (H-pol; right): (a & e) correlation, (b 

& f) RMSE, (c & g) Bias, and (d &h) UnbRMSE. Pixels with a number of observations 

lower than 15 are indicated as blank areas.
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Fig. 4. 
Global inter-comparison between SMOS and SMAP soil moisture retrievals during the Apr 

2015–Jul 2016: (a) correlation, (b) RMSE, (c) Bias, and (d) UnbRMSE. Pixels with a 

number of observations lower than 15 are indicated as blank areas.
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Fig. 5. 
Regression coefficients of Eq. 1 calibrated using SMOS Level 3 TB and soil moisture in 

2013–2014 (a): intercept (a0), (b) slope of regression line corresponding to the horizontal 

polarization (a1), and (c) slope of regression line corresponding to the vertical polarization 

(a2).
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Fig. 6. 
Comparison between the soil moisture values computed from the SMOS TB data using 

LRM (SMOS_Reg) and the SMOS official level 3 soil moisture product in 2013–2014: (a) 

correlation, R and (b) RMSE (m3/m3). Pixels with a number of observations lower than 15 

are indicated as blank areas.
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Fig. 7. 
Comparison between the SMAP-derived soil moisture applying LRM (SMAP_Reg) using 

two different soil temperature products: GEOS-5 (left) and ECMWF (right) and the SMAP 

level 3 soil moisture product (SMAP_SCA) from Apr 2015 to Jul 2016: (top) correlation, R 

(−) and (bottom) RMSE (m3/m3).
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Fig. 8. 
Taylor’s diagrams for SMAP_Reg (in red), SMAP_SCA (in blue), and SMOSL3 (in green) 

over the FMI, DAHRA, iRON, and Oznet (upper panel), over SCAN, PBO-H2O, 

REMEDHUS, and RSMN sites (middle panel), and over SNOTEL, USCRN, and 

SMOSMANIA sites (lower panel).
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Fig. 9. 
Bar charts showing Bias (m3/m3), R, RMSE (m3/m3), and UnbRMSE (m3/m3) between 

SMAP_SCA (in blue), SMAP_Reg (in red), and SMOSL3 (in green) and the observed soil 

moisture over the 11 networks used in this study.
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Table 1

Regression coefficients of Eq. 1 calibrated using SMOS Level 3 TB and soil moisture in 2013–2014: a0 

represents the intercept, a1 and a2 represent the slope of regression line corresponding to H-pol and V- pol, 

respectively.

Land cover class a0 a1 a2

Deciduous Needleleaf forest 2.671 1.322 0.937

Deciduous Broadleaf forest 5.184 2.713 0.889

Mixed forest 3.848 2.485 0.492

Closed shrublands 0.789 1.068 0.242

Open shrublands 0.952 0.864 0.478

Woody savannas 3.212 1.903 0.643

Savannas 1.821 1.534 0.336

Grasslands 0.937 1.032 0.391

Croplands 0.815 0.867 0.421

Cropland/Natural vegetation mosaic 0.874 0.626 0.558

Barren or sparsely vegetated 1.049 1.830 0.384
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