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Juvenile sex ratios are often assumed to be equal for many species with gen-

etic sex determination, but this has rarely been tested in fish embryos due to

their small size and absence of sex-specific markers. We artificially crossed

three populations of brown trout and used a recently developed genetic

marker for sexing the offspring of both pure and hybrid crosses. Sex ratios

(SR ¼ proportion of males) varied widely one month after hatching ranging

from 0.15 to 0.90 (mean ¼ 0.39+0.03). Families with high survival tended to

produce balanced or male-biased sex ratios, but SR was significantly female-

biased when survival was low, suggesting that males sustain higher

mortality during development. No difference in SR was found between

pure and hybrid families, but the existence of sire � dam interactions

suggests that genetic incompatibility may play a role in determining sex

ratios. Our findings have implications for animal breeding and conservation

because skewed sex ratios will tend to reduce effective population size and

bias selection estimates.
1. Introduction
The extent to which parents can control the sex of their offspring has long been

the subject of much debate [1]. Fisher’s principle of equal sex allocation [2]

posits that sex ratios should be roughly equal at birth because any large devi-

ation from 1 : 1 will be quickly selected against, i.e. producing the same

number of sons and daughters is an evolutionary stable strategy [3]. However,

this assumes that sex allocation has no costs, which may not be the case [4]. For

example, in species where maternal effects determine embryo survival and

males vary more in reproductive success than females (as is typical of salmo-

nids and many other fish [5]), mothers in good condition may be expected to

produce an excess of sons, whereas mothers in poor condition should produce

an excess of daughters [6]. Yet, theories of sex allocation have rarely been tested

in highly fecund fishes, due to the difficulty of sexing small embryos and

the absence of sex-specific markers. The recent description of the master sex-

determining gene sdY in rainbow trout [7] has made it possible for the first

time to sex salmonid fishes at an early stage [8]. This presents an unprecedented

opportunity in evolutionary ecology because skewed sex ratios are typical of

many exploited fish populations [9], and these may vary widely from year to

year [10]. Testing predictions of optimal sex allocation is typically confounded

by sex differences in life-history traits [11]. For example, females are generally

more common among migratory fish [12] than among resident fish, which

tend to be sexually balanced [13] or be male-biased [14].
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Figure 1. Variation in family sex ratios ( proportion of males +95 CI) for
pure (red squares) and hybrid (black squares) crosses.

Table 1. Statistical analysis of SR ( proportion of males) by GLMM obtained
by backward selection. Mortality and relative fecundity were scaled prior to

rsbl.royalsocietypublishing.org
Biol.Lett.12:20160693

2

 on March 20, 2017http://rsbl.royalsocietypublishing.org/Downloaded from 
At the molecular level, there is evidence that both intrage-

nomic and intergenomic ‘genetic conflict’ can affect sex ratios,

particularly when recombination patterns differ widely

between the sexes [15]. Recombination rates in salmonids

tend to be higher in females than in males—and perhaps

most importantly—tend to occur in different chromosome

regions, crossovers between homeologous chromosomes

having being observed only in the telomeric regions of

males [16]. Consequently, the Y-chromosome tends to

accumulate more deleterious mutations, which may have

consequences for embryo survival. This would present

opportunities for any effects of genetic incompatibility to

differ between the sexes.

We artificially crossed three hatchery populations of

brown trout, a species with genome duplication and an unu-

sually high number of chromosomes (2n ¼ 80; NF ¼ 100 [17])

in order to examine the influence of outcrossing and parental

identity on sex ratios. Our expectation was that hybrid and

pure crosses might differ in sex ratios due to differences in

pairing and recombination between homeologous chromo-

somes, and that males might suffer increased embryo

mortality due to their lower recombination rates and greater

interference at telomeric regions.
 analysis. (Significant p-values are shown in bold.)

variable d.f. LRT p-values

embryo mortality (M) 1 5.95 0.015

population type (T) 1 1.81 0.178

relative fecundity (F) 1 4.26 0.039

M � T interaction 1 2.50 0.114

M � F interaction 1 0.59 0.443

T � F interaction 1 0.15 0.701

M � T � F interaction 1 1.66 0.198
2. Material and methods
We employed a partial factorial mating design [18] to cross 15

males with 15 females from three domesticated brown trout

populations (F ¼Hardy, S ¼ Hardy-Prosper, G ¼ Gournay) on

5 December 2014, so that one clutch from each female was

crossed with three males (one from each population). This was

repeated five times to produce 15 pure and 30 hybrid families

(electronic supplementary material, table S1), which were distrib-

uted in duplicate over 95 egg boxes along three tanks (mean egg

density/box ¼ 117+1.6 s.e.) at the PEIMA hatchery (France).

The three populations have been maintained under culture

since 1986, and differ with respect to domestication selection

(S, selected for growth; F and G, unselected) and genetic struc-

ture (F and S, single origin populations; G, multiple origins

population [19]). Embryo mortalities were removed daily, and

alevins were reared at 11.4–12.18C for 51 days until the ‘swim

up’ stage (i.e. before the onset of external feeding), at which

point they were humanely euthanized (Ethical approval

B2977702, 07/2013) and stored in ethanol for genetic analysis.

Sex was determined using primers SdYE1S1 and SS sdYE2AS4

[7], identification being resolved by the presence of PCR product

around 600–700 bp in males and its absence in females. To verify

the accuracy of this method, 30 male parents from each stock,

and all the female parents, were genetically sexed, and one

male which failed the PCR amplification was discarded and

not used in the crosses. For quality control, approximately 200

PCRs were randomly repeated and 30 embryos were sexed

twice in a double blind fashion.

We employed generalized linear mixed modelling (GLMM) to

analyse sex ratios using the glmer function in the lme4 package of

R 3.3.2. We used type of cross (pure versus hybrid), relative fecund-

ity (egg mass/body mass) and embryo mortality (no. dead

embryos/total no. eggs) as fixed factors, and dam, sire, sire

nested within dam, and egg box nested within tank as random fac-

tors. We sexed 20 fish per replicate for 69% of the families; samples

with less than 12 fish per replicate were excluded, which reduced

the sample size to 34 families distributed over 66 egg boxes. To

determine the most plausible model, we employed a hierarchical

approach based on AIC changes and backward selection using

the drop1 function in lme4 based on the likelihood ratio test, LRT [20].
3. Results
There was 100% agreement between phenotypic and genetic sex

determination for all the parents used in the crosses, as well as

for the duplicated sexing of the same embryos. We are thus con-

fident genetic sexing was reliable. The sex ratio of 1311 embryos

was significantly biased towards females (males¼ 501,

females ¼ 810, Fisher’s Exact test p , 0.001). However, SR

varied widely among crosses (figure 1, mean ¼ 0.39+0.03

s.e.) and 60% of families yielded significantly skewed sex

ratios, these being over four times more likely to be female-

biased (n ¼ 17 families) than male-biased (n ¼ 4 families).

Family replicates (from different egg boxes) produced verysimi-

lar SR (IC correlation coefficient¼ 0.96) and were dropped from

the final model (electronic supplementary material, table S2).

Hybrid crosses produced more females than pure crosses

(65% versus 56%, Fisher exact test p , 0.001), but this was par-

tially the result of differential mortality and could be removed

from the final model (LRT¼ 1.813, d.f.¼ 1, p ¼ 0.178). The

most plausible SR model (table 1) included embryo mortality

(estimate¼ 20.30, s.e.¼ 0.12, p ¼ 0.01) and relative fecundity

(estimate¼ 20.28, s.e. ¼ 0.13, p ¼ 0.04) as significant predic-

tors, and sire nested within dam as a random factor (electronic

supplementary material, table S2).

Mean embryo mortality was 56.5% but this varied widely

among families (range ¼ 5–100%) and was particularly high

http://rsbl.royalsocietypublishing.org/
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Figure 2. Relationship between embryo mortality and predicted SR ( pro-
portion of males) for each experimental egg box. (Online version in colour.)
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25–35 days post-fertilization, when 47% of mortalities

occurred. Crosses with high embryo mortality were more

female-biased (figure 2).
4. Discussion
Our study suggests that the assumption of equal sex ratios at one

month post-hatching does not hold true for brown trout

embryos. Instead, sex ratios were commonly skewed, these

being typically female-biased, though an overrepresentation

of males was also observed in some families. In common with

other studies [21], our SR estimates were obtained sometime

after hatching. This makes it problematic to distinguish between

variation in sex allocation and sex-biased mortality. Yet, we

detected significantly skewed sex ratios even in families that

had sustained relatively low mortalities (13–17%), suggesting

that there is scope for both. In this sense, it would be most fruit-

ful to compare the sex ratios of live and dead embryos, though

this was not possible in our study due to degraded DNA.

Skewed sex ratios appeared to be largely the consequence

of high male mortality, most of which occurred during a

10-day period, corresponding to 300–450 temperature units,

the stage when the teleost immune system is differentiating

and salmonid embryos are most sensitive to stress [22]. This

is consistent with disruption during embryo development,

rather than with low fertilization success. The sex-
determining locus in brown trout is located very close to

the telomere of a small chromosome [23], where it may

experience anomalous segregation during meiosis, result in

genome imbalance [16] and impact on male survival, which

is consistent with our results, though other explanations

cannot be ruled out. For example, it is possible that sex

ratios at birth are also skewed due to genetic conflict [15].

Contrary to our expectations, hybrid crosses did not pro-

duce offspring with more skewed sex ratios, though we

found some evidence for sire � dam interactions (electronic

supplementary material, table S2) and a role for maternal

investment. Female-biased sex ratios were more likely

among the offspring of mothers with high relative fecundity,

i.e. when maternal investment was high. This suggests that

parents may play a role in determining the sex ratio of their

offspring, possibly through genetic incompatibility and by

impacting disproportionately in the viability of male

embryos, as seen in other species [24]. For example, in

some birds, mating between genetically incompatible parents

results in an excess of sons, thereby protecting mothers from

investing in inviable daughters [25]. Likewise, some lizards

sire a disproportionally high proportion of sons while

others sire a large proportion of daughters [26], apparently

depending on male body size.

Our findings have implications for demographic studies

because survival and selection estimates that assume

balanced juvenile sex ratios [27] will tend to be biased if, as

our results indicate, skewed sex ratios are common early in

life. Skewed sex ratios will tend to reduce effective population

size [28], but the existence of sire � dam interactions means

that by mating with multiple males, females may produce

broods with varying sex ratios, which may represent an

adaptive bet-hedging strategy [21].
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