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Abstract

Background: Fusarium graminearum is one of the main causal agents of the Fusarium Head Blight, a worldwide
disease affecting cereal cultures, whose presence can lead to contaminated grains with chemically stable and
harmful mycotoxins. Resistant cultivars and fungicides are frequently used to control this pathogen, and several
observations suggest an adaptation of F. graminearum that raises concerns regarding the future of current plant
disease management strategies. To understand the genetic basis as well as the extent of its adaptive potential, we
investigated the landscape of genomic diversity among six French isolates of F. graminearum, at single-nucleotide
resolution using whole-genome re-sequencing.

Results: A total of 242,756 high-confidence genetic variants were detected when compared to the reference
genome, among which 96% are single nucleotides polymorphisms. One third of these variants were observed in all
isolates. Seventy-seven percent of the total polymorphism is located in 32% of the total length of the genome,
comprising telomeric/subtelomeric regions as well as discrete interstitial sections, delineating clear variant enriched
genomic regions- 7.5 times in average. About 80% of all the F. graminearum protein-coding genes were found
polymorphic. Biological functions are not equally affected: genes potentially involved in host adaptation are
preferentially located within polymorphic islands and show greater diversification rate than genes fulfilling basal
functions. We further identified 29 putative effector genes enriched with non-synonymous effect mutation.

Conclusions: Our results highlight a remarkable level of polymorphism in the genome of F. graminearum
distributed in a specific pattern. Indeed, the landscape of genomic diversity follows a bi-partite organization of the
genome according to polymorphism and biological functions. We measured, for the first time, the level of
sequence diversity for the entire gene repertoire of F. graminearum and revealed that the majority are polymorphic.
Those assumed to play a role in host-pathogen interaction are discussed, in the light of the subsequent
consequences for host adaptation. The annotated genetic variants discovered for this major pathogen are valuable
resources for further genetic and genomic studies.

Keywords: Fungal pathogen, Fusarium head blight, Whole genome re-sequencing, Genome-wide polymorphism,
Single nucleotides polymorphism, Host-Pathogen interaction, Evolution, Two-speed genome
Background
The ascomycete Fusarium graminearum (teleomorphe
Gibberella zeae) is a hemibiotrophic pathogen com-
monly described as one of the main causal agent of the
Fusarium Head blight (FHB), a devastating disease
affecting small grains cereals worldwide [1]. In addition
to the defect on annual yield, major concerns arise from
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contamination of grains by stable and harmful fungal
metabolites so-called mycotoxins which are present in
feed and food constitute a real threat for consumers and
livestock [2]. Molecules belonging to the type B family
of trichothecenes (TCTB) are probably the most
concerning due to their frequent occurrence and dem-
onstrated toxic effects [3]. The genes acting in TCTB
production, named Tri genes, are clustered for the
majority and expressed after plant penetration with an
implication in pathogenicity [4, 5]. Despite the wide
array of trichothecenes potentially produced by F. grami-
nearum isolates, the spectrum of production observed in
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individual strains is more limited, defining chemotypes
[6, 7]. To date, three chemotypes of TCTB-producing iso-
lates have been described according to their ability to pro-
duce deoxynivalenol along with 15-acetyldeoxynivalenol
(DON/15-ADON), deoxynivalenol and 3-acetyldeoxyni
valenol (DON/3-ADON), and nivalenol and acetylated
form (NIV). These chemotypes are associated with quanti-
tative difference in pathogenicity; the strains producing
DON instead of NIV are, for example, more aggressive
against wheat [8]. In some cases, levels of TCTB have
also been found to be correlated with the visual
symptoms on the spike [9, 10]. Nevertheless, other
factors were identified in F. graminearum with the
detection of 50 quantitative trait nucleotides linked to
aggressiveness variation [11].
Cultivars resistant against FHB and mycotoxin accu-

mulation as well as fungicides are frequently used to
control this pathogen [12]. However, there is now
evidence that F. graminearum is adapting to such strat-
egies, as demonstrated by the emergence of fungicide-
resistant strains [13, 14] and the rapid shift towards
more aggressive isolates in some part of the world [15].
Cultural management practices must therefore keep up
with the “arm race”, which requires a detailed knowledge
of the fungus adaptive potential with a special focus on
the evolution of pathogenicity-related traits.
Grounds for F. graminearum adaptation are certainly

provided for by intensive gene flow and large amounts
of genetic diversity between and within field populations
[16–24]. In F. graminearum specifically, these elements
are further supported by particular biological features
that favor the emergence of genetic diversity, namely a
mixed reproduction system based on clonality, selfing
and outcrossing [16, 24, 25] as well as both local and
long range dispersal of the different spores produced
[26–30]. Such combination is indeed particularly effi-
cient to create new haplotypes of which the favorable
ones will rapidly spread [31]. The molecular mechanisms
underlying the emergence of more aggressive isolates of
F. graminearum remains remain sparsely documented.
Deep sequencing technologies have been successfully

used to investigate genome-wide polymorphism in
various fungi, highlighting the importance of genome
organization for pathogen evolution and eventually lead-
ing to the proposition of candidate genes implicated in
phenotype variations [32–40]. In the case of F. grami-
nearum, an annotated genome of reference is available,
based on the sequencings of a North-American isolate
[41–43]. The latest version consists of 38 Mb distributed
in four scaffolds assigned to the four expected chromo-
somes and has been predicted to contain 14,160 nuclear
protein coding genes [41]. The function of the majority
of these genes remains unknown [41]. Nevertheless, spe-
cific efforts of manually curated genome-mining coupled
to proteomics and transcriptomics studies revealed a
large arsenal of potential effectors, including potential
secreted proteins or secondary metabolites other than
the currently known mycotoxins [41, 44–48]. Concern-
ing genome-wide diversity, the first insights have been
given after re-sequencing of a second North American
isolate at 0.4X, identifying more than 10,000 SNPs
located preferentially in chromosomes ends and inner
chromosomal locations [42]. Although partial, this first
re-sequencing gave a preliminary picture of the
organization of the polymorphism in the genome [42].
However, several unanswered questions remained. What
are the patterns of polymorphism in the regions of the
reference genome not covered by reads produced after
re-sequencing? Is this genomic organization respected
across worldwide isolates? What is the state of the diver-
sity affecting the functional part of the genome, includ-
ing the genes for which a role for adaptation could be
assumed? In order to answer those questions we
proposed to re-sequence six strains of F. graminearum
originally isolated from various locations in France.
These strains all belong to the DON/15-ADON chemo-
types, respecting the overrepresentation of this chemo-
type from French cultivated wheat [20].
The first objective of our analysis is therefore to quantify

the whole genomic diversity of French isolates compared
to the reference genome. The second objective is to
evaluate the potential contribution of this diversity for
phenotypic diversity by a systematic variant annotation
and an estimation of the encoding-effects for variants
located within genes; with a special attention on genes po-
tentially implicated, or previously suggested to be impli-
cated for host-pathogen interaction. By doing so, we were
able to conduct a multi-scaled analysis, highlighting the
organization of polymorphism in a genome-wide manner
and giving access to candidate and individual gene infor-
mation. Overall, these results strengthen the idea that gen-
ome organization plays a major role in the evolution of
this pathogen while establishing a solid resource for fur-
ther targeted genomic and genetic investigations.

Results
SNPs and InDels discovery
Our strategy of genome re-sequencing applied to six F.
graminearum strains generated a total of 125 million of
read pairs of 100 base pairs (bp) in length, correspond-
ing to 37.0–44.7 million raw reads per genome
(Additional file 1: Table S1). Quality trimming and filter-
ing of reads resulted in 35.5–42.9 million paired-end
reads per genome with an average read length of 91 bp.
Between 88.4% and 94.8% of these reads were aligned
correctly on the reference genome – a total genome
coverage of 98.8% (considering all reads produced, 99%
for mitochondrial genomes) and sequencing depths
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ranging from 79.5 X to 93.2 X depending on the consid-
ered isolate (Additional file 1: Table S1 and Figure S1).
Only 13 protein coding genes of the 14,160 described in
the reference nuclear genome were not covered by read
in any of the isolate genomes presented herein
(Additional file 2). The majority of these genes are lo-
cated in genomic regions (1 kb upstream and 1 kb
downstream) exhibiting deficiency in genome coverage
(Additional file 2). Amplification of those targeted genes
suggested that those genes are actually absent from the
6 genomes (data not shown). All of these 13 genes were
discarded for downstream analysis.
The locations of genetic variations were investigated

(Table 1). Variants were called on the basis of a variation
compared to the sequence of the reference genome
(RRES v4.0). Variant calling was fine-tuned to detect
preferentially short size variants, i.e., Single Nucleotide
Polymorphisms (SNPs) and short Insertions or Deletions
(InDels), and obtained a final dataset of 242,756 highly-
confident variants, all strains considered, consisting of
234,151 SNPs (96%) and 8,605 InDels (Table 1, Additional
file 3). Regarding the insertion and deletion events, 52%
and 50% of them, respectively, concerned single nucleo-
tide positions. The largest insertion is 25 nucleotide-long
and the largest deletion is 36 nucleotide-long, with mean
lengths for both events being 2.8 bp and -2.7 bp respect-
ively (Additional file 4: Figure S2).
The number of variants per strain ranges from

143,283–146,849 for SNPs, and from 4,844–5,073 for
InDels (Table 1). Among them, 82,882 variants (34.1%)
are common between all six French isolates. For simpli-
city purposes, this particular subset of variants will be
referred to as the “common block of diversity”. Beside
this baseline of diversity, each isolate differs from the
other five French isolates by 67,157 genetic variations in
average (65,157–69,040; Table 1). Pairwise comparison
of isolates shows that INRA-156, with an average of
Table 1 Variant calling statistics, considering strain-specific reads an

Isolate INRA-156 INRA-15

% of reference genome callableb 97.7% 97.7%

Number of SNPs 144,679 146,849

Number of InDels 4,929 5,073

Total number of variants 149,608 151,922

Mean depth of sequencing at variant position (X) 72.3 83.5

Mean variant density (variants per kb) 3.9 4.0

Number of exonic variants 70,850 71,488

Number of intronic variants 10,779 10,821

Number of non-genic variants 67,979 69,613

Number of variants with French genomes 66,726 69,040
a: considering all reads produced by whole genome sequencing of the six isolates
b: exluding the end of the chromosome IV from 7,953,943 bp onwards, correspondi
69,165 variants with each other French isolates, has the
most polymorphic genome whereas the genomes of
INRA-164 and INRA-181 are the least different with
35,153 variants identified (Table 2). Among the complete
set of variable loci identified in this analysis, 1,235
(0.5%) presented different alleles between French alleles,
all different that the reference one (i.e. multi-allelic
variants).

Genomic distribution of variants
Variant average genome-wide density reached 6.6 vari-
ants per kilobase (kb) considering the all genomes, ran-
ging from 3.9 to 4.0 variants per kb per individual
genome (Table 1). The distribution of the variants is not
uniform between and within chromosome. At the inter-
chromosomal level, Chromosome II, with 5.4–5.6
variants per kb per genome always exhibits the greatest
variant density (Fig. 1). The number of variants detected
in the mitochondrial genomes dropped considerably
(less than 0.3 variant per kb) compared to nuclear ge-
nomes, all variants being localized outside of annotated
genic sequences (Additional file 3: Table S3). At the
intra-chromosomal level, the contribution of chromo-
some segments to the overall polymorphism is not linear
(Fig. 2a). Telomeric/subtelomeric ends and discrete in-
terspersed interstitial regions participate actively to the
total polymorphism. Polymorphic islands are distin-
guished easily (Fig. 2a, delimited by dot lines and dark
stars; accounted for when longer than 200 kb and show-
ing at least a two-fold increase in variant density com-
pared to the genome-wide median density). Such regions
present in average a 7.5-fold increase of variant density
compared to others (16.0 variants/kb vs. 2.1 variants/kb).
The additive length of these regions represents 31.5% of
total nuclear genome length while containing 76.7% of the
total polymorphism (Additional file 5: Table S4). The pres-
ence of polymorphic islands at both chromosome ends are
d considering total reads produced

9 INRA-164 INRA-171 INRA-181 INRA-195 Totala

97.6% 97.6% 97.5% 97.7% 98.3%

144,802 143,283 145,071 145,840 234,151

4,953 4,844 4,938 4,970 8,605

149,755 148,127 150,009 150,810 242,756

78.0 79.5 79.6 80.3 78.9

3.9 3.9 3.9 4.0 6.4

70,259 69,130 70,659 71,676 111,975

10,509 10,320 10,682 10,786 17,095

68,987 68,677 68,668 68,348 113,686

66,873 65,245 67,127 67,928 159,874

ng to repeated RNA encoding sequence (see Methods)



Table 2 Genome-wide comparison of variants between pairs of isolates

Strains PH-1 INRA-156 INRA-159 INRA-164 INRA-171 INRA-181 INRA-195

PH-1 - 149,608 151,922 149,755 148,127 150,009 150,809

INRA-156 61.6% - 70,856 66,763 65,709 63,758 78,739

INRA-159 62.6% 29.2% - 48,501 55,771 62,330 71,769

INRA-164 61.7% 27.5% 20.0% - 48,453 35,153 68,191

INRA-171 61.0% 27.1% 23.0% 20.0% - 36,719 66,139

INRA-181 61.8% 26.3% 25.7% 14.5% 15.1% - 65,433

INRA-195 62.1% 32.4% 29.6% 28.1% 27.2% 27.0% -

Upper diagonal considers number of variants by pair, lower diagonal considers the part of the overall diversity (242,756 variants) in percent explained by this pair
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a common feature between chromosomes, whereas
the number and size of interstitial polymorphic re-
gions differ: for example, chromosome I exhibits two
distinct variant-rich regions, chromosome II has a
long continuous variant-rich region spreading over
one third of total chromosomic size, chromosome IV
displays a single ~1 Mb-long variant-rich region, and
chromosome III has none (Fig. 2a, b). The predicted
positions of centromeres [41] also appear to collocate
with variant-rich regions (Fig. 2b), whereas too short
in length to be accounted for polymorphic islands.
Variant density is not uniform within polymorphic
islands either (Fig. 2b). General variant density pro-
files are conserved between genomes (Fig. 2b); and
between the common block of diversity and the diver-
sity recorded between French isolates (Fig. 2b). This
tendency does not exclude occasional differences ob-
served between strains (examples delimited by black
rectangles, Fig. 2b). For instance, the region ranging
from 7.8 Mb to 8 Mb on chromosome II is rich in
variants in the genomes of INRA-156, INRA-159 and
INRA-164 but not in those of the other three strains.
Fig. 1 Average variant density by strain for the four chromosomes and the
The density of variants belonging to the common block of diversity (obser
the diversity observed between French isolates is in blue
Functional annotation of variants
All strains considered, 129,070 variants are found within
genic (introns and exons) sequences and 113,686 vari-
ants are found elsewhere in the genome (Table 1).
Although significant due to the large number of genes,
variant density observed within genic sequences does
not appear to be greatly reduced compared to the vari-
ant density of other sequences (1.05-fold; p-value <
0.001). Intronic variants (total: 17,095; per genome:
10,320–10,821) are overrepresented by 5.3-fold (p-value
< 0.001) whereas exonic variants (total: 111,975; per gen-
ome: 69,130–71,676) are slightly underrepresented by
0.9-fold (p-value < 0.001). Considering all protein-coding
nuclear genes (n = 14,147 excluding not covered genes),
80% present at least one mutation in at least one isolate
- 69% of genes in average when strains are considered
individually (Fig. 3). Median number of variants per gene
per genome is 1, whereas the distribution of variant
number per gene is skewed due to extreme variant con-
tent exhibited by a small percent of genes (Fig. 3).
In order to identify biological functions possibly more

affected than others by variants, we estimated the
mitochondrial genome. Variant density is represented in variants/kb.
ved in all French isolates) is in red; the density of variant belonging to



a

b

Fig. 2 Profiles of variant distribution by chromosome. Density profiles were computed for non-overlapping 100 kb-long sliding windows along the four
chromosomes of F. graminearum. a Cumulative variant density profiles, all polymorphism considered. Star-containing intervals delineated by dotted lines
indicate polymorphic islands. b Variant density profiles along the four chromosomes of F. graminearum for each strain. The density of variants belonging to
the common block of diversity (observed in all French isolates) is in red; the density of variant belonging to the diversity observed with other French isolates
is in blue. Black rectangles highlight selected differences between isolates. The arrows indicate the positions of centromeres

Fig. 3 Distribution of average variant content per gene per genome. Values are expressed in percent of total nuclear protein encoding gene
number (n = 14,147). Bars are mean values for the count of variant considered and error bars the standing deviations per genome

Laurent et al. BMC Genomics  (2017) 18:203 Page 5 of 19
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consequences of genic variants in all strains considered
(including introns and exons; Fig. 4a and Additional file
3: Table S3). A little more than half of the variants
(52.3%) are predicted to not change protein sequences
because they are located in intergenic and intronic
regions, outside of splicing sites. Another 28.3% have
synonymous effects (i.e., a codon exchange leading to no
change in amino acid), 0.7% of total variants have a pre-
dicted loss-of-function effect (LoF, in our case the intro-
duction of a frameshift, a stop codon, the loss of the
codon start or a critical mutation within the splicing-
site), 18.7% have a non-synonymous effect (i.e., a codon
exchange leading to a change in amino acid). Genes can
also be organized according to their content in variants
and their predicted effects (Fig. 4b and Additional file 6:
Table S5). Four categories can be defined: the “non-func-
tional” category consists of the 1,057 genes (7.5% of the
protein-coding genes) that contain at least variants pre-
dicted to lead to a loss of function in at least one isolate;
the “Modified Protein” and “Conserved Protein” categories
includes 7,164 genes (50.6% of the protein-coding genes)
with non-synonymous variant(s) and 3,085 genes (21.8%
of the protein-coding genes) with synonymous variant(s)
respectively; finally the “Highly Conserved Gene” category
(Additional file 6: Table S5) includes genes with no variant
identified in any of the isolates (n = 2,841, 20.1% of the
protein-coding genes).

Biological functions that can be affected by genetic
variants
We investigated the putative functions of the genes be-
longing to the different categories described above. A
a

Fig. 4 Variant effect prediction and subsequent gene classification. a Classi
Orange: variants leading to a loss of function (LoF) of the proteins; Green: v
variants); Purple: variants with no predicted effect; Blue: variants located out
type of variant (predicted effect) they contain. Orange: genes containing at
Green: genes containing at least variants with non-synonymous effects (inc
Purple: genes containing only variants with no predicted effect; Blue: genes
gene ontology (GO) term enrichment approach was used
to discover top functions represented in gene lists be-
longing to each category. Results are summarized in
Table 3. Category “Non-functional” is significantly
enriched in genes implicated in chitin catabolism; cat-
egory “Modified Protein” is enriched in genes involved
in the regulation of transcription, in oxidation and re-
duction processes and in the regulation of primary meta-
bolic process; category “Conserved Protein” is enriched
in genes acting in signalization and communication,
translation, protein transport and several process in-
volved for example in carbohydrate metabolism; finally,
the “Highly Conserved Gene” category is enriched in
genes involved in more universal cellular process, such
as cytoplasmic transport including Golgi vesicle trans-
port, protein folding and macromolecule assemblies,
translation, as well as several biosynthetic and catabolic
processes (Table 3). GO term enrichment analyses are
however prone to ontology mapping-related biases [49].
Forty five percent of the totality of nuclear protein-
coding genes of F. graminearum lack GO term annota-
tion [41]. Therefore, we developed a second approach
that consist in using F. graminearum-specific gene lists
compiled from transcriptomic experiments and genome-
mining efforts and available from the literature: tran-
scriptomic data from in planta experiment, genes coding
for putative secreted proteins, genes belonging to pre-
dicted secondary metabolite clusters [41, 48, 50].
The first list derives from in planta transcriptomic ex-

periments that identified genes showing unique host-
specificity of expression (17% of total nuclear gene num-
ber, n = 2,353) by contrast with genes showing
b

fication of variants according to their predicted effects (n = 242,756).
ariants with non-synonymous effects (including intronic and exonic
side of genic sequences. b Classification of genes according to the
least variant(s) leading to a loss of function (LoF) of the proteins;
luding intronic and exonic variants, and containing no LoF variant);
of which no variants have been detected



Table 3 Significant (p-value < 0.01) gene ontology enrichment of the categories built from their variant contents and downstream
coding-effect

Genes Lists GO ID GO Term Genes in
the GO list

Theoretical
gene number

Observed gene
number

Fold enrichment

"Non-functional" GO:0006030 chitin metabolic process 21 1 5 4.9

"Modified Protein" GO:0006355 regulation of transcription,
DNA-dependent

458 239 294 1.2

GO:0055114 oxidation-reduction process 763 398 478 1.2

GO:0060255 regulation of macromolecule
metabolic process

482 250 300 1.2

GO:0080090 regulation of primary metabolic process 497 258 307 1.2

“Conserved protein” GO:0044262 cellular carbohydrate metabolic
process

30 8 17 2.2

GO:0007264 small GTPase mediated signal
transduction

43 11 22 2.0

GO:0015031 protein transport 121 31 59 1.9

GO:0044723 single-organism carbohydrate
metabolic process

82 21 36 1.7

GO:0072521 purine-containing compound
metabolic process

90 23 38 1.6

GO:0006412 translation 181 47 76 1.6

GO:0007154 cell communication 140 36 56 1.5

GO:0044267 cellular protein metabolic process 509 132 179 1.4

"Highly conserved
genes"

GO:0006888 ER to Golgi vesicle-mediated transport 8 1 6 4.5

GO:0048193 Golgi vesicle transport 15 3 10 4.0

GO:0016482 cytoplasmic transport 26 4 12 2.8

GO:0034622 cellular macromolecular complex
assembly

25 4 11 2.6

GO:0006457 protein folding 40 7 16 2.4

GO:0022607 cellular component assembly 35 6 14 2.4

GO:0044283 small molecule biosynthetic process 132 22 46 2.1

GO:1901136 carbohydrate derivative catabolic process 53 9 18 2.0

GO:0046394 carboxylic acid biosynthetic
process

110 18 37 2.0

GO:0006996 organelle organization 66 11 22 2.0

GO:0006412 translation 181 30 59 1.9

GO:0008652 cellular amino acid biosynthetic
process

86 14 27 1.9

GO:1901565 organonitrogen compound
catabolic process

75 13 23 1.8

GO:0071840 cellular component organization
or biogenesis

134 22 39 1.7

GO:1901566 organonitrogen compound
biosynthetic process

190 32 54 1.7

GO:0044267 cellular protein metabolic process 509 85 128 1.5

GO:0044281 small molecule metabolic process 463 77 110 1.4

GO:1901564 organonitrogen compound
metabolic process

400 67 95 1.4

GO:0044249 cellular biosynthetic process 788 132 174 1.3

GO:0019538 protein metabolic process 680 114 141 1.2

Laurent et al. BMC Genomics  (2017) 18:203 Page 7 of 19
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constitutive expression (36% of total nuclear gene
number n = 5,029) suggested to correspond to basal and
universal mechanism of host infection ([50], Additional
file 6: Table S5). We observed a positive correlation be-
tween locations of polymorphisms and location of host-
specific genes (Spearman rank order Rho = 0.55, Fig. 5
lane B). Host-specific genes are found overrepresented
in the categories “Non-functional” and “Modified
Protein” and underrepresented in the categories “Con-
served Protein” and “Highly Conserved Gene” (Fig. 6a).
This observation suggests than non-synonymous muta-
tions tend to be accumulated into these genes. Indeed,
loss-of-function and non-synonymous variants are par-
ticularly found within these genes with a 2.1-fold and
1.8-fold enrichment, respectively (Additional file 7).
Conversely, the locations of genes expressed constitu-
tively in all in planta conditions is negatively correlated
to the locations of variants (Rho = - 0.60, Fig. 5 lane C).
These genes are overrepresented in the categories
“Highly Conserved Gene” and “Conserved Protein”,
and underrepresented in the categories “Modified
Protein” and “Non-functional” (Fig. 6b). Similarly,
these genes contain less loss-of-function and other
non-synonymous variants (5.6 times and 2.5 times re-
spectively; Additional file 7).
The second list consists of genes with typical motifs

suggesting that they code for secreted proteins that
could therefore be potential effectors (n = 616; 126 have
been shown to be expressed in a host-specific manner).
The spatial distribution of these genes positively
correlates with the genome-wide distribution of poly-
morphisms (Rho = 0.68, Fig. 5 lane D). These secreted
protein-encoding genes are found overrepresented in the
category “Modified Protein” and underrepresented in the
category “Highly Conserved Gene” by 1.25 and 0.41-fold
respectively (Fig. 6c). These genes are further enriched
in non-synonymous mutations (other than loss-of-
function) by 1.38 fold (Additional file 7).
a
b

c
d
e

Fig. 5 Heatmap representation of variant and gene counts per 100 kb-long n
were computed between variant and gene counts. The star * indicates that a
(n = 242,756). B. Host-specific genes (n = 2,353) [50]. C. In planta-constitutive g
Secondary metabolite-encoding gene clusters (n = 67) [48]. The positions of t
indicated by arrows
Focus on secondary metabolites clusters and TCTB
biosynthetic genes
Finally, we investigated genes predicted to be implicated
in the biosynthesis of secondary metabolites and
(mostly) organized in clusters on the genome (n = 301).
The genomic distribution of these genes is significantly
correlated with polymorphism (Rho = 0.38, Fig. 5 lane E).
They are significantly overrepresented in the category
“Modified Protein” and significantly underrepresented in
the categories “Highly Conserved Gene” and “Conserved
Protein” (Fig. 6d). These genes are indeed enriched in
non-synonymous variants, but show in the other hand a
reduction of LoF mutations (Additional file 7 and
Additional file 8: Table S6). Still, 24 genes belonging to 20
different secondary metabolite clusters are affected by LoF
variant(s) in at least one isolate (Additional file 8: Table
S6). This is the case for example of the gene
FGRRES_15980_M, coding a probable polyketide synthase
involved in zearalenone biosynthesis, which contains a
conserved loss of function variant in all French isolates
(Additional file 8: Table S8). Remarkable secondary me-
tabolites are the type B trichothecenes (TCTB), including
the deoxynivalenol (DON), reported to be involved in
pathogenicity [51]. We examined the polymorphisms af-
fecting Tri genes (n = 15) involved in the biosynthesis of
TCTB (12 of them are clustered on chromosome II as in-
dicated on Fig. 5; Additional file 8: Table S7). An overall
of 252 variants have been identified within the genic
sequences and the intergenic sequences of Tri genes
(located in the upstream and downstream sequences
for the non-clustered Tri genes; Additional file 8:
Table S8). Among these variants, 131 belong to the
common block of diversity (observed in all six ge-
nomes analyzed herein). Only four of the rest of the
variants are predicted to bring non-synonymous
effects other than loss-of-function. All of them are
located within the coding sequence of Tri15 and affect the
strains INRA-159, INRA-164, INRA-171 and INRA-181
on-overlapping windows. Spearman rank order correlation coefficients
ll correlations are significant at the threshold p = 0.01. A. Genetic variants
enes (n = 5,029) [50]. D. Secreted protein-encoding genes (n = 616) [41]. E.
he Tri cluster and the not-clustered Tri genes Tri1, Tri15 and Tri101 are



a

b

c

d

Fig. 6 Selected F. graminearum-specific gene content of each category of predicted variant effect. For each category, actual gene counts (colored
bars) are compared to the theoretical counts expected under hypothesis of random distribution of variants (white). The star * means Chi-squared test
was significant (p-value < 0.001). a Host-specific genes (n = 2,353) [50]. b In planta-constitutive genes (n = 5,029) [50]. c Secreted protein-encoding
genes (n = 616) [41]. d Clustered secondary metabolite-encoding gene (n = 301)
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(Additional file 8: Table S7). Tri15 gene encodes a putative
transcription factor and does not seem to be implicated in
TCTB production [5].

Genes showing an excess of non-synonymous effect
mutations
In order to identify genes accumulating non-synonymous
effect mutations, we consider the total polymorphism de-
tected in this analysis and extracted 797 genes that accu-
mulated either or both non-synonymous (NS) and LoF
mutations (NS + LoF > total number of mutation, mini-
mum total number of mutation = 4; Additional file 6:
Table S5). The large majority of them (64%) is located
within polymorphic islands (Additional file 6: Table S5).
Twenty-nine of them have been previously shown to be
both expressed in planta and predicted to be secreted
(Table 4). Fifteen have been shown to be expressed in a
host-specific manner and only one has been shown to be
expressed constitutively in all planta conditions tested
(Table 4). Remarkably, all of them have no known
function according to reference genome annotation [41],
with the exception of FGRRES_04689 that code for a
rhamnogalacturonase A, involved in cell wall polysacchar-
ide degradation. Seven of them contain LoF variants
(FGRRES_16333, FGRRES_03521, FGRRES_12210, FGR
RES_04646_M, FGRRES_13876, FGRRES_07699, and
FGRRES_09118). For FGRRES_04646_M, the mutation is
present in every French isolates tested. This gene is un-
likely to be an essential effector during infection of wheat
as several strains of this sample have been shown to be
highly aggressive (Table 5; Additional file 3: Table S3). In
the other hand, the gene FGRRES_07699 is predicted to
be non-functional in the highly aggressive strain INRA-
156 only; the gene FGRRES_12210 is predicted to be non-
functional in the less aggressive strain INRA-195 only.
These genes represent interesting effectors that could have
escaped from the host defense for the first case or impli-
cated in aggressiveness reduction for the second case. The
knowledge on the diversity of these genes might help fur-
ther investigations.



Table 4 Putative effectors showing an excess of non-synonymous effect mutations

Ensembl gene ID FGSG Chrom Gene start
(bp)

Gene end
(bp)

Gene description InterPro ID InterPro short
description

Homology

FGRRES_11675 FGSG_11675 I 356,230 357,118 Uncharacterized
protein

- - -

FGRRES_01778 FGSG_01778 I 5,860,579 5,861,567 Uncharacterized
protein

- - -

FGRRES_02228 FGSG_02228 I 7,225,618 7,227,797 Uncharacterized
protein

IPR000120,
IPR023631

Amidase glutamyl-trna
amidotransferase
subunit a
[Fusarium langsethiae]

FGRRES_02269 FGSG_02269 I 7,357,559 7,358,332 Uncharacterized
protein

- - -

FGRRES_13692 FGSG_13692 I 9,626,040 9,628,066 Uncharacterized
protein

- - -

FGRRES_07993 FGSG_07993 II 110,904 113,251 Uncharacterized
protein

IPR001764,
IPR002772,
IPR017853,
IPR026891,
IPR026892

Glycoside
hydrolase/Fn3 like

exo- -beta-xylosidase
bxlb [F. langsethiae]

FGRRES_17022 - II 1,652,257 1,656,378 Uncharacterized
protein

- - muc1-extracellular
alpha- -glucan
glucosidase
[F. langsethiae]

FGRRES_16333 - II 4,194,219 4,196,939 Uncharacterized
protein

- - -

FGRRES_03274 FGSG_03274 II 4,695,334 4,698,042 Uncharacterized
protein

IPR029167 Mug117 -

FGRRES_03521 FGSG_03521 II 5,366,512 5,367,123 Uncharacterized
protein

IPR009327,
IPR011051,
IPR014710

RmlC-like cupin
domain

putative cupin family
protein [Diaporthe
ampelina]

FGRRES_03612 FGSG_03612 II 5,604,284 5,605,254 Uncharacterized
protein

IPR001087,
IPR013830

Lipase_GDSL,
SGNH hydrolase-
type esterase
domain

gdsl lipase
acylhydrolase
[F. langsethiae]

FGRRES_12405_M FGSG_12405 II 5,622,275 5,622,943 Uncharacterized
protein

IPR003609 Pan_apple -

FGRRES_03944 FGSG_03944 II 6,465,510 6,466,808 Uncharacterized
protein

IPR011042 Six-bladed beta-
propeller, TolB-like

serum paraoxonase
arylesterase
[F. langsethiae]

FGRRES_03972 FGSG_03972 II 6,548,953 6,550,914 Uncharacterized
protein

IPR006094,
IPR012951,
IPR016166,
IPR016169

flavin adenine
dinucleotide
linked oxydase;
Berberine &
berberine-like;
CO dehydrogenase
flavoprotein-like

6-hydroxy-d-
nicotine oxidase
[F. langsethiae]

FGRRES_04429 FGSG_04429 II 7,989,077 7,992,064 Uncharacterized
protein

IPR003609 Pan_apple -

FGRRES_12210 FGSG_12210 II 8,620,515 8,622,358 Uncharacterized
protein

IPR003609 Pan_apple -

FGRRES_04646_M FGSG_04646 II 8,655,498 8,656,180 Uncharacterized
protein

- - -

FGRRES_04689 FGSG_04689 II 8,765,660 8,767,148 Rhamnogalacturonase
A

IPR000743,
IPR011050,
IPR012334

Glycoside
hydrolase, family
28; Pectin lyase

probable
rhamnogalacturonase
A precursor [Fusarium
fujikuroi IMI 58289]

FGRRES_05719 FGSG_05719 III 3,177,333 3,180,794 Uncharacterized
protein

IPR029167 Meiotically
up-regulated
gene 117 protein

-
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Table 4 Putative effectors showing an excess of non-synonymous effect mutations (Continued)

FGRRES_05847 FGSG_05847 III 3,549,004 3,550,475 Uncharacterized
protein

IPR001002,
IPR002509,
IPR011330,
IPR018371

Glycoside
hydrolase/
deacetylase,
beta/alpha-barre;
Chitin-binding,
type 1

bifunctional xylanase
deacetylase
[F. langsethiae]

FGRRES_12835 FGSG_12835 III 3,658,250 3,659,015 Uncharacterized
protein

- - -

FGRRES_16623 - III 4,751,122 4,755,561 Uncharacterized
protein

IPR013830 SGNH hydrolase-
type esterase
domain

chitinase [Fusarium
oxysporum Fo47]

FGRRES_13876 FGSG_13876 III 6,370,523 6,371,374 Uncharacterized
protein

IPR013781 glycosyl hydrolase
catalytic domain

Glycoside hydrolase,
superfamily [Cordyceps
confragosa
RCEF 1005]

FGRRES_17469 FGSG_13850/
FGSG_13851

III 6,711,891 6,714,195 Uncharacterized
protein

- - related to DAN4-Cell
wall mannoprotein
[Fusarium
proliferatum]

FGRRES_11379 FGSG_11379 III 7,412,583 7,413,959 Uncharacterized
protein

- - -

FGRRES_06610 FGSG_06610 IV 582,670 585,011 Uncharacterized
protein

IPR018946,
IPR029052,
IPR032093

Alkaline
phosphatase
D-related

alkaline phosphatase D
precursor [Fusarium
fujikuroi]

FGRRES_07686_M FGSG_07686 IV 4,196,885 4,197,838 Uncharacterized
protein

- - activator of stress
protein 1 [F.
langsethiae]

FGRRES_07699 FGSG_07699 IV 4,231,666 4,232,190 Uncharacterized
protein

- - -

FGRRES_09118 FGSG_09118 IV 7,533,260 7,536,888 Uncharacterized
protein

IPR001002,
IPR001223,
IPR011583,
IPR013781,
IPR017853,
IPR018371,
IPR029070

Chitin binding;
chitinase II

related to chitinase
[Fusarium
proliferatum]
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Table 4 Putative effectors showing an excess of non-synonymous effect mutations (Continued)

Ensembl gene ID Protein
length

%
cysteine

variants
LoF

variants Non-
Synonymous

Total
variantsa

Ratio of non-
synonymous
effect mutations

Polymorphic
Islands

In Planta Expression [50]

FGRRES_11675 279 1.07 0 7 10 0.7 Yes Wheat

FGRRES_01778 277 2.16 0 5 9 0.6 Yes Wheat

FGRRES_02228 664 0.75 0 10 19 0.5 Yes Wheat & Barley

FGRRES_02269 237 2.1 0 4 7 0.6 Yes Wheat & Barley

FGRRES_13692 499 1.6 0 4 7 0.6 No Wheat & Barley

FGRRES_07993 766 1.3 0 5 7 0.7 Yes Wheat & Barley

FGRRES_17022 1340 0.3 0 5 6 0.8 No Wheat

FGRRES_16333 887 3.27 3 41 80 0.6 Yes Barley

FGRRES_03274 884 1.92 0 12 22 0.5 Yes Wheat & Barley

FGRRES_03521 184 1.62 1 5 7 0.9 Yes Wheat

FGRRES_03612 289 1.72 0 4 7 0.6 Yes Wheat & Barley

FGRRES_12405_M 222 4.04 0 8 9 0.9 Yes Wheat & Barley

FGRRES_03944 432 0.46 0 5 8 0.6 Yes Wheat & Barley

FGRRES_03972 585 1.54 0 7 10 0.7 Yes Barley

FGRRES_04429 995 5.22 0 4 7 0.6 No Wheat

FGRRES_12210 596 2.18 1 10 18 0.6 Yes Wheat

FGRRES_04646_M 225 2.65 2 12 22 0.6 Yes Wheat

FGRRES_04689 446 2.46 0 7 13 0.5 Yes Wheat & Barley

FGRRES_05719 1153 1.73 0 4 6 0.7 No Wheat & Barley

FGRRES_05847 454 5.71 0 3 5 0.6 No Wheat & Barley & Maize

FGRRES_12835 162 2.45 0 4 7 0.6 No Wheat

FGRRES_16623 1461 1.92 0 6 11 0.5 No Wheat

FGRRES_13876 283 1.41 3 18 40 0.5 Yes Wheat

FGRRES_17469 719 1.53 0 7 12 0.6 Yes Barley

FGRRES_11379 458 1.96 0 12 23 0.5 Yes Wheat

FGRRES_06610 631 0.79 0 5 9 0.6 No Wheat & Barley

FGRRES_07686_M 317 2.2 0 8 14 0.6 Yes Wheat & Barley

FGRRES_07699 174 2.29 1 5 10 0.6 Yes Wheat & Barley

FGRRES_09118 1159 3.62 3 10 21 0.6 Yes Wheat
a total variant numbers include variant detected within the 100 base pairs located in upstream and downstream of the genic sequences
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Discussion
The presented work examines the level of variation that
can be observed between the genomes of different F.
graminearum isolates at the sequence level. In addition
to describing genome-wide polymorphisms, this analysis
proposes, for the first time, to quantify the downstream
effects of the observed variants, particularly exonic as
well as intronic variants that can lead to important
consequences on the translation product [52]. Here, we
applied a whole-genome reference-based DNA re-
sequencing strategy rather than de novo assembly previ-
ously described as more sensitive to sequencing errors
[53]. Using a re-sequencing method, the accuracy of
variant calling greatly depends on the quality of the read
alignments on the reference genome and the depth of
read coverage per base. Filters must be applied to
differentiate true variants from sequencing errors while
keeping the false negative rate low. There is no « one
size fit all » situation and settings must be adjusted ac-
cording to the type of genetic variant investigated [53].
For F. graminearum, stringent filtration is further pos-
sible (and recommended) as this fungus is haploid and
one allele is expected at the positon. A preliminary test-
run indicated that SNPs and short InDels are mostly
found in the genome of F. graminearum with very few
variants of larger sizes (data not shown). Consequently,
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the filters applied to the analysis presented here were set
as optimal for SNPs and short InDels detection for en-
hanced variant discovery.

F. graminearum genome-wide polymorphism is consistent
with its pathogenic lifestyle
The comparison of six genomes of French isolates with
the reference genome of the PH-1 strain of F. grami-
nearum [41] produced a highly confident set of 242,756
distinct variants total. Each of the six genomes presented
an average of 150,039 variations when compared to the
PH-1 reference genome, and ~ 67,157 variations when
compared to each other. This number is much higher
than the 10,495 SNPs identified in the first published in-
vestigation of the genome-wide polymorphism between
another North-American isolate and the PH-1 strain
[42]. The much lower number of variants then observed
is certainly linked to a very low fold-coverage, 0.4X,
being insufficient for exhaustive and confident variant
calling [42]. More recently, Walkowiak et al. [54] assem-
bled two genomes of F. graminearum representative of
the two chemotype-based populations observed in
Canada, DON/3-ADON and DON/15-ADON. They re-
ported 147,555 and 103,774 SNPs with the reference
genome respectively, as well as 148,978 SNPs between
the two Canadian isolates, approximating the level of
polymorphism reported herein. Altogether, an estimate
of ~150,000 SNPs seem to be a typical variant content
expected to be observed between genomes of geograph-
ically distal isolates or belonging to different populations.
Along the same line, the reduced level of polymorphism
observed between French isolates may suggest that these
strains are likely to belong to the same population.
On a broader scale, the genome-wide level of poly-

morphism observed between isolates of F. graminearum
(~4 SNP/ Kb) is consistent with levels of polymorphism
exhibited by other pathogenic fungi, as reported in the
causal agent of poplar rust Melampsora larici-populina
(~2 SNP/Kb; [37]), the causal agent of the wheat stripe
rust Puccinia striiformis (~5 SNPs per Kb; [55]) or in the
human pathogen Coccidioides immitis (~5 SNP/Kb); [56]).
These levels are lower than the one revealed between iso-
lates of Botrytis cinerea that could reach 10 variants per
kb [38]. Authors suggested that such genome-wide diver-
sity is linked to the ability of this pathogen to infect a re-
markably broad range of hosts. In comparison, the human
genome exhibits between 1.2 and 1.5 variants per kb [57].
The higher values observed in fungal pathogen genomes
may be a consequence from their parasitic lifestyle that
pushes their need to evolution up [58]. According to the
criteria given by McDonald and Linde [23] to estimate the
potential of evolution of fungal pathogen, F. graminearum
can be considered as a high-adaptive potential pathogen.
Paradoxically, the various analyses aiming at identifying
parts of the genome that are under selection for diversifi-
cation failed to identify genomic regions under strong se-
lection [11, 59]. In the present analysis, we use total
genome information and identify 797 candidate genes ac-
cumulating missense and nonsense mutations. The func-
tions of these genes are unknown for the majority but
their potential implication in pathogenicity and adaptation
certainly calls for in-depth investigations.

The multi-scaled location of polymorphisms in the
genome
The genome-wide average value of variant density is not a
metric sufficient enough to fully comprehend the patterns
of polymorphism in F. graminearum; indeed it does not
describe the remarkable discrete variations that we ob-
served at both inter- and intra- chromosomal dimensions.
For example, chromosome II is more polymorphic than
the other chromosomes. This higher speed of diversifica-
tion of this individual chromosome has been previously
reported in genome-wide comparisons of close species of
the Fusarium genus [59]. The authors hypothesized that
the chromosome II of F. graminearum could play a pre-
ponderant role for host infection and adaptation [59, 60].
Our analysis is in line with such a hypothesis. Distribution
of polymorphisms is also highly uneven within each
chromosome. The single-base resolution of our analysis
enabled the accurate definition of polymorphism islands
along chromosomes. Polymorphisms are preferentially lo-
cated at the ends of chromosomes. Such phenomenon is
common in fungal pathogens and more generally in
eukaryotic genomes [58]. The interstitial polymorphic
islands are, for their part, more original. These regions
have been previously investigated and are described as
telomeric-like and subtelomeric-like regions that originate
from ancestral chromosomes fusion events [42, 60]. Re-
markably, the chromosomal landscapes of polymorphism
reported herein follow striking similitude with the lower-
coverage analysis reported in 2007 [42]. Considering these
patterns of polymorphism highly conserved between iso-
lates, we may hypothesize that genome architecture plays
a predominant role in shaping the polymorphism
landscape, instead of evolution forces. Several mechanisms
have been previously proposed as driving genome struc-
ture of fungal pathogens [61], among which the action of
meiotic recombination may play an important role
through the preferential shuffling of particular chromo-
some regions [62]. An inconsistency of recombination rate
has been already reported along F. graminearum genome,
and the increases of recombination activity seem to collo-
cate with variant rich regions [42]. These same regions
were further showed to be enriched in specific epigenetic
mark [63], of which implication for meiotic recombination
through chromatin remodeling has never been tested.
Thus, the weight of individual contributions and inter-
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connections between the different proposed elements of
regulation remains however unclear [61]. A comprehen-
sive investigation of these different phenomena could shed
light on the events driving the organization of F. grami-
nearum genome and its evolution.
Finally, we observed that polymorphism rates are highly

variable at gene level, with introns being more poly-
morphic than exons. Such situation could be the result of
selective pressures since exonic variants can more directly
affect protein function, as such, can be rapidly unselected
[64]. Nevertheless, this does not mean that variants lo-
cated in introns, and typically classified as synonymous
mutations, have no contribution in protein polymorphism.
Indeed, the demonstration has been done that mutations
located in introns can have important effect, notably by al-
tering the splicing process [52, 65]. Accordingly, the pre-
sented work takes all variants into consideration during
the annotation process [66], identifying 1,647 variants with
predicted loss of function effect and 45,196 variants with
other predicted non-synonymous effects.

Further evidence of a two-speed genome organization in
F. graminearum
Our data reveal a remarkable positive correlation be-
tween specific biological functions and polymorphism
along the genome. For example, polymorphic islands are
enriched in genes with roles in biotic and abiotic adapta-
tion, these genes exhibiting a greater level of polymorph-
ism than genes with basal and vital functions. This result
is especially true for genes coding for secreted proteins
or belonging to secondary metabolite biosynthesis clus-
ters; both categories of genes that have been suggested
to play preponderant roles during pathogenesis [41, 44].
As a whole, plant-specifically expressed genes, which
translate host-specific mechanisms of infection [50], are
overrepresented in these hotspots of diversity and are
more diverse than other genes. In the line of our above
hypothesis, we propose that this correlation arise from
the preferential location of certain biological functions
according to the organization of the polymorphism in
the genome rather than a result of the historical and on-
going diversifying selection acting directly on these
genes. Such genomic organization could argue in favor
of contrasted abilities of evolution of F. graminearum
gene repertoire - with genes implicated in basal process
being placed in conserved compartments and genes with
a bigger need of evolution being placed in highly diversi-
fying chromosomal segments.
With the convergence of knowledge about fungal ge-

nomes, such “two-speed” organization seems to be a fre-
quent feature in filamentous pathogens [58, 61, 67–70].
Nevertheless, in several pathogenic species, a faster
speed of evolution has been attributed to gene sparse,
repeat-rich compartment, as in Leptosphaeria maculans,
or dedicated dispensable chromosomes, as observed in
Zymoseptoria tritici [61, 67]. Compared to closely related
species, as in Fusarium oxysporum, no dispensable
chromosome has been ever observed in F. graminearum.
Moreover, its genome is quite compacted and relatively
poor in repeated sequences [41, 42]. This decreased
number of repeated sequences compared to some other
Fusarium species has been previously attributed to the
action of the repeat induced mutation system (RIP) that
introduces point mutations within repeated sequence
and therefore protects the genome from the mobility of
transposons [42]. Therefore, this system may have par-
ticipated to the organization of the polymorphism in the
genome of F. graminearum [42, 61]. Altogether, F.
graminearum is an original and interesting model for
the investigation of genome architecture in evolution as
well as improve our understanding about the theory of
two-speed genome evolution of fungal pathogens.

The added-value of genomic data to identify genes
involved in pathogenicity
The level of polymorphism affecting gene sequence is re-
markable. Indeed, up to 69% of the genes are polymorphic
per genome compared to the reference sequence. Such
polymorphism should be taken into account for genome
editing approaches, often designed from the consensus se-
quence of the reference genome.
Quantitative variations of mycotoxin production and

aggressiveness have been previously observed within
field populations of F. graminearum [71]. Although vari-
able according to environment, heritability of these traits
has been demonstrated and suggests the action of mul-
tiple genetic factors [11]. To associate genetic variation
with phenotype changes remains however challenging.
The polymorphisms of genes involved on TCTB produc-
tion, as the biosynthetic Tri gene cluster, have been
previously suggested to be responsible to aggressiveness
variation in F. graminearum [8]. Likewise, a genome-
wide association survey associated variants located in 27
different genes to variations in aggressiveness, all of
them unlinked to mycotoxin production [11, 72]. The
isolates used in the present survey presented contrasted
level of aggressiveness in wheat, correlated to contrasted
level of DON production (Table 5). These phenotypic
characteristics were further shown to be stable, as
repeatable and not dependent to the wheat variety inoc-
ulated (data not shown). Although these phenotypes
may be related to genetic variation, none of the variants
described previously were retrieved in French isolates;
and may indicate that the genetic bases of aggressiveness
and TCTB production may be more complex. As a pre-
liminary investigation, we separated our sample into two
discrete groups according to aggressiveness and DON
production and consider the distribution of variants.



Laurent et al. BMC Genomics  (2017) 18:203 Page 15 of 19
Therefore, four hundred eighty four genes were con-
served in highly toxinogenic and aggressive isolates, and
accumulating non-synonymous mutation(s) in less toxi-
nogenic and less aggressive isolates (data not shown).
Genes coding for vesicle trafficking were found to be
significantly impacted by mutation in the less toxino-
genic and less aggressive isolates. This observation is
consistent with the vesicle-mediated secretion of TCTB
in F. graminearum [73], the regulation of secondary me-
tabolism and cellular compartmentalization of biosyn-
thesis pathways being tightly linked in fungi [74].

Conclusion
Whole-genome sequencing of six F. graminearum iso-
lates revealed a remarkable number of polymorphisms,
with an overall of 242,756 highly confident variants.
Polymorphisms are preferentially found clustered in the
genome and may play a role in the diversification of the
gene repertoire implicated in host-pathogen interaction.
We further hypothesize that fungal biological functions
are organized in such a way that they take full advantage
of the evolving dichotomy proposed by the intrinsic
architecture of this pathogen’s chromosomes. The mo-
lecular control of intrinsic chromosome features remains
however to be investigated. Our observations further
emphasize the high-adaptive potential of this pathogen
and defend the use of more integrative pest manage-
ment. As a whole, this detailed description of the genetic
and functional diversity of these genomes is a milestone
on the path to dissect the genetic bases of important
history-life traits of F. graminearum.

Methods
Fungal isolates
Six strains of Fusarium graminearum sensu stricto were
isolated from wheat plants cultivated in several French
regions between 2001 and 2002 ([75], Table 5). These
strains exhibit various trends of pathogenicity and quan-
titative profiles of DON/15-ADON production that are
representative of the genotypic and phenotypic diversity
observed within a larger French collection of isolates
([75], Table 5). PH-1 strain was originally isolated from
corn in Michigan (NRRL 31084). The strain has been
shown to be highly fertile, produces trichothecenes and
Table 5 Phenotypic information and geographical origin for the six

Strains TCTB production in vitro Aggressiveness on wheat T

INRA-156 ++ +++ +

INRA-159 ++++ 0 0

INRA-164 ++++ ++++ +

INRA-171 0 ++ +

INRA-181 ++ +++ +

INRA-195 0 + +
zearalenone, sporulates abundantly in pure culture and
is highly pathogenic to wheat and barley [76, 77].

Extraction of genomic DNA and sequencing
Genomic DNA was extracted from ~50 mg of lyophi-
lized mycelium previously grown for five days on potato
dextrose agar (39 g/l, Difco). Mycelia were lysed in
600 μL of a buffer containing 100 mM Tris-HCl
(pH 9.0), 10 mM EDTA, 1% sarkosyl, and proteinase K
200 μg/mL for 2 h at 65 °C. After centrifugation (10 min
at 10,000 g), the supernatant was extracted successively
with 1 volume of phenol, 1 volume of phenol: chloro-
form (50:50) and finally 1 volume of chloroform. Nucleic
acids were precipitated with 0.1 volume of cold sodium
acetate (pH 5.5, 3 M) and two volumes of isopropanol
and agitated twice. Solution was then centrifuged
10 min at 10,000 g and supernatant were eluted. DNA
precipitate was washed twice with 1 mL cold 70% etha-
nol for 5 min. After centrifugation, DNA was air dried
5 min using SpeedVac. DNA was dissolved in 100 μL
nuclease-free water. Preparation of the libraries and se-
quencing was performed at the Montpellier GenomiX
sequencing platform (France, http://www.mgx.cnrs.fr).
Briefly, quantities of genomic DNA were measured using
a Qubit® Fluorometer (Life Technologies) and DNA in-
tegrity was verified by electrophoresis on Bioanalyzer
(Agilent). DNA libraries were prepared from one μg of
DNA per strain using TruSeq DNA sample preparation
kit (Illumina) following the manufacturer’s instructions
for 6-plexed samples (library size 350 bp +/-50 bp). Se-
quencing was performed on one lane of Illumina HiSeq
2000 generating 100 bp-long paired-end reads. Post-run
read quality was verified using FastQC ([78], v0.11.2).

SNP & InDel discovery and analysis
Reads were cleaned up using PRINSEQ v0.17.1 [79].
Briefly, duplicated reads were removed and the 9th first
5’ nucleotides were systematically trimmed due to
skewed base composition introduced by sequencing
preparation. Reads with an overall mean Phred-scaled
value less than 20 were discarded. Remaining reads were
further 3’ trimmed for quality (Phred scale threshold of
20); high quality paired-end reads with length greater
than 20 nucleotides were aligned on the genome version
strains

CTB production in wheat Location in France/Administrative division

++ Center/Cher (18)

Center/Cher (18)

+++ North/Seine Maritime (76)

+ South-West/Gers (32)

++ North/Eure (27)

North-East/Meuse (55)

http://www.mgx.cnrs.fr/
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RRes V4.0 ([41], [EMBL-EBI accessions HG970331,
HG970332, HG970333, HG970334, and HG970335])
using BWA (v0.7.8) and BWA-MEM with standard pa-
rameters and a seed size of 15 nucleotides [80]. Invalid
paired with aberrant insertion size or unpaired align-
ments were filtered out using Samtools v 0.1.19 [81].
Valid alignments were annotated using Picard tools
(v1.88, http://broadinstitute.github.io/picard/) for further
processing with the GATK suite (v2.4, [82]). Identifica-
tion of genomic regions that could not be mapped or
called for variants considering our sequencing set up
was conducted using the CallableLoci module of GATK.
Alignments on the last 1.38 Mb of the end of chromo-
some IV systematically showed poor quality scores and
were removed from the analysis. This result arises from
the large number of rRNA-encoding repetitive sequences
units [41] which lengths approximate the length of the
sequenced reads resulting in non-unique alignments that
are excluded from the analysis. This specific region,
however, does not contain known protein-coding genes.
The six BAM files were simultaneously used to dis-

cover SNPs and InDels using GATK and the Unified
Genotyper walker in haploïd mode [82]. Depth of read
coverage per 100 kb-long non-overlapping bins was cal-
culated using the bamCoverage tool of the Bamtools
suite (version 1.5.9.1.0). Positions of InDels were recali-
brated using the RealignerTargetCreator and the
IndelRealigner modules of GATK with standard parame-
ters. A variant was called when observed on at least 80%
of the reads aligned at the position with a read coverage
more than 5 reads, and a confidence threshold greater
than 250 (SelectVariants module of GATK, v2.4). Other
parameters were standards. Variant densities for 100 kb-
long non-overlapping windows and other statistics on
the resulting Variant Call Format (VCF) files were ob-
tained using Vcftools (v0.1.12a, [83]). Regions longer
than 200 kb showing at least a two-fold increase in vari-
ant density compared to the genome-wide median dens-
ity where considered as polymorphic islands.

Functional variant annotation
Genetic variants from specific genomic compartments
(i.e., exons, introns, and intergenic regions) were anno-
tated and their effect predicted using snpEff [66] and a
custom database constructed from the reference genome
(RRes v4.0) and the GTF file associated. Briefly, the soft-
ware classifies variants found within genes (exons and
introns) according to their downstream effect at the pro-
tein level (under the standard genetic code). A full list of
mutation event classification is available (http://snpeff.-
sourceforge.net/SnpEff_manual.html). Using this classifi-
cation, four categories of genes were distinguished: i) the
category “Non-functional”, i.e., genes containing vari-
ant(s) predicted to lead to a loss of the function of the
protein; ii) the category “Modified Protein”, i.e., genes
containing only variant(s) predicted to bring one or few
amino acid composition changes; iii) the category “Con-
served Protein”, i.e., genes containing only variant(s)
which do(es) not change amino composition of protein;
iv) the category “Highly Conserved Gene”, i.e., genes with
no variant detected. Then, we calculated the ratio between
the number of mutations with non-synonymous effect (in-
cluding non-synonymous exonic and intronic variants as
well as loss-of-function variants) and the total number of
variants within genic sequences (including 100 bp down-
stream and upstream). Genes were accepted to show an
excess of mutation with non-synonymous effect if they
contained at least 4 mutations and a ratio of non-
synonymous effect mutation on total number of mutation
greater than 0.5 (corresponding to a two-fold increase of
the genome-wide median number). PROVEAN software
[84] was finally used to estimate the functional importance
of missense mutations found in genes coding for secreted
proteins (as described in King et al., [41]), genes expressed
in wheat, barley and/or maize [50], and genes predicted to
belong to secondary metabolite pathways (retrieved from
Sieber et al., [48]).

Statistical analyses
Annotation enrichment analysis was conducted using the
Gene Ontology Enrichment tools proposed online by the
EuPathDB project [43, 85] using Biological ontology and
InterPro predictions. Enrichments were accepted for p-
value lower or equal to 0.01. Chi-squared test was used to
compare the observed distribution of the number of genes
affected by mutations in the genome with the theoretical
distribution of the number genes affected by mutations
under the hypothesis of a random distribution of variants
in the genome. Similarly, variant enrichment in the
polymorphic islands or in genes was tested using the Chi-
squared test. Over and underrepresentation were accepted
for p-value < 0.001. Gene-enrichment in variant-rich re-
gion was determined by calculating the density of both
variants and genes in non-overlapping 100 kb windows
and testing each window for Spearman rank order correl-
ation at the significance threshold of p-value < 0.001.
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Minimum and maximum read depth (mean number of reads at the
position) calculated along sliding 100 kb bin windows of the four
chromosomes of the RRES reference genome using the six bam files
produced after re-sequencing of the French isolates. (XLSX 49 kb)
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Additional file 4: Figure S2. Distribution of the length of the variants
identified in this analysis. Polymorphisms of length equal to zero are
SNPs. (JPG 65 kb)

Additional file 5: Table S4. Details of the polymorphic islands
delineated during the analysis. (XLSX 15 kb)

Additional file 6: Table S5. Gene annotation according to the
polymorphism detected in the analysis. (XLSX 4054 kb)

Additional file 7: Figure S3. Variant enrichment of genes with candidate
functions. Representation of the observed variant number (in color)
compared to the theoretical number expected under hypothesis of random
distribution of variants (white). A. Variants predicted to lead to a loss of
function of the protein. B. Variants predicted to have non-synonymous
effects on the protein. “*” means Chi-squared test was significant
(p-value < 0.001). (JPG 57 kb)

Additional file 8: Table S6. Annotation of genes previously predicted
to belong to secondary metabolite clusters. Table S7: Summary of known
Tri genes implicated in trichothecene of type B (TCTB) production. Table
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polymorphism detected during this analysis. (XLSX 122 kb)
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