
HAL Id: hal-01605663
https://hal.science/hal-01605663

Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Stochastic Self-Organizing Map variants with the R
package SOMbrero
Nathalie Villa-Vialaneix

To cite this version:
Nathalie Villa-Vialaneix. Stochastic Self-Organizing Map variants with the R package SOMbrero.
12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering
and Data Visualization (WSOM), Jun 2017, Nancy, France. 7 p., �10.1109/WSOM.2017.8020014�.
�hal-01605663�

https://hal.science/hal-01605663
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

1

Stochastic Self-Organizing Map variants with the
R package SOMbrero

Nathalie Villa-Vialaneix MIAT, Université de Toulouse, INRA
BP 52627, 31326 Castanet Tolosan cedex, France

Email: nathalie.villa-vialaneix@inra.fr
Telephone: +33 (0)5 61 28 55 73

(Invited Paper)

F

Abstract—Self-Organizing Maps (SOM) [1] are a popular clustering and
visualization algorithm. Several implementations of the SOM algorithm
exist in different mathematical/statistical softwares, the main one being
probably the SOM Toolbox [2]. In this presentation, we will introduce
an R package, SOMbrero, which implements several variants of the
stochastic SOM algorithm. The package includes several diagnosis tools
and graphics for interpretation of the results and is provided with a
complete documentation and examples.

1 INTRODUCTION

Self-Organizing Maps (SOM), introduced by Teuvo Koho-
nen [1], [3], [4], are a popular clustering and visualization
algorithm. The success of the method is due to its very
simple definition as well as its ability to perform, in a single
analysis, clustering and visualization by projection of the
data onto a small dimensional grid. This is a powerful and
easy-to-use method for the exploration of multidimensional
data. Originally, SOM has been inspired by neuro-biological
learning paradigms which were intended to model some
sensory or cognitive processes in which the learning is
directed by the experience and the external inputs without
supervision. Later, the method has been used in a wide
variety of areas ([2] reports more than 7,000 scientific
publications related to SOM with applications in industrial,
biomedical and financial analyses, for instance).

Several implementations of the SOM algorithm exist in
different mathematical/statistical softwares, most on them
usable only for numeric data. The main one is probably the
SOM Toolbox1, which is released under GPL2 licence and
runs in Matlab. The toolbox contains many different func-
tions to learn and interpret SOM and to handle various types
of data, including datasets with missing data, symbol strings
datasets and relational datasets (i.e., datasets described by
a dissimilarity, [5]). It also includes implementations of
Generative Topographic Mapping [6] and of LVQ and metric
learning for LVQ [7], [8]. The toolbox is fully documented
and illustrated in the book [2].

1. current version 2.1, last update from December 2012, available at
http://research.ics.aalto.fi/software/somtoolbox/

Since the free statistical software R [9], is one of the most
(if not the most) widely used program in the statistical and
bioinformatics communities, we have implemented a full
R package providing various versions of the SOM algo-
rithm and many functions for diagnosis and interpretation.
SOMbrero is inspired by Patrick Letremy’s SAS programs2.
Prior SOMbrero3, several R packages were proposing SOM
implementations (e.g., class, som, popsom, kohonen, ... see
[10] for a more precise description of these packages). How-
ever, as far as we can tell, SOMbrero is the most complete
one, with user-friendly features and implementations of
variants of the original algorithm for relational data and
contingency tables, based on the stochastic version of the
method. Current version of the package is 1.2 (2016/09/02)
and the package runs on R (≥ 3.0.1) with dependencies
to the packages wordcloud, scatterplot3d, RColorBrewer,
shiny, grDevices, graphics and stats.

The next sections describe the different features of the
package. More precisely Section 2 presents the general or-
ganization of the package and its standard use for numeric
datasets. Section 3 presents applications of SOM to explore
contingency tables and Section 4 describes a variant for
dissimilarity datasets.

2 SOM FOR NUMERIC DATASETS AND GENERAL
ORGANIZATION OF SOMbrero
This section provides an overview of the package main
features. It fully describes functions that can be used for the
standard SOM (that processes numeric datasets). However,
most of what is described in this section is not restricted to
numeric datasets and also exist for the other two variants of
the algorithm that are described in Sections 3 and 4.

2.1 Training stochastic SOM for numeric datasets
SOMbrero implements the stochastic (also called “on-line”)
version of the SOM algorithm. More precisely, the dataset

2. current version 9.1.3, last updated in December 2005, no
longer maintained, available at http://samos.univ-paris1.fr/
Programmes-bases-sur-l-algorithme

3. https://CRAN.R-project.org/package=SOMbrero

978-1-5090-6638-4/17/$31.00 c©2017 IEEE

http://research.ics.aalto.fi/software/somtoolbox/
http://samos.univ-paris1.fr/Programmes-bases-sur-l-algorithme
http://samos.univ-paris1.fr/Programmes-bases-sur-l-algorithme
https://CRAN.R-project.org/package=SOMbrero

2

X = (xij)i=1,...,n,j=1,...,d, made of n observations taking
values in Rd, is mapped into a low dimensional grid com-
posed of U units. Conversely, every unit u is associated with
a prototype pu ∈ Rd. The grid induces a natural distance
d on the map which provides a measure of dissimilarity
between every pair of units, d(u, u′). The stochastic version
of the algorithm processes the observations one by one, with
the iterative application of two steps:

• an assignment step where one observation (on-line
version) is classified into the unit with the closest
prototypes (according to Rd Euclidean distance);

• a representation step where all prototypes are updated
according to the new assignment. For the on-line
version of the algorithm, this step is performed by
mimicking a stochastic gradient descent scheme.

The method is fully described in Algorithm 1, in which
Ht is the neighborhood function that satisfies Ht : R+ →
R+, Ht(0) = 1 and limz→+∞Ht(z) = 0, and µ(t) is a
training parameter. Generally, Ht and µ(t) are supposed to
be decreasing with the iteration number, t.

Algorithm 1 Stochastic SOM algorithm for numeric datasets

Require: Numeric dataset: X = (xij)i=1,...,n, j=1,...,d

1: For all u = 1, . . . , U initialize p0u randomly in Rd
2: for t = 1, . . . , T do
3: Randomly choose an input i ∈ {1, . . . , n}
4: Assignment step: find the unit of the prototype closest

to xi = (xi1, . . . , xid):

f t(xi)← arg min
u=1,...,U

‖xi − pt−1u ‖2

5: Representation step: ∀u = 1, . . . , U ,

ptu ← pt−1u + µ(t)Ht(d(f t(xi), u))
(
xi − pt−1u

)
where 1i is a vector with a single non null coefficient at
the ith position, equal to one.

6: end for
7: return Clustering: (fT (xi))i=1,...,n and prototypes:

(pTu)u=1,...,U .

In SOMbrero, the following options can be passed to the
function trainSOM that trains a SOM:

• the grid of the SOM is a square grid with
U = m1 × m2 units (m1 and m2 chosen
by the user). Units are positioned in R2 at
(k1(u), k2(u))k1(u)=1,...,m1, k2(u)=1,...,m2

. Default val-
ues are approximately m1 = m2 =

√
n
10 (with a

minimum of 5 and a maximum of 10 for default
values);

• the distance between units on the grid, d, is Eu-
clidean (default) or any type of distance available in
the R function dist or also a relationship denoted by
letremy which corresponds to the original imple-
mentation by Patrick Letremy and switches between
Euclidean distance and the distance “maximum”
which is the maximum between the distance on the
first and the second coordinates;

• the function Ht, also called neighborhood relation-
ship, can be chosen as Gaussian (default), Ht(z) =

e−z
2/r(t) in which r(t) is decreasing with t, or can be

of type letremy: Ht(z) =

{
0 if z ≤ r(t)
1 otherwise , with

r(t) decreasing during the training.
• prototypes can be initialized randomly as described

in step 1 of Algorithm 1 or to one observation of
the dataset, randomly chosen, each or by positioning
them regularly on the first to PC of a PCA performed
on X or finally, to values specified by the user;

• X can be preprocessed by centering and scaling to
unit variance or not preprocessed at all. In the case
of a preprocessing of the data, the prototypes are
returned in the original scale of X;

• the assignment step can be performed in a standard
way, as described in step 4 of Algorithm 1, or using
the Heskes’s modified assignment step [11]:

f t(xi)← arg min
u=1,...,U

U∑
u′=1

Ht(d(u, u′))‖xi − pt−1u′ ‖
2;

• the number of iterations T can be set by the user.
Default values is equal to 5n;

• finally, the user can chose to save intermediate states
of the training, which includes saving the prototypes,
the clustering for all observations and the value of

Et =
n∑
i=1

U∑
u=1

Ht(d(f t(xi), u))‖xi − ptu‖2.

2.2 Plots and diagnosis functions
SOMbrero has been conceived to help the user interpret
the output of the algorithm. More precisely, two standard
quality measures [12] are given with the function quality
that computes:

• the topographic error, which is the average frequency
(over all observations) with which the prototype that
comes second closest to an observation is not in
the direct neighborhood (on the grid) of the winner
prototype. It is a real number between 0 and 1, a
value close to 0 indicating good quality;

• the quantization error, computed as:

Q =
1

n

n∑
i=1

‖xi − pf(xi)‖
2.

Moreover, SOMbrero comes with many different plots,
that can be used to represent the original dataset, the
prototypes or an additional variable related to the obser-
vations, on the grid. 16 types of plots are available with
the single function plot and two options what (what to
plot? observations, prototypes or additional information)
and type (which type of graph to plot?). Some of these
plots display distances between prototypes on the grid and
can be used as diagnosis plots. An exhaustive description of
available graphics is provided in [10] and examples of such
plots, obtained on the famous iris dataset [13], are given in
Figure 1.

Finally, super-clusters can be obtained by using the func-
tion superClass on the output of the trainSOM function.
This method performs hierarchical clustering on the pro-
totypes of the map to cluster the units in “super-clusters”.

3

(a) what="obs" and type="boxplot" (b) what="prototypes" and type="3d"

(c) what="add" and type="pie" (d) what="prototypes" and type="poly"

Fig. 1: Different types of graphics obtained for the iris dataset: distribution of the variables within units (1a), prototype
values for the different dimension (1b), additional variable (Species) distribution within units (1c) and distances between
prototypes (1d) as proposed in [14].

These super-clusters can also been visualized on the map in
various ways.

2.3 Documentation and graphical user interface
Additionally to the standard R documentation, SOMbrero
also provides five vignettes (documentation files accessible
from within the package and at https://cran.r-project.org/
web/packages/SOMbrero/). The vignettes illustrate the
functions with three datasets that correspond to the three
variants implemented in the package. The first dataset is
the iris dataset [13]. The second dataset (KORRESP variant,
see Section 3) is the contingency table of votes for the

combinations of “Départements” and “Candidates” during
the French presidential election of 20024. It provided in
the package under the name presidentielles2002. The
last dataset (relational variant, see Section 4) is the shortest
path length between all nodes in the co-occurrence network
obtained from the French novel “Les misérables” (V. Hugo)
[15]. This dataset (co-occurrence network and dissimilarity
matrix) is provided in the package under the name lesmis.

For users who are not familiar with R command lines,
SOMbrero contains a graphical user interface which has

4. Source: http://www.interieur.gouv.fr/Elections/Les-resultats/
Presidentielles

https://cran.r-project.org/web/packages/SOMbrero/
https://cran.r-project.org/web/packages/SOMbrero/
http://www.interieur.gouv.fr/Elections/Les-resultats/Presidentielles
http://www.interieur.gouv.fr/Elections/Les-resultats/Presidentielles

4

been programmed with the R package shiny [16] (see Fig-
ure 2). The GUI is launched from within R with the function
sombreroGUI() and opens in default web browser.

Fig. 2: Screenshot of the SOMbrero web user interface.

3 SOM FOR CONTINGENCY TABLES

Another very standard type of data that can be handled
by SOMbrero is the case of contingency tables in which
the dataset T = (nij)i=1,...,p,j=1,...,q is composed of joint
frequencies for a pair of categorical variables (p is the
number of levels for the first categorical variable and q the
number of levels for the second). Classical correspondence
analysis performs a weighted principal components analy-
sis, using the χ2 distance simultaneously on the row profiles
and on the column profiles. The same principle is used
in the so-called “KORRESP” algorithm, [17], [18], which
extends SOM to contingency tables and is implemented in
SOMbrero.

More precisely, the contingency table is first
transformed into a dataset with row and column profiles:

X =

columns rows

columns

rows

column profile

row profile

augmented column
profile

augmented row
profile

for which:

• row profiles, (xi)i=1,...,p are defined by ∀ j =

1, . . . , q, xij =
nij

ni.
×
√

n
n.j

and column profiles,

(xi)i=p+1,...,p+q are defined similarly by ∀ j = q +

1, . . . , q + p, xij =
nj−q,i−p

n.,i−p
×
√

n
nj−q,.

;
• augmented row profiles correspond to the most

probable column profile for that row: (x̃i)i=1,...,p are
defined by ∀ j = q+1, . . . , q+p, x̃ij = xk(i)+p,j with
k(i) = argmaxk=1,...,q xik. Similarly, augmented col-
umn profiles are (x̃i)i=p+1,...,p+q with ∀ j = 1, . . . , q,
x̃ij = xk(i)−q,j and k(i) = argmaxk=q+1,...,q+p xik.

The algorithm is fully described in Algorithm 2.

Prototypes are defined in Rp+q . The algorithm then al-
ternatively processes a row and a column (randomly chosen
during the stochastic training process). For the chosen row
(or column),

• the assignment step uses the profile (xi)i=1,...,p (in
Rq for rows) or (xi)i=p+1,...,p+q (in Rp for columns).
For a row i ∈ {1, . . . , p}, this gives:

f t(xi)← arg min
u=1,...,U

‖xi − (pt−1uj)j=1,...,q‖2;

• the representation step uses the augmented profile
(in Rp+q). For the chosen row i, this gives:

ptu ← pt−1u +µ(t)Ht(d(f t(xi), u))

([
xi
x̃i

]
− pt−1u

)
.

Algorithm 2 KORRESP variant of the stochastic SOM algo-
rithm for contingency tables

Require: Contingency table: T = (nij)i=1,...,p, j=1,...,q

1: Define X with row/column profiles and augmented
row/column profiles

2: For all u = 1, . . . , U initialize p0u randomly in Rp+q
3: for t = 1, . . . , T do
4: Start Process rows
5: Randomly choose an input i ∈ {1, . . . , p}
6: Assignment step: find the unit of the prototype

closest to xi:

f t(xi)← arg min
u=1,...,U

‖xi − (pt−1uj)j=1,...,q‖2

7: Representation step: ∀u = 1, . . . , U ,

ptu ← pt−1u + µ(t)Ht(d(f t(xi), u))

([
xi
x̃i

]
− pt−1u

)
where 1i is a vector with a single non null coefficient at
the ith position, equal to one.

8: End
9: Start Process columns

10: Randomly choose an input i ∈ {p+ 1, . . . , p+ q}
11: Assignment step: find the unit of the prototype

closest to xi:

f t(xi)← arg min
u=1,...,U

‖xi − (pt−1uj)j=q+1,...,q+p‖2

12: Representation step: ∀u = 1, . . . , U ,

ptu ← pt−1u + µ(t)Ht(d(f t(xi), u))

([
x̃i
xi

]
− pt−1u

)
where 1i is a vector with a single non null coefficient at
the ith position, equal to one.

13: End
14: end for
15: return Clustering: (fT (xi))i=1,...,p+q and prototypes:

(pTu)u=1,...,U .

This method can be used in SOMbrero with
trainSOM(..., type= "korresp") and provides a
map in which levels for both variables of the contingency
tables are clustered simultaneously. This approach is anal-
ogous to the common representation provided for contin-
gency tables in correspondence analysis.

5

4 SOM FOR RELATIONAL DATASETS

4.1 Relational SOM

In the case where the observations (xi)i=1,...,n take values
in an arbitrary input space G, a widely used representation
of the data is to compute a measures of dissemblance or
resemblance between pairs of observations. Well known
examples of such frameworks include shortest path lengths
between pairs of nodes in a graph [19], string edit distance
between categorical time series [20] or DNA samples [21] or
various kernels used in many application fields, including
biology [22]. In this section, we will consider that the data
are described by a dissimilarity measure ∆ = (δij)i,j=1,...,n,
which is such that δij = δ(xi, xj) is the measure of dis-
semblance between xi and xj , is symmetric and null on
the diagonal. Note that a natural Euclidean structure is not
necessarily associated with this dissimilarity measure.

Several extensions of the SOM algorithm have been
proposed in this context, including “median SOM” [23]–
[25] and kernel SOM [26]–[28]. SOMbrero implements the
relational variant of SOM [5], [21] which relies to a pseudo-
Euclidean framework. More precisely, [29] shows that, given
δ as described above, we can find two Euclidean spaces, E+
and E−, and two mappings φ+ : G → E+ and φ− : G → E−
such that

δ(x, x′) = ‖φ+(x)− φ+(x′)‖2E+ − ‖φ
−(x)− φ−(x′)‖2E− .

Writing φ(x) := (φ+(x), φ−(x)), that take values in the
orthogonal direct sum of the two Euclidean spaces im-
plicitely defined by the dissimilarity, the prototypes can
thus be defined as pu =

∑n
i=1 βuiφ(xi) with βui ≥ 0

and
∑n
i=1 βui = 1. Using the standard operations in the

pseudo-Euclidean space induced by the similarity, the rep-
resentation and assignment steps of the SOM algorithm can
be rewritten as described in Algorithm 3 (justifications are
given in [21]).

Algorithm 3 Relational variant of the stochastic SOM algo-
rithm for dissimilarity data

1: For all u = 1, . . . , U and i = 1, . . . , n, initialize β0
ui such

that β0
ui ≥ 0 and

∑n
i β

0
ui = 1.

2: for t = 1, . . . , T do
3: Randomly choose an input xi
4: Assignment step: find the unit of the closest prototype

f t(xi)← arg min
u=1,...,U

((
βt−1u ∆

)
i
− 1

2
(βt−1u)T∆βt−1u

)
where

(
βt−1u ∆

)
i

is the ith entry of βt−1u ∆
5: Representation step: ∀u = 1, . . . , U ,

βtu ← βt−1u + µ(t)Ht(d(f t(xi), u))
(
1i − βt−1u

)
where 1i is a vector with a single non null coefficient at
the ith position, equal to one.

6: end for

If the dissimilarity matrix is a Euclidean distance, then
the relational SOM is exactly identical to the standard nu-
merical SOM as long as the prototypes of the original SOM
are initialized in the convex hull of the original data (i.e., the
initial prototypes can be written p0u =

∑
i β

0
uixi). Similarly,

the relational SOM is identical to kernel SOM as described
in [27], [30], [31] for a dissimilarity defined from a kernel K
by

δ(xi, xj) := K(xi, xi) +K(xj , xj)− 2K(xi, xj).

4.2 Acceleration of relational SOM

However, the complexity of the assignment and represen-
tation steps of stochastic relational SOM are, respectively,
O(n2U) and O(nU), as pointed in [32]. This leads to a
total complexity ofO(n2U) for one iteration. To obtain good
convergence properties, the algorithm requires a number of
iterations of the order of αn, as shown in [33], yielding
a complexity of O(αn3U). Hence, relational SOM is not
adapted to large datasets and cannot be used to analyze
more than a few thousands observations. [34] have pro-
posed two approximate versions to overcome this issue,
using sparse representations of the prototypes or DR pre-
processing techniques. However, the version implemented
in SOMbrero uses the solution proposed in [35] which
yields to a complexity of O(αn2U).

More precisely, the method is based on a re-formulation
of the assignment step (step 4 in Algorithm 3):

f t(xi) = arg min
u=1,...,U

Bt−1u − 1

2
At−1ui

in which

At =

 n∑
j,j′=1

βtujβ
t
uj′δjj′


u=1,...,U

is a vector of size U and

Bt =

 n∑
j=1

βtujδi′j


u=1,...,U,i′=1,...,n

is a (U × n)-matrix.
The updates of At and Bt are performed during the

representation step, which is thus equivalent to ∀u =
1, . . . , U, βtu = (1−λu(t))βt−1u +λu(t)1i, in which λu(t) =
µ(t)Ht(d(f t(xi), u)). This leads to the following updates:

Btui′ =
n∑
j=1

βtujδi′j = (1− λu(t))Bt−1ui′ + λu(t)δi′i,

and

Atu =
n∑

j,j′=1

βtujβ
t
uj′δjj′

= (1− λu(t))2At−1u + λu(t)
2δii

+2λu(t)(1− λu(t))Bt−1ui .

Provided that the assignment and representation steps
are usually performed O(αn) times, the total complexity
of the algorithm is dominated by O(αn2U). This compu-
tational cost is obtained using the additional storage of
At and Bt which requires an additional memory of O(U)
and O(nU), respectively. This solution is implemented in
SOMbrero since version 1.2, which considerably reduced
the computational time required by the relational version,
as shown in [35].

6

4.3 Special features for graphs

As already mentionned, graphs are a special case of re-
lational data: if (xi)i are the nodes of a given graphs,
several types of similarities/dissimilarities can be used to
describe ressemblance between those nodes. Widely used
examples include shortest path lengths or kernels based on
the Laplacian of the graph [36] that include, among others,
the commute time kernel, KCT = L+ [37] or the heat kernel,
KH = e−βL (β > 0), [38].

SOMbrero includes additional functions for this type of
data. When the clustered entities are nodes of a graph G,
a projection of the graph onto the map can be obtained
with the function projectIGraph. This projected graph
has a number of nodes equal to the number of (nonempty)
units in the map and edges that connect pairs of vertices
that contain each at least one node connected by an edge
in G. The output of this function is given as an igraph5

that can provide a simplified representation of the graph as
in Figure 3 (this figure provides a simplified representation
of the graph lesmis described in Section 2.3 after a super-
clustering has been applied to the result of the relational
SOM algorithm).

Fig. 3: Simplified representation of the co-appearance net-
work of “Les misérables” as obtained with SOMbrero.

ACKNOWLEDGMENT

This paper summarizes articles written with Marie Cottrell,
Jérôme Mariette, Madalina Olteanu, Fabrice Rossi, Laura
Bendhaı̈ba and Julien Boelaert, who have all contributed to
the development of SOMbrero.

5. available from the R package igraph, [39].

REFERENCES

[1] T. Kohonen, Self-Organizing Maps, 3rd Edition. Berlin, Heidelberg,
New York: Springer, 2001, vol. 30.

[2] ——, MATLAB Implementations and Applications of the Self-
Organizing Map. Helsinki, Finland: Unigrafia Oy, 2014.

[3] ——, “Analysis of a simple self-organizing process,” Biological
Cybernectis, vol. 44, pp. 135–140, 1982.

[4] ——, “Self-organized formation of topologically correct feature
maps,” Biological Cybernetics, vol. 43, pp. 59–69, 1982.

[5] B. Hammer and A. Hasenfuss, “Topographic mapping of large
dissimilarity data sets,” Neural Computation, vol. 22, no. 9, pp.
2229–2284, September 2010.

[6] C. Bishop, M. Svensén, and C. Williams, “GTM: The generative
topographic mapping,” Neural Computation, vol. 10, no. 1, pp. 215–
234, 1998.

[7] T. Kohonen, “Learning vector quantization,” in The Handbook of
Brain Theory and Neural Networks, M. Arbib, Ed. Cambridge, MA,
USA: MIT Press, 1995, pp. 537–540.

[8] P. Schneider, B. Hammer, and M. Biehl, “Adaptive relevance ma-
trices in learning vector quantization,” Neural Computation, vol. 21,
pp. 3532–3561, 2009.

[9] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2017. [Online]. Available: http://www.R-project.org

[10] J. Boelaert, L. Bendhaı̈ba, M. Olteanu, and N. Villa-Vialaneix,
“SOMbrero: an r package for numeric and non-numeric self-
organizing maps,” in Advances in Self-Organizing Maps and Learning
Vector Quantization (Proceedings of WSOM 2014), ser. Advances
in Intelligent Systems and Computing, T. Villmann, F. Schleif,
M. Kaden, and M. Lange, Eds., vol. 295. Mittweida, Germany:
Springer Verlag, Berlin, Heidelberg, 2014, pp. 219–228.

[11] T. Heskes, “Energy functions for self-organizing maps,” in
Kohonen Maps, E. Oja and S. Kaski, Eds. Amsterdam: Elsevier,
1999, pp. 303–315. [Online]. Available: http://www.snn.ru.nl/
reports/Heskes.wsom.ps.gz

[12] G. Pölzlbauer, “Survey and comparison of quality measures for
self-organizing maps,” in Proceedings of the Fifth Workshop on Data
Analysis (WDA’04), J. Paralic, G. Pölzlbauer, and A. Rauber, Eds.
Sliezsky dom, Vysoke Tatry, Slovakia: Elfa Academic Press, 2004,
pp. 67–82.

[13] R. Becker, J. Chambers, and A. Wilks, The New S Language.
Wadsworth & Brooks/Cole, 1988.

[14] M. Cottrell and E. de Bodt, “A Kohonen map representation to
avoid misleading interpretations,” in Proceedings of the European
Symposium on Artificial Neural Networks, M. Verleysen, Ed. Brux-
elles, Belgium: Editions D Facto, 1996, pp. 103–110.

[15] D. Knuth, The Stanford GraphBase: A Platform for Combinatorial
Computing. Reading, MA: Addison-Wesley, 1993.

[16] RStudio and Inc., shiny: Web Application Framework for R,
2013, R package version 0.6.0. [Online]. Available: http:
//CRAN.R-project.org/package=shiny

[17] M. Cottrell, P. Letrémy, and E. Roy, “Analyzing a contingency
table with Kohonen maps: a factorial correspondence analysis,”
in Proceedings of International Workshop on Artificial Neural Networks
(IWANN 93), ser. Lecture Notes in Computer Science, J. Cabestany,
J. Mary, and A. E. Prieto, Eds. Springer Verlag, 1993, pp. 305–311.

[18] M. Cottrell and P. Letrémy, “How to use the Kohonen algorithm to
simultaneously analyse individuals in a survey,” Neurocomputing,
vol. 63, pp. 193–207, 2005.

http://www.R-project.org
http://www.snn.ru.nl/reports/Heskes.wsom.ps.gz
http://www.snn.ru.nl/reports/Heskes.wsom.ps.gz
http://CRAN.R-project.org/package=shiny
http://CRAN.R-project.org/package=shiny

7

[19] M. Olteanu and N. Villa-Vialaneix, “Using SOMbrero for
clustering and visualizing graphs,” Journal de la Société
Française de Statistique, vol. 156, no. 3, pp. 95–119, 2015.
[Online]. Available: http://publications-sfds.math.cnrs.fr/index.
php/J-SFdS/article/view/473

[20] S. Massoni, M. Olteanu, and N. Villa-Vialaneix, “Which distance
use when extracting typologies in sequence analysis? An applica-
tion to school to work transitions,” in International Work Conference
on Artificial Neural Networks (IWANN 2013), Puerto de la Cruz,
Tenerife, 2013.

[21] M. Olteanu and N. Villa-Vialaneix, “On-line relational and multi-
ple relational SOM,” Neurocomputing, vol. 147, pp. 15–30, 2015.

[22] B. Schölkopf, K. Tsuda, and J. Vert, Kernel Methods in Computational
Biology. London, UK: MIT Press, 2004.

[23] T. Kohohen and P. Somervuo, “Self-organizing maps of symbol
strings,” Neurocomputing, vol. 21, pp. 19–30, 1998.

[24] B. Conan-Guez, F. Rossi, and A. El Golli, “Fast algorithm and
implementation of dissimilarity self-organizing maps,” Neural Net-
works, vol. 19, no. 6-7, pp. 855–863, 2006.

[25] A. El Golli, F. Rossi, B. Conan-Guez, and Y. Lechevallier,
“Une adaptation des cartes auto-organisatrices pour des données
décrites par un tableau de dissimilarités,” Revue de Statistique
Appliquée, vol. LIV, no. 3, pp. 33–64, 2006.

[26] T. Graepel, M. Burger, and K. Obermayer, “Self-organizing maps:
generalizations and new optimization techniques,” Neurocomput-
ing, vol. 21, pp. 173–190, 1998.

[27] D. Mac Donald and C. Fyfe, “The kernel self organising map.”
in Proceedings of 4th International Conference on knowledge-based
Intelligence Engineering Systems and Applied Technologies, 2000, pp.
317–320.

[28] K. Lau, H. Yin, and S. Hubbard, “Kernel self-organising maps for
classification,” Neurocomputing, vol. 69, pp. 2033–2040, 2006.

[29] L. Goldfarb, “A unified approach to pattern recognition,” Pattern
Recognition, vol. 17, no. 5, pp. 575–582, 1984.

[30] P. Andras, “Kernel-Kohonen networks,” International Journal of
Neural Systems, vol. 12, pp. 117–135, 2002.

[31] N. Villa and F. Rossi, “A comparison between dissimilarity SOM
and kernel SOM for clustering the vertices of a graph,” in 6th In-
ternational Workshop on Self-Organizing Maps (WSOM 2007). Biele-
field, Germany: Neuroinformatics Group, Bielefield University,
2007.

[32] F. Rossi, “How many dissimilarity/kernel self organizing map
variants do we need?” in Advances in Self-Organizing Maps and
Learning Vector Quantization (Proceedings of WSOM 2014), ser.
Advances in Intelligent Systems and Computing, T. Villmann,
F. Schleif, M. Kaden, and M. Lange, Eds., vol. 295. Mittweida,
Germany: Springer Verlag, Berlin, Heidelberg, 2014, pp. 3–23.

[33] M. Olteanu, N. Villa-Vialaneix, and M. Cottrell, “On-line relational
SOM for dissimilarity data,” in Advances in Self-Organizing Maps
(Proceedings of WSOM 2012), ser. AISC (Advances in Intelligent
Systems and Computing), P. Estévez, J. Prı́ncipe, P. Zegers, and
G. Barreto, Eds., vol. 198. Santiago, Chile: Springer Verlag, Berlin,
Heidelberg, 2013, pp. 13–22.

[34] J. Mariette, M. Olteanu, and N. Villa-Vialaneix, “Efficient inter-
pretable variants of online SOM for large dissimilarity data,”
Neurocomputing, vol. 225, pp. 31–48, 2017.

[35] J. Mariette, F. Rossi, M. Olteanu, and N. Villa-Vialaneix, “Accel-
erating stochastic kernel som,” in XXVth European Symposium on
Artificial Neural Networks, Computational Intelligence and Machine
Learning (ESANN 2017), M. Verleysen, Ed. Bruges, Belgium: d-
side publications, 2017, pp. 269–274.

[36] A. Smola and R. Kondor, “Kernels and regularization on graphs,”
in Proceedings of the Conference on Learning Theory (COLT) and Kernel
Workshop, ser. Lecture Notes in Computer Science, M. Warmuth
and B. Schölkopf, Eds. Washington, DC, USA: Springer-Verlag
Berlin Heidelberg, 2003, pp. 144–158.

[37] F. Fouss, A. Pirotte, J. Renders, and M. Saerens, “Random-walk
computation of similarities between nodes of a graph, with ap-
plication to collaborative recommendation,” IEEE Transactions on
Knowledge and Data Engineering, vol. 19, no. 3, pp. 355–369, 2007.

[38] R. Kondor and J. Lafferty, “Diffusion kernels on graphs and
other discrete structures,” in Proceedings of the 19th International
Conference on Machine Learning, C. Sammut and A. Hoffmann,
Eds. Sydney, Australia: Morgan Kaufmann Publishers Inc. San
Francisco, CA, USA, 2002, pp. 315–322.

[39] G. Csardi and T. Nepusz, “The igraph software package for

complex network research,” InterJournal, vol. Complex Systems,
2006. [Online]. Available: http://igraph.sf.net

http://publications-sfds.math.cnrs.fr/index.php/J-SFdS/article/view/473
http://publications-sfds.math.cnrs.fr/index.php/J-SFdS/article/view/473
http://igraph.sf.net

	Introduction
	SOM for numeric datasets and general organization of SOMbrero
	Training stochastic SOM for numeric datasets
	Plots and diagnosis functions
	Documentation and graphical user interface

	SOM for contingency tables
	SOM for relational datasets
	Relational SOM
	Acceleration of relational SOM
	Special features for graphs

	References

